Controlled oxygen therapy at emergency department presentation increases the likelihood of achieving target oxygen saturations in patients with exacerbations of chronic obstructive pulmonary disease.

Joanna Wai Yinn Chow MBBS
Department of Emergency Medicine, Western Health
Keshav Khullar MBChB
Department of Emergency Medicine, Western Health
Kashyap Katechia MBChB BSc
Department of Emergency Medicine, Western Health
Sharon Klim BN
Joseph Epstein Centre for Emergency Medicine Research @ Western Health
Anne-Marie Kelly MD FACEM
Joseph Epstein Centre for Emergency Medicine Research @ Western Health

Word count: Abstract: 249; text 1897
Tables: 1 Figures: 2
References: 15
Keywords: COPD, oxygen, mortality

Corresponding author:
Prof AM Kelly, JECEMR, Sunshine Hospital, St Albans 3021, VIC, Australia

This is the author manuscript accepted for publication and has undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1111/1742-6723.12528

This article is protected by copyright. All rights reserved.
Controlled O2 in COPD

Email: anne-maree.kelly@wh.org.au
ABSTRACT

Objective: This study aimed to determine whether initiation of controlled oxygen therapy at emergency department (ED) presentation increased the proportion of patients with chronic obstructive pulmonary disease (COPD) achieving the COPD-X guideline target SpO2 range (88-92%) at 30 minutes and if it impacted total hospital length of stay or in-hospital mortality.

Methods: Retrospective cohort study by medical record review of patients admitted to hospital with an exacerbation of COPD. The primary outcome of interest was the proportion of patients achieving the target SpO2 range at 30 minutes after ED arrival.

Results: The proportion of patients with SpO2 in the target range at 30 minutes was higher in the controlled oxygen therapy group (32%, vs. 16%; difference between proportions 16% (95% CI 7-24%); number needed to treat 6) and less likely to be over-oxygenated (SpO2>95%), 29% vs. 54%, difference between proportions 25% (95% CI 14-35%); number needed to harm 4, without an increased likelihood of hypoxia. Length of stay was not different between the groups. Mortality for the controlled oxygen group was 2.7% (95% CI 1.3-5.5%) vs. 5.8% for the uncontrolled oxygen group (95% CI 2.9-11.6%); however this trend was not statistically significant.

Conclusion: Patients with exacerbations of COPD receiving controlled oxygen therapy were more likely to achieve SpO2 within the COPD-X guideline target range without being more likely to be hypoxic. The proportion of patients with SpO2 within the target range was low, suggesting that further work on processes to optimize oxygenation in this group of patients is needed.
Controlled O2 in COPD

Introduction

The Australian COPD-X guidelines (2015) [1] recommend that for patients with exacerbations of chronic obstructive pulmonary disease (COPD) treated in emergency settings oxygen flow should be carefully titrated to achieve oxygen saturations (SpO2) between 88% and 92%. This is usually achieved by using nasal prongs with oxygen flows at appropriate rates or venturi-type oxygen delivery systems. The rationale for this recommendation is that there is evidence that high flow oxygen administered in the prehospital setting may increase mortality (number needed to harm 14)[2] and that uncontrolled oxygen therapy is associated with an increased risk of death, assisted ventilation or respiratory failure in patients presenting to hospital.[3]

We aimed to determine whether initiation of controlled oxygen therapy at emergency department (ED) presentation increased the proportion of patients achieving the target SpO2 range at 30 minutes and if it impacted total hospital length of stay or in-hospital mortality.

Methods

Design and setting

This was an unplanned sub-study of a retrospective cohort study conducted by medical record review of patients presenting to ED with a final hospital diagnosis of COPD. The parent study aimed to compare mortality for those receiving controlled vs. uncontrolled oxygen therapy. It was conducted at two university-affiliated metropolitan teaching hospital EDs with a combined annual ED census of approximately 105,000.
Controlled O2 in COPD

Patient selection

Inclusion criteria were age ≥ 18 years and ED discharge diagnosis of COPD. We excluded patients who did not receive oxygen therapy after initial ED assessment, failed to have COPD confirmed as the principal hospital discharge diagnosis, who were discharged home from ED (presumed mild disease), who were receiving assisted ventilation on ED arrival or required non-invasive ventilation (NIV) initiated on ED arrival and missing or unavailable records.

