Title: Australia and New Zealand Faculty of Radiation Oncology Lung Interest Cooperative (FROLIC): 2015 consensus guidelines for the use of advanced technologies in the radiation therapy treatment of locally advanced non-small cell lung cancer

Running Head: FROLIC guidelines for lung cancer radiation therapy

Authors:

Dr Patrick M. Dwyer BSc, MBBS (Hons I), FRANZCR

Dr Louis Lao MB ChB (Otago), FRANZCR

Dr Jeremy D. Ruben MBCh (Hons), FCRadOnc (SA), FRANZCR, Mmed, MD (Monash)

Dr Mei Ling Yap MBBS BSc FRANZCR

Dr Shankar Siva PhD MBBS FRANZCR

Dr Fiona Hegi-Johnson MBBS, BSc (Med), FRANZCR

Mr Nicholas Hardcastle PhD

Mr Jeffrey Barber BSc (Hons I), MMedPhys

Associate Professor Margot Lehman MBBS FRANZCR GDPH

Professor David Ball MBBS, MD, FRANZCR

Associate Professor Shalini K. Vinod MBBS MD FRANZCR

1. Northern New South Wales Cancer Institute, Lismore, New South Wales, Australia

2. Department of Radiation Oncology, Auckland City Hospital, Auckland, New Zealand

3. William Buckland Radiotherapy Centre, The Alfred and Monash University, Melbourne, Victoria, Australia

4. Liverpool and Macarthur Cancer Therapy Centre, Campbelltown, NSW, Australia

This is the author manuscript accepted for publication and has undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1111/1754-9485.12501

This article is protected by copyright. All rights reserved
Department of Radiation Oncology, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia

Central Coast Cancer Centre, Gosford, New South Wales, Australia

Northern Sydney Cancer Centre, Royal North Shore Hospital, St. Leonards, New South Wales, Australia

Nepean Cancer Care Centre, Sydney, New South Wales, Australia

Department of Radiation Oncology, Princess Alexandra Hospital, Brisbane, Queensland, Australia

Cancer Therapy Centre, Liverpool Hospital, Liverpool, New South Wales, Australia

Corresponding author:

Dr Patrick M. Dwyer

Northern New South Wales Cancer Institute

Lismore Base Hospital

70 – 72 Hunter Street

Lismore 2480

New South Wales, Australia

Phone: 02 6629 4519

Fax: 02 66220 2355

Email: patrick.dwyer@ncahs.health.nsw.gov.au
Abstract

There have been significant advances in technologies in recent years that apply to lung cancer radiation therapy. Currently many radiation oncology departments in Australia and New Zealand are implementing these techniques. The Royal Australian and New Zealand College of Radiologists (RANZCR) Faculty of Radiation Oncology Lung Interest Cooperative (FROLIC) identified appreciable variation in methods of simulation, planning and image verification techniques across departments. Therefore the FROLIC executive committee identified the need to develop guidelines for the use of advanced RT technologies in the treatment of LA-NSCLC. In August 2015, the inaugural FROLIC workshop was conducted with the aims of sharing knowledge and experience regarding the optimal use of the advanced techniques in LA-NSCLC with a view to developing consensus guidelines. These guidelines may assist in departments accelerating their implementation and reduce variations in practice. They will help to ensure high quality utilisation of these technologies and best practice radiation therapy for patients with lung cancer.

Introduction

Definitive radiation therapy (RT), generally combined with chemotherapy, is the standard of care for patients with unresectable locally advanced (stage II-III) non-small cell lung cancer (LA-NSCLC). With the advent of newer technologies, RT for LA-NSCLC has changed significantly in recent years. Some of these advances include PET/CT in treatment planning, 4DCT simulation, 3D/4D cone beam CT image guidance and IMRT/VMAT. Many of these techniques were used in the most recent RTOG
randomised controlled trial of chemo-RT for Stage III NSCLC, which reported a median overall
survival of 28.7 months in patients randomised to the standard therapy arm, much higher than
previously documented (1). Currently, many radiation oncology departments in Australia and New
Zealand are in the process of implementing these techniques.

