Systematic Review or Meta-analysis
Evaluation of the diagnostic performance of the creatinine-based Chronic Kidney Disease Epidemiology Collaboration equation in people with diabetes: a systematic review
What’s new?

- As a common complication of diabetes, diabetic kidney disease needs to be diagnosed at its earliest stages to be managed effectively.
- The Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation for estimating GFR (eGFR) is commonly used to diagnose diabetic kidney disease. However, scientific evidence regarding its diagnostic performance in people with diabetes shows controversy.
- This study showed that both the process and outcome of evaluating CKD-EPI in estimating GFR in adults with diabetes are inaccurate.
- We urge clinicians to interpret CKD-EPI eGFR with caution in people with diabetes and highlight the need to improve both the equation and its assessment methods.

Abstract

Aims GFR estimated with the creatinine-based Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI\(c\)) equation is used to screen for diabetic kidney disease and
assess its severity. We systematically reviewed the process and outcome of evaluating CKD-EPI Cr in estimating point GFR or GFR decline over time in adults with type 1 or type 2 diabetes.

Methods In this systematic review, MEDLINE, Embase and Cochrane Central Register of Controlled Trials were searched up to August 2019. Observational studies comparing CKD-EPI Cr with measured GFR (mGFR) in adults with diabetes were included. Studies on people with kidney transplant, non-diabetes related kidney disease, pregnancy, potential kidney donors, and those with critical or other systematic illnesses were excluded. Two independent reviewers extracted data from published papers and disagreements were resolved by consensus. Risk-of-bias was assessed using the Quality Assessment of Diagnostic Accuracy Studies-2 tool. (PROSPERO registration number: CRD42018108776)

Results From the 2820 records identified, 29 studies (14 704 participants) were included. All studies were at risk of bias. Bias (eight different forms) ranged from −26 to 35 ml min⁻¹ 1.73 m⁻²; precision (five different forms) ranged between 9 and 63 ml min⁻¹ 1.73 m⁻²; accuracy (five different forms) ranged between 16% and 96%; the correlation coefficient between CKD-EPI Cr and mGFR (four different forms) ranged between 0.38 and 0.86; and the reduced major axis regression slope ranged between 0.8 and 1.8.

Conclusions Qualitative synthesis of data suggested CKD-EPI Cr was inaccurate in estimating point GFR or GFR decline over time. Furthermore, a lack of consistency in the methods and processes of evaluating the diagnostic performance of CKD-EPI Cr limits reliable quantitative assessment. The equation needs to be improved in adults with diabetes.

[H1]Introduction

Given the high burden of diabetic kidney disease [1], it is crucial to have an accurate and precise diagnostic tool for the early detection of individuals at greatest risk of kidney damage. Promising interventions exist to halt the progression of kidney function decline, improve people’s quality of life and reduce both cardiovascular and kidney mortality risk in
people with diabetic kidney disease [2,3]. Therefore, it is recommended that clinicians screen for diabetic kidney disease in people with diabetes at the time of diagnosis and annually thereafter [4,5].

GFR measured by plasma or kidney clearance of exogenous molecules (mGFR; Table S1) has the highest precision and accuracy in assessing GFR [6]. However, the invasive, laborious and expensive nature of these methods makes them inconvenient in the clinical setting [7]. Estimation of GFR from an individual’s serum creatinine, on the other hand, is cheaper, more feasible and less invasive, and hence allows assessment of far larger numbers of individuals. Therefore, despite all the caveats, eGFR still is commonly used in the diagnosis and prediction of end-stage kidney disease. Incorporation of the CKD-EPI in the Kidney Function Risk Equation and validation in predicting end-stage kidney disease in those with diabetes are important [8,9].

The Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation has become one of the most widely accepted equations since its introduction in 2009 [8]. Although the formula was developed in 8254 participants and validated in 3896 (mean GFR 68 ml min\(^{-1}\) 1.73 m\(^{-2}\)), only ~ 30% of both the development (n = 2406) and validation data sets (n = 1089) had diabetes. Further assessment of CKD-EPI\(_{Cr}\) in subgroups of the CKD-EPI study showed that the mean difference between CKD-EPI\(_{Cr}\) and mGFR was higher in people with diabetes than in those without [10]. Moreover, evaluation of CKD-EPI\(_{Cr}\) diagnostic performance in people with diabetes in other studies gave controversial results [11–17]. To the best of our knowledge, there is no systematically aggregated evidence on whether CKD-EPI\(_{Cr}\) is an appropriate tool with which to assess kidney function in people with diabetes. Therefore, we aimed to systematically review the process and outcomes of evaluation of diagnostic performance of CKD-EPI\(_{Cr}\), in estimating point GFR and GFR decline over time in adults with type 1 or type 2 diabetes.

