Bi-allelic alterations in DNA repair genes underpin homologous recombination DNA repair defects in breast cancer

Robert W. Mutter1,2†, Nadeem Riaz1†, Charlotte K. Y. Ng3*, Rob Delsite1, Salvatore Piscuoglio3, Marcia Edelweiss3, Luciano G. Martelotto3, Rita A. Sakr4, Tari A. King4, Dilip D. Giridiraj3, Maria Drobnjak3, Edi Brogi3, Ranjit Bindra1,5, Giana Bernheim1, Raymond S. Lim3, Pedro Blecua1, Alexis Desrichard6, Dan Higginson1, Russell Towers4, Ruomu Jiang7, William Lee1, Britta Weigelt3, Jorge S. Reis-Filho3,6, Simon N. Powell1,*

Affiliations:
1Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
2Department of Radiation Oncology, Mayo Clinic, Rochester, MN
3Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
4Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
5Department of Radiation Oncology, Yale, New Haven, CT
6Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
7Department of Systems Biology, Harvard Medical School, Boston, MA

†Contributed equally
* Correspondence to:
Simon N. Powell, M.D., Ph.D.
Chair, Radiation Oncology
Memorial Sloan Kettering Cancer Center
Department of Radiation Oncology
1275 York Avenue, Box 22
New York, NY 10065
Email: powells@mkscc.org

Running Title: Homologous recombination defective breast cancers

Conflict of Interest statement: The authors have declared that no conflict of interest exists.
Abstract:

Homologous recombination (HR) DNA repair deficient (HRD) breast cancers have been shown to be sensitive to DNA repair targeted therapies. Burgeoning evidence suggests that sporadic breast cancers, lacking germline BRCA1/BRCA2 mutations, may also be HRD. We developed a functional ex vivo RAD51-based test to identify HRD primary breast cancers. An integrated approach examining methylation, gene expression and whole-exome sequencing was employed to ascertain the etiology of HRD. Functional HRD breast cancers displayed genomic features of lack of competent HR, including large-scale state transitions and specific mutational signatures. Somatic and/or germline genetic alterations resulting in bi-allelic loss-of-function of HR genes underpinned functional HRD in 89% of cases, and were observed in only one of the 15 HR-proficient samples tested. These findings indicate the importance of a comprehensive genetic assessment of bi-allelic alterations in the HR pathway to deliver a precision medicine-based approach to select patients for therapies targeting tumor-specific DNA repair defects.

Keywords: BRCAness, homologous recombination deficient, RAD51, DNA repair, mutation
Introduction:

Homologous recombination (HR) plays a critical role in the repair of double strand breaks (DSBs), replication-associated DNA damage, and inter-strand crosslinks. [1] Germline mutations affecting specific known HR repair genes result in an increased risk of breast cancer development. [2] For example, *BRCA1* and *BRCA2* germline mutations are present in approximately 5-7% of all breast cancers. [3] The protein products encoded by the BRCA1/2 genes are essential members of the HR pathway, assisting in the maintenance of genomic integrity. In the absence of HR, DSBs are repaired by more error-prone mechanisms, such as non-homologous end joining, leading to genomic instability and tumorigenesis. Cells with homologous recombination deficiency (HRD) have been shown to be exquisitely sensitive to platinum-based chemotherapy and poly(ADP-ribose) polymerase (PARP) inhibitors, which produce replication-associated DSBs. Therefore, HRD has been targeted in cancers with the aim of exploiting a tumor-specific deficiency in DNA repair. [4] This “synthetic lethal” approach has recently led to the approval of PARP inhibitors for *BRCA1/2*-associated ovarian cancers and the investigation of cisplatin and PARP inhibitors in *BRCA1/2*-associated breast cancers. [5-8]

There are burgeoning data suggesting that HRD is likely present in a subset of non-BRCA1/BRCA2-mutant sporadic breast cancers. [9] The etiology of HRD in sporadic breast cancer, however, still remains unclear and the identification of these tumors in the clinic remains challenging. HRD in cancer results in a distinctive pattern of genomic instability due to the deficiency in error-free DNA double strand break repair by HR. [10-
Therefore, biomarkers based on genomic landscape ‘scars’ or ‘footprints’ (i.e. patterns of somatic genetic alterations assessed by large-scale state transitions (LST), telomeric regions with allelic imbalance (NtAl), or large segments with loss-of-heterozygosity (Myriad LOH/HRD)), which are commonly seen in BRCA1/2 associated breast cancer due to HRD, have been proposed for the identification of sporadic breast cancers with HRD.[13-16] Although these genomic landscape biomarkers correlate well with BRCA1/2 germline mutations, their clinical utility in breast cancer has been limited because of their modest positive-predictive value.[17,18]