In 2015, the Royal Australian and New Zealand College of Radiologists (RANZCR) Faculty of Radiation
Oncology Lung Interest Cooperative (FROLIC) conducted a patterns-of-practice survey amongst
radiation oncologists to investigate the range of radiation therapy management of lung cancer in
Australia and New Zealand and to define the gaps in optimal patient care. Results of this survey are
published in this issue of the journal. There was appreciable variation in methods of simulation,
planning and image verification techniques noted from the survey. With this in mind, the FROLIC
executive committee identified the need to develop guidelines for the use of advanced RT
technologies in the treatment of LA-NSCLC. In August 2015, the inaugural FROLIC workshop was
conducted with the aims of sharing knowledge and experience regarding the optimal use of the
advanced techniques in LA-NSCLC with a view to developing consensus guidelines. We felt there is a
need to develop local guidelines relevant to the Australian and New Zealand context for the
implementation of new technologies. These guidelines may assist in departments accelerating their
implementation and reduce variations in practice. They will help to ensure high quality utilisation of
these technologies and best practice radiation therapy for patients with lung cancer.

Methods

Draft guidelines were formed prior to the FROLIC workshop by members of the executive
committee. These were based on expert opinion and review of the pertinent literature, including
published guidelines from other geographical regions (2-5). Literature review did not follow any
stringently defined methodology. The FROLIC workshop convenors selected local expert speakers
from radiation oncology, medical physics and radiation therapy to present data covering topics from
simulation, target delineation, treatment planning, verification and delivery relevant to LA-NSCLC. In
particular, areas where there were gaps or controversies in the literature were incorporated into the
agenda to ensure discussion at the FROLIC workshop. During the workshop, proposed guidelines
were discussed and debated by all expert speakers and the workshop participants. Further literature
was provided by members of the FROLIC executive and workshop speakers and a consensus was
reached and documented to produce these guidelines.

Results
The FROLIC workshop was convened on August 7, 2015 in Sydney, New South Wales. The workshop was attended by 95 registrants comprising radiation oncologists and radiation oncology trainees, medical physicists and radiation therapists. It was the intention of the FROLIC executive and authors to provide a consensus guideline based on review of the literature and open discussion among experts and workshop participants - thus a grading system for these guidelines has not been adopted. The consensus guidelines developed from the workshop and by the FROLIC executive are discussed below. Key recommendations are highlighted in Table 1.

Patient selection for Curative RT for LA-NSCLC

All patients with LA-NSCLC should have their management discussed in a multi-disciplinary team meeting. This enhances adherence to evidence based practice and may improve patient quality of life and even survival (6, 7).

It was acknowledged that patients in lung cancer RT trials are highly selected and not necessarily representative of patients seen in the clinic who often have an ECOG performance status of more than one, multiple co-morbidities and compromised respiratory function. Patients who are ECOG 0-1 should be considered for curative RT. ECOG 2 patients, especially due to co-morbidities other than lung cancer, should not necessarily be excluded from curative RT. Whilst most co-morbidity indices such as the 'Charlson comorbidity index' have not been validated in lung cancer, it is recommended the risk of morbidity and mortality from lung cancer be weighed against the risk from co-morbid conditions when deciding whether to treat patients curatively (8). Input from clinicians treating these comorbid conditions may be helpful in making the decision. Patients with ECOG more than 2 are usually not suitable for curative RT.

Interstitial lung disease is a specific comorbidity where radiation therapy must be approached with caution, even in patients with normal lung function. Both clinical and radiological interstitial lung disease is associated with significant risks of radiation pneumonitis which may be fatal, and the decision to proceed with RT requires careful discussion with the patient (9).

With regards to respiratory function required for curative thoracic RT, no safe lower limits have been defined (10). The consensus reached was that the functional impact on the patient of baseline pulmonary physiology was a better determinant of the consequence of radiation pneumonitis or radiation pulmonary fibrosis. Although tumour volume is a determinant of outcome after RT within the first 18 months after RT, there is no upper tumour volume limit that should exclude patients from curative RT provided that dose constraints for organs-at-risk can be achieved (11).

RT Simulation

This article is protected by copyright. All rights reserved
Patients who are to undergo curative thoracic RT should be immobilized supine in a stable and reproducible position. In most cases, arms above the head will allow a greater freedom of beam arrangement. Intravenous contrast should be considered and protocols developed for incorporation with the type of simulation scan performed. For 4DCT, IV contrast can be used based on a manual timing calculation. For all curative cases, simulation should take into account tumour motion.