Methods

This article is protected by copyright. All rights reserved
[H2] Data sources and searches

A detailed protocol of this aggregated data systematic review has been published previously [18]. In summary, MEDLINE, Embase and Cochrane Central Register of Controlled Trials (CENTRAL) were searched from January 2009 (when the CKD-EPI Cr was introduced) to January 2019 using Medical Subject Headings (MeSH) and text words related to diabetes mellitus, chronic kidney disease, estimated glomerular filtration rate using CKD-EPI Cr and mGFR [18]. The International Clinical Trials Registry Platform Search Portal and ClinicalTrials.gov were searched for ongoing or recently completed trials, and PROSPERO was searched for ongoing or recently completed systematic reviews. Database searching was conducted by an expert clinical librarian.

[H3] Sample search query in MEDLINE search: Ovid interface

1. Diabetes Mellitus, Type 1/or Diabetes Mellitus, Type 2/or Diabetes Mellitus/or Diabetic Nephropathies/or Diabetes Complications/or (chronic kidney disease or CKD or diabetic or diabetes or T2DM).mp.
2. (eGFR or estimating equation* or CKD-EPI or Chronic Kidney Disease Epidemiology Collaboration or cystatin* or (estimat* and (GFR or glomerular filtration))).mp.
3. (mGFR or (measure* adj5 (GFR or glomerular filtration))).mp.
4. 1 and 2 and 3.
5. Limit four to yr = ‘2009-Current’.

A bridging search was conducted in August 2019 to ensure inclusion of any relevant studies published after January 2019. The electronic database search was supplemented by searching the grey literature, Google Advanced, and contacting authors where insufficient data were available in published reports. Of seven authors contacted, four provided further information. To ensure literature saturation, we scanned the reference lists of included studies and any relevant reviews.

This article is protected by copyright. All rights reserved
[H2] Study selection

As per the published protocol, cross-sectional and cohort studies in English, Farsi, Dutch and Chinese were evaluated based on the following inclusion criteria: (1) study participants with type 1 or type 2 diabetes aged ≥ 18 years; (2) using CKD-EPI Cr equation as the index test; (3) using the urinary clearance/plasma disappearance of inulin, iohexol, 125I-iothalamate, Technetium-99m diethylenetriamine-penta-acetic acid (99mTc-DTPA) or chromium-51 ethylenediaminetetraacetic acid (51Cr-EDTA) as the reference test; and (4) report of at least one of the diagnostic performance specifiers of the CKD-EPI Cr compared with the reference test. Studies in people with kidney transplant, chronic inflammatory diseases, non-diabetes related kidney disease, thalassaemia, heart failure, chronic use of corticosteroids, pregnancy, as well as potential kidney donors and critically ill patients were excluded because these conditions can interfere with diabetic kidney disease assessment.

[H2] Definition of outcome measurements

Dissimilarity between CKD-EPI Cr eGFR and mGFR is assessed using several performance measures.

Bias (systematic error) is defined as the difference between the outcome reported by the index test vs. the reference test and can be reported as mean (SD) or median (IQR) on either an absolute or relative (proportion) scale. Examples of relative scale are mean percentage error [(mean difference between mGFR and eGFR relative to mGFR) × 100%], median percentage difference [(median difference between mGFR and eGFR relative to mGFR) × 100%], median percentage absolute difference [(median absolute difference between mGFR and eGFR relative to mGFR) × 100%]. Favourable bias for an index test is close to zero meaning that its estimates are not different from the reference test [19].

Precision is a measure of the statistical variance or random error of the index test from the reference test [20]. It is usually reported as SD or IQR of bias. It can also be assessed by the root mean square error between the eGFR and mGFR. Precision shows how close repeated measures would be to each other. The higher the variance of an index test, the lower its precision because this indicates repeating the test might result in numbers that are far from...
each other. An unbiased test that is not highly precise indicates that although the difference between the index and reference tests is low, the chance of getting the same results when repeating the index test is low.