The DNA recombinase RAD51 forms a focus at DNA damage sites, which become visible using immunofluorescence microscopy, and mark sites of ongoing DNA repair. The recruitment of RAD51 to single strand DNA, catalyzes strand invasion, and is a crucial step in HR that is dependent on the functional integrity of the entire pathway.[1] Hence, the assessment of RAD51 has been proposed as a surrogate for competent HR DNA repair; however, previous approaches require patients to receive systemic cytotoxic therapy within a short period prior to tumor biopsy for biomarker assessment.[19] To address the unmet need of a test that accurately assesses the functional status of HR at the time of diagnosis, we utilized a functional RAD51 assay to measure HR in prospectively accrued human breast cancer specimens. After benchmarking this assay on the basis of the clinic-pathologic and genomics features of the tumors, we sought to define the underlying etiology of HRD in breast cancers employing a multi-faceted genomic approach (Figure 1).[20]
MATERIALS AND METHODS

Patients

We obtained fresh and flash frozen tumor specimens from 56 breast cancer patients diagnosed between August 2010 and April 2012. (Supplementary Table S1). This study was approved by the Institutional Review Board, and informed consent was obtained from all patients prior to enrollment. Details of inclusion/ exclusion criteria are described in the Supplementary Materials and Methods.

Ex vivo treatment and DNA repair protein foci assay of homologous recombination

Following excision, and without delay, the lumpectomy or mastectomy specimen was assessed grossly by a breast cancer pathologist and a fraction of the tumor was set aside in chilled complete cell culture medium. A cell suspension was created and divided equally, with one half being irradiated with 10 Gy, while the other half was mock-treated (i.e. not irradiated). The samples were then incubated in for 4 h, after which they were mounted on glass slides. Cell nuclei were analyzed for subnuclear foci formation of RAD51 in both the irradiated and mock-treated (i.e. non-irradiated) states as a functional readout of HR. IR-induced γH2AX foci formation was analyzed to assess the quality of the preparation and cell viability at the time of DNA damage and fixation, in addition to being used as a surrogate for DNA Damage. BRCA1 foci formation was also assessed to facilitate the localization of potential defects in the HR pathway. At least 200 nuclei were counted for both the irradiated and non-irradiated conditions of a
given case. A nucleus was scored as positive if it contained >5 foci, as described previously.[20]

Immunohistochemistry (IHC)

IHC analysis was performed on the matching formalin-fixed, paraffin-embedded tissue sections of the breast cancers included in this study using antibodies against PCNA and Ki67 using standard procedures and validated controls (Supplementary Materials and Methods).

Nucleic acid extractions

DNA and RNA were extracted from representative flash frozen tumor sections using the DNeasy Blood & Tissue kit (Qiagen) and TRIzol (Life Technologies), respectively (Supplementary Materials and Methods).

BRCA1 promoter methylation

Genomic DNA (100 ng) from each breast cancer was bisulfite-converted using the EpiTect Plus Bisulfite Kit (Qiagen). Purified converted DNA was subjected to methylation-specific PCR (MSPCR) using the EpiTect MSP Kit (Qiagen) as described in Supplementary Materials and Methods.

Whole-exome sequencing and copy number analysis

DNA extracted from snap-frozen tumors and germline were subjected to whole exome capture using the SureSelect Human All Exon v4 (Agilent) capture system and to
massively parallel sequencing on an Illumina HiSeq 2000. Whole-exome sequencing analysis was performed as described in Weinreb et al. with modifications (Supplementary Materials and Methods). Prior to analysis, two authors (S.N.P, N.R.) curated a list of 95 genes that are direct or indirect effectors or regulators of HR using the literature and author experience.[21,22] Comparison of the number of cases with the complete loss of both alleles of at least one HR gene according to functional RAD51 foci formation status was performed using Fisher’s exact test.

Analysis of genomic ‘scars’

Large-scale state transitions (LST), telomeric regions with allelic imbalance (NtAI), or large segments with loss of heterozygosity (Myriad LOH/HRD) scores were derived from whole-exome sequencing data. Derivation of these scores from allele specific segmented data were determined following methods outlined in the initial publications and described in detail in the Supplementary Materials and Methods.[13-15]

Analysis of mutational signatures

Mutational signatures were defined using whole-exome sequencing data as described in Supplementary Materials and Methods.
Results:

Functional Analysis of RAD51 Foci Formation to Define HR DNA Repair Defects

HRD was evaluated using a quantification of RAD51 foci in cancer cells subjected to ex vivo ionizing radiation (IR), which has previously been shown to be a robust readout of the integrity of HR in vitro.[20] We obtained tumor specimens from 56 consecutive patients with breast cancers prospectively (Table 1). In brief, immediately after surgical resection, we generated single cell suspensions from each tumor. For each patient, half of these suspensions were irradiated with 10 Gy. Cell nuclei were analyzed for the formation of RAD51 foci in both irradiated and un-irradiated cells. To ascertain that RAD51 deficiency was not due to cellular quiescence, we used immunohistochemical analysis of the proliferation marker Ki67 (Supplementary Figure S1a-b). As HR is limited to the S/G2 phases of the cell cycle and an absence of RAD51 induction denotes HRD, we only considered cases for further analysis if they showed sufficient levels of Ki67 staining (proficient >5%; deficient >20%; Supplementary Figure S2). Forty-nine tumors had sufficient levels of proliferation, as defined by Ki67, for subsequent analysis. By assessing the induction of RAD51 foci formation in irradiated vs un-irradiated cells, we observed that 78% (38/49) of the tumors displayed a significant increase in RAD51 foci following IR (Figure 2a,c,e), a phenotype we classified as “RAD51 proficient”. In addition, 22% (11/49) of tumors lacked a significant increase in RAD51 foci following IR (Figure 2b,d,e). We classified these tumors as “RAD51 deficient”.