For free breathing patients, 4DCT simulation is recommended. The exception to this is Pancoast tumours, where tumour motion is negligible. If patients need to be given coaching during simulation, this needs to be consistent between both simulation and treatment so the breathing amplitude is reproducible. Various methods of acquiring the 4D data and image processing techniques were discussed and none recommended over others. Departments are advised to refer to vendor’s manuals for their individual 4D CT simulators to ensure optimal scan acquisition. Careful attention should be paid to the reconstructed 4DCTs to detect artefacts and ensure the scan is an accurate representation of motion. This is particularly a concern when tumours abut other soft tissues such as the diaphragm or if respiration is irregular or there are large pauses in breathing. Discussion in real-time between the multi-disciplinary team (Radiation Oncologist/Radiation Therapist/Medical Physicist) should direct whether images can be used for planning or whether re-acquisition is necessary. It was noted also that some vendors might have limitations on cranial-caudal span of 4DCTs. This may be due to time limits related to tube heating or reconstruction computation requirements. 4DCT scan time is a function of pitch (thus breathing period) and collimation thickness. In practice this may limit the ability to acquire the full lung volume in the scan. In these cases, it is recommended that the region of the tumour be contained in a 4DCT for motion management and a separate free-breathing 3DCT covering the full span of the lungs is acquired for treatment planning purposes.

As accurate target volume definition is crucial to accurate delivery, rigorous quality assurance processes should be applied to the simulation process.

If 4DCT is not available, other methods should be employed such as breath hold 3DCTs acquired at inhale and exhale for motion management purposes. The use of 3D PET alone for motion estimation has been shown to underestimate tumour motion and PTV margin reduction below 1.5cm in this situation is discouraged (12). Unless the respiratory motion is otherwise managed, the use of a single fast 3D CT simulation scan is usually inappropriate for curative RT. The entire lung volume should be scanned at 2-3mm slices for the purposes of calculating dose-volume histograms.

Target Volume Delineation
It is recommended departments establish their own contouring protocols for lung cancer or use external protocols such as eviQ (13). These should include details of standardised CT and PET window levels for contouring the primary and nodal disease. It is advisable to consult with diagnostic radiologists or nuclear medicine physicians for this. EORTC suggest using $W = 1600$ and $L = -600$ for lung windows and $W = 400$ and $L = 20$ for mediastinal windows (14). Manual rather than automatic target volume delineation is recommended until further validated by research. Peer review of contouring is recommended to minimise inter-observer variability and ensure adherence to departmental guidelines. This has been shown to be of benefit in the case of lung stereotactic ablative RT and the authors’ feel this can be reasonably applied to conventionally fractionated RT for locally advanced lung cancer too (15).

The use of PET/CT is strongly recommended to aid target delineation and limit contouring variability and the reader is referred to a recent IAEA consensus report (16). It is advised the time between PET/CT and RT be no more than 4 weeks as disease progression and contouring inaccuracies can occur when the PET/CT used for target delineation is not contemporaneous (17).

The co-registration of the PET and CT scans from PET/CT should be initially validated when used for patient delineation in radiotherapy, especially if the scanner is not under quality control processes of the radiotherapy department (18).

Where a PET/CT has not been acquired in the RT planning position, such as a diagnostic PET/CT, it should be used only as a guide to locate the tissues containing tumour. The accurate definition of the tumour/soft tissue interface must be evaluated on the RT simulation CT, ideally a 4DCT.

When 4D CT simulation is used, the PET/CT (ideally in the RT position) remains useful at discriminating tumour from non-malignant consolidation such as collapse, as well as identifying involved lymph nodes.

After co-registering the simulation CT and PET/CT as per one of the above situations, the gross tumour volume should be delineated to include the primary tumour and involved nodes as defined by FDG avidity on the PET or positive histology. Nodes with short-axis diameter of $\geq 1\text{ cm}$ on CT or that are centrally necrotic are usually pathologic and should be included. Additionally, clinician discretion may be used to include PET negative nodes adjacent to involved regions or nodes that have progressed over serial imaging. However, routine elective nodal RT is not recommended.