Accuracy is defined as the proportion of index test results that lie within a pre-specified range, e.g. 10% (P_{10}) or 50% (P_{50}), of the reference test reports [20].

Total deviation index is ‘A boundary such that a majority, 100(1 − p)%, of the observations are within the boundary (measurement unit and/or percent) from their target values’ [21].

Correlation coefficients range from −1 to +1, where values closer to +/− 1 indicate strong agreement and numbers close to zero show poor agreement. According to Landis classification, an intraclass correlation coefficient of 0 = poor agreement, 0–0.2 = slight agreement, 0.21–0.4 = fair agreement, 0.41–0.6 = moderate agreement, 0.61–0.8 = substantial agreement and 0.81–1 = almost perfect agreement [22].

The Bland–Altman plot illustrates the difference of the two tests being compared (i.e. eGFR–mGFR) against their means [(eGFR + mGFR)/2] [23]. For normally distributed data, the expectation is that 95% of values will lie within two standard deviations of the mean bias. This range is called the limit of agreement. A serious drawback of the Bland–Altman plot is that despite assessing fixed bias well, it does not show proportional bias. Therefore, the degree of bias cannot be examined relative to the GFR spectrum [19].

Reduced major axis regression (RMAR) is a tool to evaluate disagreement between the two tests from two separate aspects, namely fixed and proportional bias via RMAR y-intercept and slope, respectively. An RMAR slope parallel to the line of perfect agreement (y = x, slope = 1) but with an intercept other than 0 indicates a fixed bias. By contrast, a slope other than 1 but with an intercept of 0 demonstrates the presence of proportional bias [17]. Despite being introduced more than 50 years ago, RMAR has not been applied widely in diagnostic performance evaluations in medicine and it is unclear why [19].
[H2] Data extraction and quality assessment

Covidence was used by two independent reviewers for abstract and full-text screening. Discrepancies were solved by discussion and seeking third-party opinion. The extracted data included:

- **study-related data**: type of study (cross-sectional or longitudinal), period of study (if longitudinal), year of publication, country of origin and sample size;
- **participant-related data**: type of diabetes (type 1 or type 2 diabetes), age, sex distribution, BMI, HbA1c, albumin excretion rate, urine albumin to creatinine ratio and serum creatinine;
- **outcome-related data**: creatinine measurement method, values of CKD-EPI Cr eGFR, exogenous filtration marker used to measure GFR, and mGFR value, as well as measures of estimation bias, precision, accuracy, total deviation index, Bland–Altman plot, correlation coefficient, reduced major axis regression, and any reports on change in mGFR and eGFR in time. Laboratory units were converted to SI units, if indicated, using the ScyMed MediCalc® online converter.

Risk of study quality bias was assessed using the Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) tool (Table S2 and Fig. 1).

[H2] Data synthesis and analysis

Data were synthesized quantitatively. Results of the systematic review are reported in accordance with the Preferred Reporting Items for Systematic reviews and Meta-Analysis (PRISMA) statement [24]. The study was registered in PROSPERO (registration number: CRD42018108776). The study’s funder had no role in the study design, data collection, data analysis, data interpretation, or writing of the report.

[H1] Results

This article is protected by copyright. All rights reserved
[H2] Study selection

In total, 2820 were identified. After removing duplicates (n = 973) in EndNote, 1847 records were screened via title/abstract, 218 of which remained for full-text screening. Twenty-nine papers were eligible for inclusion in the qualitative data synthesis. One further study was added during the bridging search (Fig. 1). Using QUADAS-2, all included studies were at risk of study quality bias, mainly (28 studies) due to measuring GFR with methods other than renal clearance of inulin, which is considered the gold standard of GFR measurement. Concern regarding applicability was low in all the included studies (Fig. S1).