The relative fold-increase in RAD51 recruitment following IR displayed a clear bi-modal distribution in the breast cancers analyzed (Figure 2e). The 38 RAD51 proficient tumors
also displayed BRCA1 foci induction following IR. In 7 of the 11 tumors classified as RAD51 deficient, there was also no induction of BRCA1, whereas 4 RAD51 deficient tumors exhibited a 2- to 5-fold increase in BRCA1 foci formation following IR. Notwithstanding these 4 cases, induction of RAD51 foci was linearly related to induction of BRCA1 foci (r = 0.91, p < 0.001, Supplementary Figure S1c). RAD51 deficiency (i.e. functional HRD) was observed in all clinical subtypes. A numerically but not statistically significant higher prevalence of functional HRD, however, was documented in triple-negative breast cancers (42%, Figure 2f). No association between HRD and other clinico-pathologic features was observed (Table 2).

Relationship between functional HR assays and genomic ‘scars’

We next sought to define whether breast cancers with functional HRD, as defined by the *ex vivo* RAD51 assay, would display genomic ‘scars’ or mutational signatures consistent with HRD. A subset of 24 tumors from which sufficient DNA was available, including nine RAD51-defective tumors and 15 RAD51-foci-positive controls (Supplementary Tables S1 and S2), was subjected to whole-exome sequencing. Consistent with our hypothesis, tumors with functional HRD (i.e. RAD51-deficient) had significantly higher number of *BRCA1/2*-like genomic ‘scars’ than HR-proficient breast cancers. The LST, ntAI, LOH/HRD scores, and the number of insertions and deletions (indels) were significantly higher in tumors with functional HRD (Wilcoxon rank-sum test p=0.002, p=0.009, p=0.048 and p=0.044, respectively; Figure 3a-c). The positive predictive value, negative predictive value, and accuracy of LST using a cut-off of 15 (as per initial report [13]) to determine RAD51 functional status were 59%, 90%, and 82%,
respectively. In addition, using a validated approach to classify cancers into the 21 mutational signatures that shape the genomes of human cancers [23], we observed that the BRCA1/2 mutational signature (signature 3) was present in 4/9 (44%) RAD51-deficient breast cancers but in none of the 15 RAD51-proficient cases (p=0.02, Fisher's exact test, Figure 5), suggesting that this signature may only identify a subset of breast cancers with HRD (i.e. three of five tumors with BRCA1 and BRCA2 pathogenic mutations did not display the BRCA1/2 mutational signature). Taken together, we demonstrate that HRD breast cancers as defined by a functional RAD51 foci assay display the expected cardinal genomic features of breast cancers lacking competent HR DNA repair (e.g. those of BRCA1/2 hereditary breast cancers).

Integrated Genetic Analysis HR Deficient and Proficient Tumors

We next sought to identify the etiology of functional HRD. We measured mRNA levels of a panel of HR genes, including BRCA1, BRCA2, RAD51, RAP80 and FAM175, in HRD and HR DNA repair competent cases using NanoString technology (Figure 4). The expression levels of the HR genes were found not to be associated with HRD. Similarly, BRCA1 gene promoter methylation was also not associated with functional HRD status in tumors analyzed although BRCA1 gene promoter methylation was detected in only two cases.