Once the simulation scan has been processed, target volume delineation begins with the determination of the internal target volume (ITV). It was recommended the ITV concept be followed. The ITV is the envelope of moving tissue containing gross tumour and microscopic disease.
creation of the maximum intensity projection (MIP) image should theoretically show the combined
contour of the tumour in all phases of the breathing cycle. The GTV contoured throughout the
breathing cycle can be called the GTV MIP or reGTV (respiratory expanded GTV). It may be
contoured on the MIP, but should be checked against all phases of motion. It should also be checked
on all 3 reconstructed planes. Particular care should be taken when contouring nodal disease or at
the interface of tumour with solid tissue, as distinction between tumour and surrounding normal
tissue can be limited when using the MIP technique. To form the final ITV it is recommended 5 –
8mm be added to the GTV MIP or reGTV to account for microscopic extension (3, 19). This may then
be trimmed to anatomical barriers. Alternatively, the GTV may be contoured on the maximum inhale
and exhale phases of the 4DCT, both for the primary tumour and involved nodes, and 5 – 8mm
added for microscopic extension. Then all are combined to form the ITV. Again, the GTVs should be
checked on all phases of the 4DCT in case there is motion in the left-right or anterior-posterior
directions not seen on the two extreme phases of respiration.

Organ-at-risk contouring and radiation treatment planning is performed on the average intensity
projection (AIP) reconstructed dataset of a 4DCT. This provides a suitable approximation for dose
calculation and a reference image set for verification prior to treatment. Use of a planning organ-at-
risk (PRV) margin for critical serial organs should be considered especially for modulated high dose
gradient techniques.

The planning target volume (PTV) margin is determined by the immobilisation method, image
guidance method and other factors and it is recommended departments determine the required
margins individually. If tumour motion has not already been accounted for by using one of the above
methods, it must be when applying a margin for PTV.

Dose Prescription

The consensus from the workshop was to prescribe 60 – 66Gy in 30-33 fractions, once daily, when
chemotherapy is administered concurrently. This is in agreement with consensus statements from
other groups (20-22). When RT is used alone, the workshop acknowledged the wide range of
acceptable doses including 50 – 55Gy in 20 fractions, once daily; 60 – 66Gy in 30 – 33 fractions, once
daily; and continuous accelerated hyper-fractionated regimens. RT dose escalation or intensification
beyond these recommendations can only be recommended as part of a clinical trial.

It was noted that recent randomised trials did not mandate compliance with protocol normal tissue
dose constraints (1). Regarding lung constraints, there is no absolute safe threshold dose below
which there is no risk of radiation pneumonitis (RP). As well as lung dose volumetrics, other factors
such as advanced age and taxane chemotherapy can contribute to the risk of RP (23). There was
general agreement in the workshop that suggested OAR constraints from eviQ (Table 2) are
reasonable (13). It was suggested the GTV be subtracted from the combined lung volume when
assessing the lungs DVHs to be conservative. Individual departments are advised to develop their
own planning aims and constraints document.

Radiation therapy planning

Due to the poor long-term survival of patients with LA-NSCLC and the potential toxicity of lung RT,
groups continue to explore modern treatment planning techniques, such as intensity-modulated RT
(IMRT) or volumetric-modulated arc therapy (VMAT), to improve the therapeutic ratio. The
consensus from the workshop was that 3D conformal and modulated RT techniques both have their
place in the treatment of LA-NSCLC. The pros and cons of each were discussed.

IMRT and VMAT give highly conformal dose distributions around planning targets and steep dose
gradients. Whilst there are no published prospective randomised trials directly comparing 3D
conformal and IMRT techniques, there are retrospective studies and secondary analyses showing
more normal tissue sparing and potentially reduced rates of RP (24-26). Conversely, there is a SEER
data population-based analysis showing similar survival and toxicity of IMRT and 3D conformal
techniques (27). The debate between the two techniques continues in the literature (28, 29).

IMRT/VMAT probably has most clinical benefit when the target volume is in close proximity to a
critical organ-at-risk (eg spinal cord, brachial plexus), or when the target volume is very large or
comprises multiple non-contiguous targets where 3D conformal techniques would deliver
prohibitive doses of radiation to the normal lungs. To embark on a modulated technique, a
department must first consider the pre-requisites. IMRT/VMAT efficacy relies critically on accurate
target and normal tissue delineation, as there is a higher risk of geographic miss. Due to the steep
dose gradients, target motion must be accurately accounted for. A strict image guidance protocol
must also be adopted and will be discussed later. It was also acknowledged that despite the
theoretical risk of the interplay effect in the treatment of lung malignancies, when using a
fractionated course of radiotherapy, the literature does not demonstrate any significant impact on
dosimetry or outcomes in a fractionated course of RT (30). Nonetheless, steps can be taken in the
planning process to minimize any potential interplay effect issues. These include the use of minimum
segments size and segment monitor units. There was also concern expressed by some about the
integral dose delivered with modulated techniques and the low dose bath of radiation potentially
received by a large volume of lung tissue. Planners need be mindful of the number and arrangement
of beams when balancing the decision between target coverage conformity by high doses and
minimising the low dose bath. Departments are advised to aim for the lowest V5 and V10 possible
(see Table 2). As above, departments are strongly advised to develop their own planning protocol
including planning aims for target coverage and organ-at-risk constraints. Whilst VMAT often has
shorter treatment times, beyond this no recommendation can be made as to the optimal modulated
technique.