[H2] Study characteristics

Cross-sectional analysis of data was conducted in 27 studies (including 10964 participants) and six studies (including 3740 participants) involved longitudinal analysis of data (Table S3). Five studies contained only participants with type 1 diabetes (n = 4445), 13 studies had only participants with type 2 diabetes (n = 3148), five studies reported both type 1 and type 2 diabetes (n = 3248), and six studies did not report the type of diabetes. Sample sizes for individual studies ranged from 15 to 3492 people with diabetes. Mean participant age ranged from 27 to 78 years; sex distribution, defined as proportion (%) of women participants, was 26% to 63% across the studies. Mean HbA1c varied from 44 (6.2%) to 87 (10.1%) and mean (SD) serum creatinine from 61 (11) to 230 (203) µmol/l. Serum creatinine was measured using either the Jaffe kinetic method traceable to the isotope dilution mass spectrometry (IDMS) or the enzymatic method. Mean (SD) CKD-EPIcr estimated GFR varied from 53 (27) to 120 (17) ml min \(^{-1} \)1.73 m\(^{-2}\). Reference test of measuring GFR varied in different studies and the mean (SD) of mGFR was between 48 (26) and 128 (19) ml min \(^{-1} \)1.73 m\(^{-2}\). Some studies did not report baseline characteristics, detailed creatinine measurement method (Jaffé or enzymatic), eGFR or mGFR levels in participants with diabetes (Table S3).

[H2] Outcome measurements

As shown in Table S4, a variety of measures have been used in the literature to evaluate the diagnostic performance of CKD-EPIcr as the index test compared with the mGFR as the

This article is protected by copyright. All rights reserved
reference test. Some 27 of the 29 studies reported at least one form of estimation bias, which ranged from −26 to 35 ml min\(^{-1}\) 1.73 m\(^{-2}\). Sixteen studies reported mean (SD) difference, ranging from −24 (24) to 35 (12) ml min\(^{-1}\) 1.73 m\(^{-2}\) (Fig. 2). In addition, estimation bias was reported as mean absolute difference (SD), mean percentage error (MPE) (SD), median difference (IQR), median percentage difference (IQR), median absolute difference (IQR) or median percentage absolute difference (IQR). Estimation precision, defined as one standard deviation of estimation bias, ranged from 9 to 25 ml min\(^{-1}\) 1.73 m\(^{-2}\). Estimation precision, defined as the interquartile range of estimation bias, ranged from 16 to 63 ml min\(^{-1}\) 1.73 m\(^{-2}\). Of the included 29 studies, 15 had a report of precision, 10 of which were reported as one standard deviation of estimation bias. \(P_{30}\) (the percentage of CKD-EPI\(_{Cr}\) eGFRs that fell within 30\% of the mGFR), ranged from 35\% to 96\%. Of 29 studies, 20 reported \(P_{30}\) as a measure of estimation accuracy (Fig. 2). One study used total deviation index as a tool to compare performance of the estimation equation [17].

We identified four different correlation coefficients, i.e. Pearson, Spearman, intraclass and concordance correlation coefficients. The intraclass and concordance correlation coefficients between eGFR and mGFR ranged from 0.43 to 0.86. Whereas 10 studies reported Pearson or Spearman correlation coefficients, three presented the intraclass or the Lin’s concordance correlation coefficient. The Bland–Altman plot was presented in 11 studies. Accordingly, limit of agreement between CKD-EPI\(_{Cr}\) and mGFR ranged from 57 to 158 ml min\(^{-1}\) 1.73 m\(^{-2}\). The RMAR slope ranged from 0.8 to 1.72 and the RMAR intercept from 13.4 to 29.6. Three studies presented the RMAR slope and intercept (Table S5).

The GFR change slope was reported in four of the six longitudinal studies, three of which showed a significant difference between the mGFR and eGFR change slope. Accordingly, the CKD-EPI\(_{Cr}\) underestimated the decline in mGFR (1.6 vs. 2.6, 3.2 vs. 6 and 0.9 vs. 3.4 ml min\(^{-1}\) 1.73 m\(^{-2}\)) (Table S8).

Discussion

In this systematic review, we found that CKD-EPI\(_{Cr}\) diagnostic performance compared with mGFR was evaluated using a variety of measures, namely estimation bias, precision,
accuracy, Bland–Altman plot, correlation and reduced major axis. The outcomes of these measures ranged widely from being acceptable to unacceptable. Lack of consistency in how dissimilarity between CKD-EPI\text{Cr} and mGFR is assessed hindered meta-analysis of the data and reaching a conclusion regarding CKD-EPI\text{Cr} diagnostic performance. However, qualitative synthesis of the available data showed that CKD-EPI\text{Cr} could either underestimate or overestimate point GFR and GFR decline over time in adults with diabetes. These findings are important to consider in a context in which: (1) eGFR is the recommended tool for routine assessment of kidney function in people with diabetes by many guidelines; (2) in recent times, there has been a focus on following early patterns of GFR decline to predict risk of progression to end-stage kidney disease; and (3) many pharmaceutical clinical trials consider eGFR decline as a surrogate endpoint to assess progressive kidney function loss in people with diabetic kidney disease. Knowing that CKD-EPI\text{Cr} might not accurately represent measured GFR in people with diabetes; clinicians and researchers may need to interpret the test results cautiously.