Given that alterations in multiple HR genes in addition to BRCA1/2 have been associated with either predisposition to breast or ovarian cancer or response to DNA damaging chemotherapy,[2,25] we posited that functional HRD may be underpinned by
genetic alterations that target distinct components of the HR pathway in sporadic breast cancers. Importantly, there is evidence to suggest that for most HR genes, bi-allelic loss is essential for cancer cells to be HR DNA repair deficient.[9,26-28] Whole-exome sequencing analysis revealed that bi-allelic germ-line and/or somatic genetic alterations affecting 95 previously-reported HR DNA repair pathway genes (Supplementary Table S3) accounted for the functional HRD observed in 8/9 (89%) cases analyzed (Figure 5 and Supplementary Tables S4 – S6).[21,22] For instance, 4/9 patients with functional HRD harbored alterations in BRCA2 (Figure 5), all of which likely resulted in a complete loss of BRCA2 (germline frameshift mutation with LOH (Case SP15), somatic frameshift mutation with LOH (Case SP28), a somatic exon 3 duplication with LOH (Case SP5), and a somatic homozygous deletion (Case SP17). Consistent with its role upstream of BRCA2 in the HR pathway, IR-induced BRCA1 recruitment into DNA repair foci was preserved in these four tumors. Four additional HRD cases had bi-allelic alterations of bona fide HR genes, including one case with a CHEK2 somatic homozygous deletion (Case SP6). Loss of CHEK2 diminishes RAD51 recruitment to the sites of DNA damage following IR (unpublished observation).[29,30] The two cases with somatic homozygous deletions of either BRCA2 (Case SP17 or CHEK2 (Case SP6) had negligible mRNA expression levels of the corresponding gene (Supplementary Figure S3), providing additional evidence of the functional consequence of the homozygous deletions detected. Two additional HRD cases showed non-synonymous somatic mutations and LOH in FAAP100 (Cases SP16 and SP26), a Fanconi Anemia associated protein. Integrity of the Fanconi anemia pathway is required for RAD51 recruitment and HRD results when this pathway is inactivated.[31] Another case had a mutation and LOH in
TP53BP1, which may result in a switch from repair of double strand breaks with fidelity by HR, to a reliance on RAD52-mediated mutagenic single-strand annealing.[32] Case SP6, in addition to a CHEK2 homozygous deletion, also harbored a homozygous deletion in BABAM1 (MERIT40 or NBA1), a member of the BRCA1-A complex known to affect BRCA1 and RAD51 recruitment.[33] The only RAD51 foci formation proficient case displaying a bi-allelic inactivation of an HR gene was case SP20. This tumor despite harboring a germline frameshift mutation in BRCA1 coupled with LOH of the wild-type allele, was found to be proficient for the induction of RAD51 and BRCA1 foci, and did not display an elevated LST score or a BRCA mutational signature. In addition, this case did not display evidence of intra-genic deletions or revertant mutations in the tumor, nor did it have low expression of 53BP1, suggesting there might be additional mechanisms that can restore HR function in BRCA1-mutant breast cancers.[34-36] In total, 8/9 of RAD51-deficient cancers harbored a bi-allelic inactivation of at least one HR gene compared to 1/15 of RAD51-proficient cancers (p<0.001, Fisher’s exact test), suggesting these eight cases likely had a genetic etiology for functional HRD. The sole case that was RAD51 deficient and did not contain bi-allelic inactivation of an HR DNA repair gene, also failed to induce BRCA1 foci following IR, and did not have evidence of a genomic scaring (LST) or a mutational signature. Further BRCA1 promoter methylation was absent and there was not any obvious aberration gene expression of BRCA1 or other HR genes. This suggests possibly a genetic alteration not surveyed by whole-exome sequencing (e.g. somatic genetic alterations affecting non-protein coding regulatory elements or genetic rearrangements) or an epigenetic alteration may have resulted in HRD in this case. Of note, single-allelic alterations in HR genes occurred in
12 cases and were associated with RAD51-deficiency, albeit less strongly than bi-allelic inactivation. (p=0.01; Fisher’s exact test; Supplementary Figure S4).

The nine cases with bi-allelic inactivation of HR DNA repair genes, including the BRCA1 germline mutated but RAD51-proficient case, were found to have a significant association with higher LST scores (p=0.001, Wilcoxon rank-sum test, Figure 3d). To determine whether the association between bi-allelic inactivation or HR genes and HR deficiency would be generalizable, we performed an analysis of breast cancer samples from The Cancer Genome Atlas (TCGA) study (See Supplementary Materials and Methods).[37] In the TCGA dataset, breast cancers with a bi-allelic genetic alteration in the HR pathway gene panel also displayed significantly higher LST scores than those that did not (p < 0.001, Wilcoxon rank-sum test, Supplementary Figure S5).

Taken together, our findings demonstrate that in 8 of 9 breast cancers displaying functional HRD, the lack of competent HR DNA repair was likely caused by bi-allelic genetic inactivation of a bona fide HR-related gene. Although we included TP53BP1 in our gene panel of HR regulators and effectors, a priori, we acknowledge that mutations in this gene may promote HR, especially in a BRCA1 mutant background (which was not the case in any of the tumors analyzed in this study). Further, emerging evidence, suggests that TP53BP1 plays a critical role in supporting the accumulation of RAD51 at IR-induced DNA double strand breaks. Rather than suppressing HR in a BRCA1 wild-type background, loss of 53BP1 may trigger a hyper-resection phenotype, leading to replacement of RAD51 by RAD52 and redirecting repair from HR to more mutagenic
single-strand annealing.[32] Nevertheless, excluding this case (i.e. only 7 of 9 cases with bona-fide bi-allelic HR genes) does not significantly alter our findings. Bi-allelic alterations were still found to be significantly associated with RAD51 deficiency and correlate with LST ($p < 0.001$ and $p < 0.01$; Fisher’s exact test and Wilcoxon-rank sum test, respectively).
Discussion

Here, we developed and validated an ex vivo functional assay for the identification of HRD breast cancers. This assay revealed that over 20% of the breast cancers analyzed were found to have a functional deficiency in the HR pathway. This RAD51 foci-induction assay is the only HRD classifier to display a bimodal distribution, suggesting that there is a biologically driven categorization of breast cancers by status of the HR pathway. Breast cancers classified as functionally HRD displayed the cardinal genomic features reported to be present in tumors lacking competent HR, including high LST scores and the BRCA mutational signature (i.e. signature 3). Although HRD was most frequently observed in triple-negative breast cancers, this functional deficiency was also present in ER-positive and/ or HER2-positive disease. An integrative genomic analysis of cases with and without HRD revealed that the likeliest etiology for HRD in the vast majority of cases is bi-allelic inactivation of bona fide HR genes, and that BRCA1 gene promoter methylation and transcriptomic changes in HR genes were not associated with functional HRD. These observations demonstrate that HRD is predominantly caused by genetic events during tumorigenesis and tumor evolution, and that this phenomenon likely constitutes a convergent phenotype in breast cancers. [9,38]