Patients were identified from the ED data management system for the period 1 January 2012 to 31 March 2013. There were 864 potentially eligible patients. A convenience sample of 642 patients, based on record accessibility during the study timeframe, was screened for inclusion representing approximately 74% of all potentially eligible patients. Patients were eligible for inclusion more than once.

During the period covered by the study, nurses were free to choose whatever form of oxygen delivery mode they thought most suitable. In particular, they were not required to continue the same mode of delivery that was used in the prehospital setting. About a year before this study, an educational campaign had been undertaken in one of the study EDs regarding the use of controlled oxygen therapy in patients with known or suspected COPD as part of a quality improvement project and, since then, it has been included in nursing orientation programs. Following the campaign, audit data showed that rates of controlled oxygen delivery use were approximately 60%. As this study was retrospective, nurses were unaware that it was being conducted at the time of the relevant clinical encounters. It should also be noted that at the
 Controlled O2 in COPD

study institution, nebulized bronchodilators are routinely oxygen-driven; there is very limited availability of medical air for this purpose.

Data collection, definitions and outcomes of interest

Data was collected onto a standard, piloted data collection form. (Appendix 1) Data collected included demographics, use of home oxygen, primary hospital discharge diagnosis, oxygen delivery mode initiated at ED arrival, SpO2 at 30 minutes after ED arrival, hospital length of stay and in-hospital mortality. Data was collected by clinicians who were not blinded to the parent study objective. As this was an unplanned sub-study, they were unaware of the objective of this sub-study. Data collectors were trained in data definitions and use of the data form.

The primary outcome of interest was the proportion of patients achieving the COPD-X target SpO2 range (88-92%) at 30 minutes after ED arrival. Secondary outcomes of interest were length of stay and in-hospital mortality by initial oxygen delivery mode (controlled vs. uncontrolled). The controlled oxygen therapy group was defined as use of nasal prongs or venturi-type system. Uncontrolled was defined as face-mask (any other type) or unknown.

Inter-rater agreement was assessed for 63 patients (17%) for the items SpO2 at 30 minutes within COPD-X target range and in-hospital mortality.

Data analysis and sample size

Analysis is descriptive with 95% confidence intervals. Chi square or Fisher’s exact tests (where appropriate) were used to test differences between proportions. Continuous data is reported as medians with inter-quartile range and compared using Mann Whitney U Test. A p value <0.05
was considered statistically significant and tests were two-sided. Inter-rater agreement was performed using the Kappa test. Analysis was performed using Analyse-It® software (www.analyse-it.com).

Regarding sample size, to show a difference of 20% in achieving the target SpO2 (30% vs. 50%) with power of 0.8, alpha of 0.05 would require approx. 75 patients per group. As we were aware that approximately 40% of patients would probably receive uncontrolled oxygen therapy (based on previous audit data), the target sample size was set at at least 100 eligible patients per group.

Ethics approval

Ethics approval as a quality assurance project was obtained from the Western Health Low Risk Ethics Panel. Patient consent was not required.

Results

378 patients met the inclusion and exclusion criteria. (Figure 1) Median age was 73 years (IQR 64-79) and 53% were male. Controlled oxygen therapy was used in 68% of patients (n=258, nasal prongs 38%, venturi-type system 30%) while uncontrolled oxygen therapy was used in 32% (n=120, face masks e.g. Hudson™ mask and non-rebreather 26%, 6% unknown mode of delivery). Characteristics of the overall sample and comparison groups are shown in Table 1.

The proportion of patients with SpO2 in the target range at 30 minutes after ED arrival was 32% in the controlled oxygen delivery group (82/258; 95% CI 25-38%) vs. 16% in the uncontrolled group (19/120; 10-23%); difference between proportion 16% (95% CI 7-24%); number needed
Controlled O2 in COPD

to treat 6. Patients not receiving controlled oxygen therapy were more likely to be over-oxygenated (SpO2 >95%), 54% (65/120) vs. 29% (75/258); difference between proportions 25% (95% CI 14-35%); number needed to harm 4. Patients receiving controlled oxygen therapy were not more likely to be hypoxic (SpO2<88%) at 30 minutes (7% vs.6%; p=0.82). The proportion of patients in each SpO2 range at 30 minutes is shown in Figure 2. The proportion achieving the target range did not differ between the venturi system and the nasal prongs subgroups (31% vs. 33%; difference between proportions 2%, 95% CI -9% to 14%) nor did the proportion of patients with SpO2 >95% (27% vs. 31%, difference between proportions 4%, 95% CI -7% to 15%)