The difference between CKD-EPI\text{Cr} and mGFR point estimates (estimation bias) was reported most commonly as mean (SD), and was $> 10 \text{ ml min}^{-1} 1.73 \text{ m}^{-2}$ in 11 of 16 studies. Although some studies indicated that CKD-EPI\text{Cr} overestimated mGFR [25–29] by as much as 35.4 ml min$^{-1} 1.73 \text{ m}^{-2}$ [30], others reported that the equation underestimated mGFR [12,14,15,28,31–35] by as much as 26 ml min$^{-1} 1.73 \text{ m}^{-2}$ [36]. This is of particular concern in hyperfiltration, which occurs commonly in diabetes [37]. A systematic review of the current literature showed that CKD-EPI\text{Cr} estimation bias was higher in people with GFR $> 90 \text{ ml min}^{-1} 1.73 \text{ m}^{-2}$ [12,14–17,31–34]; and the equation fails to perform satisfactorily over higher ranges of GFR. These results are especially important for randomized clinical trials (RCTs) in which participants are selected based on their CKD-EPI\text{Cr} levels or treatment effect is assessed by change in eGFR as the end point. In the former situation, the actual GFR in study participants may be higher or lower than the reported CKD-EPI\text{Cr} and this might affect an individual’s response to treatment. In the latter scenario, estimation bias can result in an overestimated or underestimated treatment effect because the slope of change presented by CKD-EPI\text{Cr} might be more or less than the mGFR change slope. Hence, there may be a bias-by-treatment interaction effect that affects interpretation of the
effectiveness of the proposed treatment for diabetic kidney disease even when it produces random misclassification [38].

Among 15 studies that reported estimation precision, 10 used one standard deviation of estimation bias, which was shown to be > 10 ml min⁻¹ 1.73 m⁻² in nine studies [12,14,25,28,29,31–33,35]. The number was reported to be as high as 24.6 ml min⁻¹ 1.73 m⁻² in a study of 210 people with diabetes in South Korea (mean CKD-EPI Cr 72.9, mean mGFR 93.1 ml min⁻¹ 1.73 m⁻²) [35]. In other words, if the distribution of GFR is normal, in 95% of cases the mean difference between CKD-EPI Cr and mGFR would be between −69.4 and 29 ml min⁻¹ 1.73 m⁻², which is noticeable considering that GFR usually ranges from 0 to 150 ml min⁻¹ 1.73 m⁻² [7]. Such variance can easily change an individual’s kidney disease stage [39]. This becomes more important in clinical decision-making where renoprotective agents are considered for use in specific diabetic kidney disease stages [2,3,40–42].

Estimation accuracy, reported as P₃₀ in 20 of 29 papers, widely varied from 48% [27] to 96% [43]. With such variation in P₃₀, it is difficult to consider CKD-EPI Cr an accurate estimate of GFR. Moreover, the percentage approach is ‘relative’ in nature and allows for larger absolute under- or overestimations for larger mGFR values as long as these under- or overestimated values lie within ± 30%. In essence, very different absolute differences will be judged to be similar using this relative metric.

Among 13 studies reporting correlation coefficients, only three reported either intraclass or Lin’s concordance correlation coefficients, which were 0.43 [17], 0.65 [22] and 0.86 [30]. Simple correlation coefficients are not appropriate because a high correlation is necessary, but not sufficient for similarity. For example, if eGFR always produces a value twice as high as mGFR, the two will be perfectly correlated, but very dissimilar [23]. Therefore, Pearson or Spearman correlation coefficients might not be an appropriate tool with which to assess diagnostic performance of the CKD-EPI Cr. However, intraclass and Lin’s concordance correlation coefficients assess the agreement between two different measurement methods for the same variable and hence are appropriate tools for statistical judgement [44,45]. It is critical that this issue is resolved to prevent further misuse and
misinterpretation of such coefficients in future studies of diagnostic performance assessment for clinical tests.