Germline variants in HR genes besides BRCA1/BRCA2 are associated with breast cancer predisposition, and underlie the importance of assessing the genotype of the entire pathway.[2,39] Genetic alterations affecting HR pathway-related genes have been linked to response to HR-targeted therapies in multiple other cancers.[25,40,41] In ovarian cancer, somatic and germline assessment of a panel of 13 HR genes was
significantly associated with platinum sensitivity and overall survival in a cohort of 390 ovarian cancer patients.[25] A Phase II trial of a PARP inhibitor in metastatic prostate cancer also identified somatic and/or germline alterations in a panel of DNA repair genes was significantly associated with response, with 88% of patients who responded to therapy harbored a genetic alteration in an HR DNA repair-related gene.[40] Our results provide direct evidence to support the novel concept that bi-allelic germline and/or somatic alterations in HR genes, rather than the mere presence of a mutation in these genes, lead to phenotypic functional defect in HR and provide a mechanistic basis for these recent clinical observations. Further, we extend the significance of a comprehensive somatic and germline genetic assessment of the HR pathway genes to both the risk and treatment of breast cancer patients.

We were not able to find a clear role for aberrant HR gene expression or BRCA1 promoter methylation in mediating functional HR deficiency in our study. Although, methylation of BRCA1 is enriched in breast cancers compared to normal breast epithelium and leads to reduced BRCA1 expression, whether these changes have phenotypic consequences remains unclear.[42] In our cohort of breast cancer patients, we only identified two cases with BRCA1 promoter methylation, of which, one case was HR proficient and the other was HRD. Hence, we did not find clear evidence that would support the contention that epigenetic alterations in BRCA1 deregulate HR. In other malignancies, such as ovarian cancer, BRCA1 promoter methylation occurs in 10-20% of cases and is mutually exclusive of BRCA1 mutation.[26] Interestingly, though, epigenetic dysregulation of HR in ovarian cancer does not appear to be linked with
overall survival or progression free survival after treatment with cisplatin. Ultimately larger cohorts may be required to link epigenetic changes to phenotypic deficiencies in HR, i.e., drug response, \textit{in vitro} assays, or genomic scars.

The only patient with dysfunctional HR who did not have a bi-allelic alteration in a \textit{bona fide} HR gene, also lacked evidence of a genomic ‘scar’ or mutational signature consistent with HRD. On the opposite end of the spectrum, we identified one tumor with a bi-allelic \textit{BRCA1} mutation without evidence of a functional deficit in HR. This case did not display evidence of intra-genic deletions or reversion mutations in the tumor. Moreover, 53BP1 gene expression was assessed, and levels were not significantly lower than those detected in other samples. Other mechanisms of restoring DNA repair in \textit{BRCA1} deficient tumor cells have been reported, such as alterations in \textit{RIF1}, \textit{HELb}, \textit{PTIP} or \textit{MAD2L2}.44-47 In addition, this case displayed a frameshift mutation in \textit{BRCA1} at the C terminus in the 2nd BRCT domain (Gln1777fs) and also lacked both a high LST score and mutational signature 3. In ovarian cancer, mutations towards the end of the gene have been associated with a worse overall survival (as opposed to mutation in other portions of the gene which are associated with improved survival) – suggesting the possibility that this particular mutation may not necessarily result in an HR deficiency.48

Consistent with the notion that genomic ‘scars’ and mutational signatures are present in breast cancers with HRD, here we demonstrate using a functional HRD test that these genomic ‘scars’ and mutational signatures are present not only in \textit{BRCA1}/\textit{BRCA2}
breast cancers, but also in non-BRCA1/BRCA2 breast cancers displaying functional
HRD. It should be noted, however, that the mutational signature of BRCA1 and/ or
BRCA2 breast cancers (signature 3 from Alexandrov et al.)[23] seems to identify a more
limited subset of HRD breast cancers than the ex vivo RAD51-based functional
assessment described here. In addition, genomic ‘scar’ predictors of HRD only have
moderate positive predictive value for functional HRD providing one reason for the
modest utility of these assays in clinical trials.[17,18] Using the finding from our clinical
data of a strong relationship between functional HRD and bi-allelic alterations in HR
genes, we interrogated the TCGA data to identify cases with bi-allelic alterations in DNA
repair genes. As anticipated, TCGA cases with bi-allelic alterations had a higher
prevalence of genomic scars (i.e. high LST score), providing additional support for our
hypothesis.