It was acknowledged a great proportion of patients are treated satisfactorily with 3D conformal
techniques. The benefit of reduced low dose bath may come at the expense of less target
conformity. 3D conformal RT may not be as sensitive to target motion although it must still be
accounted for in target delineation. Acceptable lung doses may be achieved dependant on target
volume and location. There was general agreement that higher-level evidence is needed to compare
the efficacy and safety of IMRT and conformal techniques in lung cancer RT.

“The Type B” convolution/superposition beam modelling or Monte Carlo algorithms that account for
effects of heterogeneity on primary and scattered radiation should be used for dose calculations in
lung RT planning (31).

The potential benefits of inverse planned modulated treatments may be further realised in the
future as functional lung avoidance strategies are employed. Additionally, as biomarkers develop (eg
novel PET tracers), we may be able to specifically target regions of hypoxia or
repopulation/proliferation within target volumes and this may allow biologically guided dose
intensification.

Treatment verification

Improvements in outcomes rely on the aforementioned technological advances delivering the dose
to the desired location. A robust image guidance strategy is needed to ensure this. In general, the
IGRT method and frequency should reflect the complexity of the overall treatment plan and the level
of treatment accuracy required. It should take into consideration factors such as treatment intent,
dose prescription, ability to accurately define the target, PTV margins used, location and nature of
adjacent critical OAR, motion management method, degree of uncertainty when a surrogate is used
for matching and accuracy of treatment delivery. For IMRT/VMAT in particular or where normal
tissues are close to/at tolerance, or when the PTV margin is tight, daily cone-beam CT (CBCT)
substantially reduces setup error and may permit margin reduction compared to less than daily CBCT
(32). Each department should consider their own processes and uncertainties when deciding on IGRT
frequency. Where the ITV concept is used, four-dimensional CBCT can be useful to verify that the

This article is protected by copyright. All rights reserved
tumour motion remains within the ITV and to assess baseline shift. This should be considered for
highly mobile tumours or for IMRT/VMAT at least on day 1. Then it should be decided if ongoing 4D
imaging is necessary throughout treatment which depends on the magnitude of tumour breathing
motion present during treatment and how safely it is encompassed by the PTV. If RT planning is
undertaken on the average intensity projection of the 4DCT, this is the most appropriate dataset to
use as a reference to match a CBCT. Ideally if the target is readily identifiable on imaging, treatment
verification should be matched there. Other regions such as bone or carina may not be reliable
surrogates of tumour location due to tumour baseline shift and instability of the surrogate itself. If
these are used for matching, the degree of uncertainty should be taken into account when applying
PTV margins. In situations where the target has two components (the primary and nodes), it may be
necessary to compromise between tumour and carina matching. Frequent and volumetric IGRT also
allows monitoring of anatomic changes and tumour regression/progression during the course of RT.
This may allow for adaptive RT strategies although higher-level evidence is required before any
recommendation regarding implementation of adaptive RT can be made.

Whichever IGRT method is used, it is important to have a multi-disciplinary team responsible for
overseeing the IGRT program and ensuring staff education and regular quality assurance following
international guidelines (33).

Special techniques: Gating and breath hold

At the workshop both spirometric breath hold and respiratory gating techniques were discussed.
The potential advantages of these techniques are to limit tumour motion while the beam is on and
therefore reduce the normal tissue volume receiving radiation and potentially reduce toxicity. They
may also reduce the artefacts seen with mobile tumours and aid in more accurate target delineation.
These techniques may be part of future dose escalation strategies. Whilst it was acknowledged that
accounting for respiratory motion in some way is vital, the specific benefits of respiratory gating are
modest and implementing a program is associated with great cost and complexity and the risks of
poorly conducted gating may negate its potential benefit. They may only have significant benefits in
selected patients with large tumour amplitudes and small tumour sizes (34). Breath hold techniques
such as Active Breathing Control (ABC) show more promise at reducing the lung V20 and mean
doses, however these techniques may be associated with significant inter-fraction variation and
poor tolerability by some patients (35). Whilst further detailing these techniques is beyond the scope
of this paper, the expert presenters at the FROLIC workshop warned against their routine use for the
reasons aforementioned.
Conclusions