Only 38% (n = 11) of the included studies reported the Bland–Altman plot of mGFR and CKD-EPIcr with a limit of agreement as wide as 158 ml min\(^{-1}\) 1.73 m\(^{-2}\) in a study with 209 people with type 2 diabetes in China [27]. Again, this is noticeable because GFR usually ranges from 0 to 150 ml min\(^{-1}\) 1.73 m\(^{-2}\) [7]. RMAR was used by only three studies to assess the agreement between CKD-EPIcr and mGFR, all pointed to a considerable proportional and fixed estimation bias of the equation [17,25,33].

Four of six studies in this review highlighted a significant underestimation of mGFR decline over time by CKD-EPIcr [15,17,33,46]. This is particularly important in interpreting the outcomes of RCTs where a 30–40% decline in eGFR is considered a surrogate endpoint of progressive kidney function loss [47]. Such underestimation of the true decline in GFR might lead to underestimation of treatment effects for the desirable medications studied.

This systematic review highlights considerable limitations in the original studies that aimed to evaluate diagnostic performance of CKD-EPI in people with diabetes. First, studies rarely conducted analysis in subgroups based on sex, age, BMI and race (only three of 29 studies reported age, sex and BMI, and only one reported race-split results). This is a considerable limitation because the diagnostic performance of CKD-EPI is under question in elderly people and those with obesity, as well as where race is not considered in estimating eGFR [48–50]. Second, only two of the included studies measured GFR by inulin clearance, which is considered the gold standard. Other techniques of measuring GFR (e.g. iohexol, \(^{125}\)I-iothalamate, \(^{99}\)mTc-DTPA and \(^{51}\)Cr-EDTA) show bias and inaccuracy compared with inulin clearance [6]. Third, many of these GFR measurement techniques use the Brochner-Mortensen correction factor which cannot obtain absolute clearance values for mGFR higher than ~ 200 ml/min. This would be a potential source of bias in individuals with hyperfiltrating kidneys, especially younger adults with type 1 and type 2 diabetes. This issue was addressed recently by Jodal et al. [51]. However, the majority of the conducted studies addressing the question in this systematic review were
published before introduction of the newer Jødal–Brochner–Mortensen correction factor and hence did not use this correction coefficient. Fourth, the included studies compared mGFR and eGFR levels corrected for body surface area and the formula used to correct for this differed between studies (Table 3). Furthermore, indexation of GFR for body surface area could induce errors in GFR assessment [52]. Therefore, it would be best to compare absolute mGFR and eGFR values (without correction for body surface area) to prevent introducing an extra source of bias. However, lack of reports based on absolute GFR in the included studies precluded such comparison in this systematic review. Lastly, because an individual’s glycaemic status can affect mGFR levels, it is very important to evaluate mGFR values considering data regarding participants’ blood glucose level [30]. However, only two of the included studies reported glycaemic status at the time of GFR measurement [30,31]. eGFR might still be the preferred method to diagnose or predict end-stage kidney disease despite its caveats. However, to improve the equation’s diagnostic performance, precise assessment of its potential pitfalls in different populations and aggregation of the results are required. Therefore, studies need to be more consistent in their methods of measuring GFR and creatinine, their study design and analysis, as well as outcome report to enable aggregated data analysis.

This review has several limitations. First, we assessed performance of the creatinine-based CKD-EPI equation. Relying on creatinine to estimate GFR has the issue of creatinine level variation between individuals and within each individual at different times. However, this has been partly resolved by considering the major factors affecting creatinine excretion (i.e. age, sex, body size and race) in the formulae. Second, this study reviewed only papers published in English, Farsi, Dutch and Chinese, and we acknowledge that relevant data from papers in other languages may have been inadvertently excluded. However, it should be noted that only one paper was excluded from this review due to language restriction.

[H2]Conclusion

As a serious and common complication of diabetes, diabetic kidney disease needs to be detected as early as possible so that appropriate management of the disease and prevention of its progression can take place. Our systematic review shows that although the CKD-
EPI\textsubscript{Cr} equation has improved overall estimation of GFR, it still underperforms in people with diabetes, particularly those at the early stages of diabetic kidney disease. We encourage further attempts to improve eGFR equations or identify alternative diagnostic tools to assess kidney function in people with diabetes, particularly those with hyperfiltrating kidneys. An analogy could be drawn between the current tests to diagnose diabetes, which range from raised HbA\textsubscript{1c}, to fasting, random or 2-h postprandial glucose load. Although there is an overlap in these measures identifying diabetes, it is understood that for several reasons the tests may define different populations with diabetes, however, the risk from diabetes remains regardless of how it is categorized.