The results of the functional RAD51 assay described here, in conjunction with other
studies[19,49] highlight the need for a biomarker of HR function to select breast cancer
patients who may benefit from synthetic lethal approaches targeting HRD. Direct testing
of induced RAD51 is challenging to implement as a routine clinical test due to the need
for fresh tissue, rapid processing, and specialized assessment.[50] In a translational
setting, however, functional assessment of the HR pathway can allow for a more
thorough interpretation of genomic alterations measured simultaneously. Bi-allelic
inactivation of HR genes was found to identify almost 90% of cases with a functional HR
defect, with only one false positive result.
This study has important limitations, including the relatively small sample size. However, functional *ex vivo* testing is difficult to perform in a large-scale setting. We used research versions of LST and other genomic ‘scar’ methods which may slightly alter the performance characteristics described here. Lastly, one of the genes in our *a priori* determined panel of HR genes, *TP53BP1*, is known to regulate pathway choice between HR and NHEJ.[51] In a *BRCA1* mutant background, depletion of *TP53BP1*, rescues an HR defective phenotype. Recent work however, has suggested that in a *BRCA1* wild-type setting, *TP53BP1* is important for adequate RAD51 induction after IR and that exhaustion of *TP53BP1* leads to hyper-resection (and possibly faulty HR).[32] Regardless, the exclusion of this particular case (SP29), does not significantly alter our observation that bi-allelic inactivation of HR DNA repair-related genes is significantly associated with functional HRD and high LST scores.

In conclusion, we identified the genetic basis of HR deficiency in breast cancer by correlating a functional phenotype with bi-allelic genotypic alterations in HR genes. Our results indicate that HR panel gene sequencing would succeed in predicting HR function with almost 90% accuracy. Lastly, our work highlights the importance of having bi-allelic alterations in the HR pathway, as opposed to ‘single-hits’ to result in a functional deficiency in HR. Comprehensive sequencing of HR genes may allow for a precision medicine approach for DNA damaging therapies and warrants further investigation in large cohorts from prospective clinical trials.
There was a high correlation between LST base frequencies. We utilized Homozygous...
ACKNOWLEDGEMENTS:

We would like to thank Mesruh Turkekul and Katia Monova for their help with immunohistochemical staining.

Funding: The sequencing core facility is supported by the Cancer Center Support Grant of the National Institutes of Health (Grant No. P30CA008748). SNP and JSR were funded in part by the Geoffrey Beene Cancer Center. SP was funded in part by a Susan G Komen Postdoctoral Fellowship Grant (PDF14298348). RWM is supported by P50 CA116201 Mayo Clinic Breast Cancer SPORE and the American Society for Radiation Oncology.

Author Contributions: S.N.P designed and conceived the study. RAD51 staining and analysis was performed by R.W.M., R.D., G.B., R.B., N.R., and S.N.P. Bioinformatics analysis and interpretation in the paper were performed by C.K.Y.N, N.R., R.S.L, P.B., A.D, W.L., B.W. and J.S.R.F. R.J provided a curated list of germline variants in DNA repair genes. M.E., M.D., D.D.G., and E.B, performed pathologic review of surgical specimens and immunohistochemical analysis. T.A.K. helped enroll patients on study and provided surgical specimens. Nucleic acid extraction and methylation analysis was performed by S.P., L.G.M., R.A.S, and B.W. The manuscript was prepared by N.R., R.M., C.K.Y.N, B.W., J.S.R.F., and S.N.P. All authors participated in the discussion and interpretation of the results.

Data and materials availability: Code used to compute LST, ntAI, HRD/LOH, and perform analysis of mutational signatures is available from the authors upon request. Sequencing data are in process of being submitted to dbGaP and will be available under accession to-be-determined.
REFERENCES

This article is protected by copyright. All rights reserved.

* References 52-70 are cited in supplementary material only
Figure Legends

Figure 1: **Schematic of study design.** Tumors were prospectively collected from 56 patients for *ex vivo* functional assessment of the status of the HR pathway, using RAD51 foci analysis. Tumors were classified as HR deficient or proficient using this assay. A multi-faceted genomics approach, integrating whole-exome sequencing, analysis of germ-line mutations, copy number variation, gene expression, and methylation was then used to determine the underlying etiology of HRD.

Figure 2: RAD51, γH2AX, and BRCA1 nuclear foci analysis of representative RAD51-proficient and RAD51-deficient case and distribution of RAD51-deficiency in breast cancer. (A) RAD51, γH2AX, and BRCA1 foci in a homologous recombination HR-proficient breast cancer in mock-treated (left) and irradiated conditions (right). (B) Radiation-induced RAD51, γH2AX, and BRCA1 foci in a breast tumor with deficient HR in mock-treated (left) and irradiated conditions (right). (C) Quantification of RAD51, γH2AX, and BRCA1 foci in cells (n=200) from a tumor with proficient HR. Note strong increases in the number of cells with RAD51, γH2AX, and BRCA1 following 10 Gy of ionizing radiation (IR) (error bars indicate s.e.) (D.) Quantification of foci in in cells (n=200) from a tumor with deficient HR. Note strong induction in γH2AX with IR, without an increase in RAD51 or BRCA1 foci. All statistical comparisons were performed by comparing two proportions with a Z-test. (E) Relative fold induction of RAD51 foci formation in the irradiated, compared with the un-irradiated condition for all tumors. The relative fold induction is calculated as the number of nuclei with > 5 foci in the irradiated state divided by the number of nuclei in the un-irradiated state. A bi-modal distribution in relative fold induction is demonstrated, with 11 tumors (black) exhibiting <1.25 fold induction of RAD51 foci and classified as functional HRD. (F) Distribution of RAD51-deficient tumors according to the clinical subtypes of breast cancers. Although RAD51-deficiency was numerically more frequent in triple-negative breast cancers, this was not statistically significant (TNBC, 42%, p=0.13, Fisher’s exact test). ER, estrogen receptor; pos, positive; neg, negative.