Whilst the clinical judgement of the treating team remains vital, the FROLIC executive has developed these guidelines through literature review and an expert led workshop to inform patient selection and RT management of patients with LA-NSCLC. With the development of technological advances in lung cancer these guidelines can assist individual departments in the adoption of these techniques and allow some consistency in practice between departments. As with other RANZCR special interest group consensus documents, we hope these guidelines will be adopted widely by radiation oncologists treating lung cancer in Australia and New Zealand. This will contribute to delivery of quality radiation therapy for lung cancer and possibly allow for pooling of outcome data if patients are more uniformly managed. With likely further technological advances and evolution in the future these guidelines will be updated to retain currency. The FROLIC executive and members will continue to look for areas to share knowledge and experience and pursue research to try to improve quality practice and outcomes in lung cancer patients.

References

17. Everitt S, Plumridge N, Herschtal A et al. The impact of time between staging PET/CT and definitive chemo-radiation on target volumes and survival in patients with non-

Table 1. Key recommendations for radiation therapy simulation and treatment for LA-NSCLC

Simulation and target delineation

Respiratory motion must be accounted for. 4DCT is the recommended method in most cases.

In the absence of 4DCT, a 3D PET/CT may underestimate tumour motion and therefore larger PTV margins are recommended.

PET fusion, ideally in the RT treatment position, is recommended to aid target delineation.

Departments should use contouring protocols and assess setup margins individually.

Peer review of target volumes is recommended.

Prescription and treatment technique

For chemo-radiation 60 – 66 Gy in 30 – 33 fractions, once daily.

Whether employing 3D conformal or intensity-modulated techniques, departmental planning protocols should be developed to guide planning aims and specify normal tissue constraints.

Treatment Verification

The method and frequency needs to reflect accuracy required for delivery.

Daily volumetric imaging is recommended when using modulated techniques with narrow PTV margins or when critical OARs are close to tolerance.
Table 2. Suggested OAR dose constraints for conventionally fractionated RT for LA-NSCLC adapted from eviQ (10)

<table>
<thead>
<tr>
<th>Organ</th>
<th>Constraint</th>
<th>Additional information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lung</td>
<td>Mean lung dose <20Gy</td>
<td>To keep risk of ≥ Grade 2 radiation pneumonitis ≤ 20%</td>
</tr>
<tr>
<td></td>
<td>V20Gy ≤ 35%</td>
<td>Volume both lungs and subtract GTV</td>
</tr>
<tr>
<td></td>
<td>V5Gy ≤ 60%</td>
<td></td>
</tr>
<tr>
<td>Spinal Cord</td>
<td>< 50Gy</td>
<td>To keep risk of myelopathy < 1%</td>
</tr>
<tr>
<td>Oesophagus</td>
<td>V60 ≤ 17%</td>
<td>To keep risk of ≥ Grade 3 oesophagitis ≤ 10%</td>
</tr>
<tr>
<td></td>
<td>Mean dose ≤ 28Gy</td>
<td>Contour external wall from cricoid cartilage to gastro-oesophageal junction</td>
</tr>
<tr>
<td>Heart</td>
<td>V60 ≤ 33%</td>
<td>There are no good DVH criteria for the heart in lung cancer context</td>
</tr>
<tr>
<td></td>
<td>Mean heart dose ≤ 20Gy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>V30 ≤ 46%</td>
<td></td>
</tr>
<tr>
<td>Brachial plexus</td>
<td>≤ 60 Gy</td>
<td>To keep risk of brachial plexopathy < 1 – 2%. Up to 66Gy may be acceptable for Pancoast tumours</td>
</tr>
</tbody>
</table>
Author/s:

Title:
Australia and New Zealand Faculty of Radiation Oncology Lung Interest Cooperative: 2015 consensus guidelines for the use of advanced technologies in the radiation therapy treatment of locally advanced non-small cell lung cancer

Date:
2016-10-01

Citation:

Persistent Link:
http://hdl.handle.net/11343/291560