This systematic review also reveals that there is no consistency in the literature regarding measures to evaluate diagnostic performance of a continuous index test (e.g. eGFR) compared with a continuous reference test (e.g. mGFR). We urge researchers to reach a consensus on which methods to use for such evaluation. A standard checklist of mandatory statistical tools to be reported by such papers might be of great benefit for future aggregated data meta-analysis of similar research questions.

Funding sources

This study was supported by the Melbourne Research Scholarship. EIE was supported by the Sir Edwards Weary Dunlop Medical Research Foundation.

Competing interests

None declared.

Acknowledgements

We acknowledge Drs Andrew Levey, Lesley Inker and their colleagues from Chronic Kidney Disease Epidemiology (CKD-EPI), Drs Antonios Douros and Elke Schäffner from the Berlin initiative study, Drs Francisco Verissimo Veronese and Sandra Pinho Silveiro for providing data to be included in this study.

This article is protected by copyright. All rights reserved
Authors’ contributions

All authors contributed to the development of the study design and manuscript writing. NZ undertook title/abstract and full-text screening, assessed risk of study quality bias, extracted data and drafted the manuscript. HB developed the search strategy. KK undertook title/abstract screening. LW undertook full-text screening and risk of study quality bias assessment. MH undertook full-text screening. LK undertook data extraction. LC and ML provided statistical expertise. EE, NT and RM provided expertise on diabetic kidney disease and glomerular filtration rate assessment. All authors read, provided feedback and approved the final manuscript. EIE is the guarantor of this article.

References

This article is protected by copyright. All rights reserved

This article is protected by copyright. All rights reserved
This article is protected by copyright. All rights reserved.

This article is protected by copyright. All rights reserved

FIGURE 1 Study selection flaw chart. CKD-EPIcr; Creatinine-based Chronic Kidney Disease Epidemiology Collaboration equation.

FIGURE 2 Forest plot of the included studies characteristics and outcome reports. (a) Mean eGFR, (b) mean mGFR, (c) CKD-EPIcr estimation accuracy and (d) estimation bias

This article is protected by copyright. All rights reserved
reported in the included studies. P30 is defined as the percentage of eGFR results that lie within 30% of the mGFR values. The estimation bias is reported as mean (eGFR-mGFR).

Supporting Information

Additional Supporting Information can be found in the online version of this article:

Figure S1. The Quality Assessment of Diagnostic Accuracy Studies (QUADAS)-2 of the included studies.

Table S1. Methods of measuring GFR.

Table S2. The Quality Assessment of Diagnostic Accuracy Studies (QUADAS)-2 of the included studies.

Table S3. Baseline characteristics of the included studies.

Table S4. Methods used to evaluate the diagnostic performance of the creatinine-based Chronic Kidney Disease Epidemiology Collaboration eGFR compared with the reference test.

Table S5. Performance of the creatinine-based Chronic Kidney Disease Epidemiology Collaboration eGFR compared with the reference test in showing point GFR.

Table S6. Performance of the creatinine-based Chronic Kidney Disease Epidemiology Collaboration eGFR compared with the reference test in showing point GFR in people with type 1 diabetes.

Table S7. Performance of the creatinine-based Chronic Kidney Disease Epidemiology Collaboration eGFR compared with the reference test in showing point GFR in people with type 2 diabetes.

Table S8. Performance of the creatinine-based Chronic Kidney Disease Epidemiology Collaboration eGFR compared with the reference test in showing GFR decline over time.

Appendix S1. Supplementary references.

This article is protected by copyright. All rights reserved.
Figure 1. Study selection flaw chart

- 2746 records identified through database search
- 74 records identified through other sources
- 1847 records remained after removing the duplicates
- 1847 records screened by title/abstract
 - 1629 records excluded
 - 218 full-texts assessed for eligibility
 - 190 records excluded for the following reasons:
 - no report about people with diabetes (n=103)
 - published as conference presentation (n=69)
 - not having CKD-EPIcr as index test (n=9)
 - published errata (n=4)
 - no report of diagnostic accuracy specifiers (n=3)
 - not having the specified reference tests (n=1)
 - published in other languages (n=1)
 - 29 records included in qualitative synthesis
Figure 2. Forest plot of the included studies characteristics and outcome reports.