Figure 3: Association of Genomic ‘Scars’ with RAD51 status (A) RAD51-deficient breast cancers harbor a higher LST score than RAD51-proficient cases (p=0.002). (B) ntAI scores by
RAD51 status in RAD51-proficient and RAD51-deficient breast cancers (p=0.009). (C) RAD51-deficient breast cancers have a higher Myriad LOH/HRD score than RAD51-proficient cancers (p=0.048). (D) Breast tumors with an alteration in an HR Gene (Truncating/frame-shift mutation, homozygous deletion, or non-synonymous mutation with loss-of-heterozygosity) show significantly higher LST scores than those without a genetic alteration in an HR gene (p = 5.2x10^{-4}). Wt, wild-type. All comparisons were performed using Wilcoxon rank-sum tests.

Figure 4: Relationship between RAD51 status and gene expression and methylation. (A) Normalized NanoString expression counts of homologous recombination (HR) DNA repair-related genes compared between DNA repair-deficient (HRD) and DNA repair-proficient tumors as determined by RAD51 foci formation. No individual gene expression was associated with RAD51 status (statistical comparisons performed with t-tests). NanoString expression counts were obtained in a subset of tumors with sufficient material (n=20). Supervised hierarchical clustering was unrevealing. Bisulfite sequencing of BRCA1 promoter using primer sets for unmethylated and methylated PCR is indicated in annotation panel below RAD51 status. Note, data in figure is only shown for samples with both gene expression and methylation available, however statistical tests were performed with all available data. (B) Bisulfite sequencing of BRCA1 promoter using primer sets for unmethylated and methylated PCR. The presence of a product in the methylated reaction indicates the presence of methylation in BRCA1 promoter. All bands were run on the same gel but samples re-organized during figure preparation. Vertical black lines indicate image splicing.

Figure 5: Genetic changes in HR genes in RAD51-deficient and proficient samples. The repertoire of large-scale state transitions (LSTs), the number of somatic insertions and deletions (indels), association with BRCA mutational signature, as well as germline and somatic genetic alterations in genes associated with homologous recombination are presented. Cases are ordered first by RAD51 status, then by increasing LST. The number of indels for each case is divided by size according to the color key. Cases with a BRCA-associated mutation signature are annotated (see Online Methods for details). The grid illustrates the germline and somatic genetic alterations in HR genes. The types of alterations are indicated in the color key on the right. PIK3CA and TP53 mutation status, receptor and RAD51 status, are annotated in the...
phenobar (top). Exon duplication refers to a duplication of exon 3 in the BRCA2 gene. ER, estrogen receptor; TNBC, triple-negative breast cancer.
TABLES

Table 1: Clinico-pathologic characteristics of breast cancer patients included in this study.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>No.</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of patients</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>Age, years</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>Range</td>
<td>20-81</td>
<td></td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>55</td>
<td>98</td>
</tr>
<tr>
<td>Male</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Menopausal status*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-</td>
<td>25</td>
<td>45</td>
</tr>
<tr>
<td>Peri-</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Post-</td>
<td>28</td>
<td>50</td>
</tr>
<tr>
<td>Family history</td>
<td></td>
<td></td>
</tr>
<tr>
<td>First degree</td>
<td>12</td>
<td>21</td>
</tr>
<tr>
<td>Second degree</td>
<td>15</td>
<td>27</td>
</tr>
<tr>
<td>Surgery</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mastectomy</td>
<td>25</td>
<td>45</td>
</tr>
<tr>
<td>Lumpectomy</td>
<td>31</td>
<td>55</td>
</tr>
<tr>
<td>ER and/or PR positive</td>
<td>30</td>
<td>54</td>
</tr>
<tr>
<td>HER2 amplified</td>
<td>14</td>
<td>25</td>
</tr>
<tr>
<td>Triple negative</td>
<td>12</td>
<td>21</td>
</tr>
<tr>
<td>Tumor size</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td>Range</td>
<td>1.1-6.5</td>
<td></td>
</tr>
<tr>
<td>Histologic subtype</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Invasive ductal carcinoma</td>
<td>51</td>
<td>91</td>
</tr>
<tr>
<td>Invasive lobular carcinoma</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>Histologic Grade**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td>44</td>
<td>86</td>
</tr>
<tr>
<td>Nuclear Grade**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>18</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>63</td>
</tr>
<tr>
<td>------------</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>Node positive</td>
<td>33</td>
<td>59</td>
</tr>
<tr>
<td>≥4 positive nodes</td>
<td>15</td>
<td>27</td>
</tr>
<tr>
<td>Proliferation Index</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adequate</td>
<td>49</td>
<td>87.5</td>
</tr>
<tr>
<td>Inadequate</td>
<td>7</td>
<td>12.5</td>
</tr>
</tbody>
</table>

*1 male breast cancer patient not included

**Includes only invasive ductal carcinomas
Table 2: Association of clinical features with homologous repair deficiency as defined by RAD51 status. Comparisons of age and median tumor size were performed using unpaired t-test. Other statistical comparisons were performed using Fisher’s exact-test.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Repair Deficient</th>
<th>%</th>
<th>Repair Proficient</th>
<th>%</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient number</td>
<td>11</td>
<td>38</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median age</td>
<td>49</td>
<td>56</td>
<td></td>
<td></td>
<td>0.23</td>
</tr>
<tr>
<td>Family history*</td>
<td>9</td>
<td>82</td>
<td>17</td>
<td>45</td>
<td>0.04</td>
</tr>
<tr>
<td>Premenopausal**</td>
<td>5</td>
<td>45</td>
<td>18</td>
<td>47</td>
<td>1</td>
</tr>
<tr>
<td>Median tumor size, cm</td>
<td>3</td>
<td>2.5</td>
<td></td>
<td></td>
<td>0.24</td>
</tr>
<tr>
<td>Node positive</td>
<td>5</td>
<td>45</td>
<td>24</td>
<td>63</td>
<td>0.49</td>
</tr>
<tr>
<td>≥4 positive nodes</td>
<td>3</td>
<td>27</td>
<td>8</td>
<td>21</td>
<td>0.69</td>
</tr>
<tr>
<td>Histologic subtype</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Invasive Lobular Carcinoma</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>11</td>
<td>0.56</td>
</tr>
<tr>
<td>Invasive Ductal Carcinoma</td>
<td>11</td>
<td>100</td>
<td>34</td>
<td>89</td>
<td></td>
</tr>
<tr>
<td>Histologic Grade 3***</td>
<td>10</td>
<td>91</td>
<td>30</td>
<td>79</td>
<td>0.66</td>
</tr>
<tr>
<td>Nuclear Grade 3***</td>
<td>10</td>
<td>91</td>
<td>22</td>
<td>58</td>
<td>0.07</td>
</tr>
</tbody>
</table>

* First or Second degree
**1 male breast cancer patient excluded
***Includes only invasive ductal carcinomas
SUPPLEMENTARY MATERIAL ONLINE

Supplementary materials and methods **YES**

Supplementary figure legends **YES**

Figure S1. Relationship between RAD51 induction and proliferation and BRCA1 induction

Figure S2. Schematic of patient enrollment in study and division of patients into HR-deficient and proficient categories

Figure S3. Copy Number calls compared to gene expression

Figure S4. Association of mono-allelic alterations in HR pathway and RAD51 deficiency and LST

Figure S5. Genetic alterations in HR pathway lead to increased LST in TCGA Breast Cancer cases

Figure S6. Recurrent mutations in breast cancer present in this cohort

Table S1. Clinical features of breast cancer patients whose tumors were subjected to whole-exome sequencing

Table S2. Summary table of exome sequencing statistics

Table S3. List of homologous recombination genes

Table S4. Table of somatic single nucleotide variants and insertions and deletions.

Table S5. Table of germline truncating and frameshift variants in HR genes.

Table S6. Table of HR genes with LOH

Table S7. BRCA1 promoter methylation primer pairs
Figure 5: Genetic changes in HR genes in RAD51-deficient and proficient samples.

RAD51 Status
- RAD51-deficient
- RAD51-proficient

LST/BRCAness signatures
- Present
- Absent

7p32 mutation status
- Mutant
- Wild-type
- Loss-of-heterozygosity

Receptor Status
- ER+<HER2+
- ER+>HER2
- ER-<HER2+
- TNBC

Alterations in HR genes
- Somatic
- Germline

- Truncating/frameshift
- Non-synonymous
- Splice site mutation
- Homozygous deletion
- Exon 3 duplication
- Loss-of-heterozygosity

Size of indels
- ≥10bp and <20bp
- ≥20bp
Minerva Access is the Institutional Repository of The University of Melbourne

Author/s:
Mutter, RW; Riaz, N; Ng, CKY; Delsite, R; Piscuoglio, S; Edelweiss, M; Martelotto, LG; Sakr, RA; King, TA; Giri, DD; Drobnjak, M; Brogi, E; Bindra, R; Bernheim, G; Lim, RS; Blecua, P; Desrichard, A; Higginson, D; Towers, R; Jiang, R; Lee, W; Weigelt, B; Reis-Filho, JS; Powell, SN

Title:
Bi-allelic alterations in DNA repair genes underpin homologous recombination DNA repair defects in breast cancer

Date:
2017-06-01

Citation:

Persistent Link:
http://hdl.handle.net/11343/292822