Length of stay was not different between the groups (median 5.0 days for each, Table 1). Overall in-hospital mortality was 3.7% (14/378; 95% CI 2.2-6.1%). Mortality for the controlled oxygen group was 2.7% (7/258; 95% CI 1.3-5.5%) vs. 5.8% for the uncontrolled oxygen group (7/120; 95% CI 2.9-11.6%); however this trend was not statistically significant (p=0.23).

Inter-rater agreement for oxygen saturation within COPD-X target range at 30 minutes had a kappa value of 0.92 (percent agreement 97%). Agreement for in-hospital mortality classification was 98% (kappa 0.85).

Discussion

Our results show that patients with exacerbations of COPD receiving controlled oxygen therapy were more likely to achieve SpO2 within the COPD-X [1] target range of 88-92% and less likely to be over-oxygenated (SpO2>95%) compared with the uncontrolled oxygen group, without being more likely to be hypoxic. That said, the proportion of patients with SpO2 within the target
Controlled O2 in COPD

range was considerable lower than was expected, suggesting that further work on process improvements to optimize oxygen delivery for this group of patients is needed.

While there is conjecture about what SpO2 level represents clinically significant over-oxygenation for patients with COPD [4], a significant proportion of patients had SpO2 at 30 minutes >95% and this proportion was significantly higher in the uncontrolled oxygen group. We did not collect data on reasons for choice of oxygen delivery mode or reasons for over-oxygenation. However possible explanations include lack of awareness of the COPD-X guideline target, lack of recognition of the risks associated with over-oxygenation particularly in patients not on home oxygen and lack of respect for oxygen as a drug.

Changing clinical practice is not easy. There is evidence that over-oxygenation is an entrenched practice among health professionals [2,4] despite the availability of guidelines for some years.[5] Approaches to change practice include education, the use of management pathways for respiratory conditions and the recently suggested requirement for oxygen therapy to be prescribed similar to a drug.[6]

The in-hospital mortality rate in our study was towards the lower end of rates reported in the literature which range from 2% to 7.7% (median approx. 5%) [7-13]. There was a trend towards lower mortality in patients receiving controlled oxygen therapy however this did not reach statistical significance. If a difference in mortality of this order could be confirmed in a larger study the number needed to harm would be of the order of 32. Given the large number of ED presentations and hospital admissions with COPD annually, this would represent a large number of potentially avoidable deaths. Further research to confirm or refute a mortality
Controlled O2 in COPD

difference with controlled oxygen therapy from ED arrival is strongly recommended. It is also interesting to note that the higher mortality in the uncontrolled oxygen group was despite there being a significantly lower proportion of patients on home oxygen, a recognized higher risk group for type II respiratory failure, in that cohort. Cognizant of the limitations of our data collection and methodology, we have resisted the temptation to perform multivariate analysis regarding the mortality outcome controlling for home oxygen status but this would be an interesting area for future studies. Length of stay was similar to other contemporary reports.[9,10]

There has been some discussion in the literature about the target range.[4] In a recent review, Pilcher et al suggested that further evidence is required to confirm the 88-92% target range. While they agree that oxygen levels outside the normal range (PaO2 60-100mmHg) are associated with adverse events in patients with exacerbations of COPD, they suggest that there is an evidence gap regarding adverse event risk within the normoxic range (e.g. SpO2 88-90% versus 90-95%).

This study has some limitations that should be considered when interpreting its results. Data collection was retrospective with potential issues including missing data.[14,15] Due to record availability, accessibility and selection, there is potential selection bias. In part this was due to this being a time-limited registrar research project and not all records were accessible during the available timeframe. We believe that systematic bias is unlikely as records were accessed from a list of eligible patients in date order and omitted if key records were missing. We did not control which patients received controlled vs. uncontrolled oxygen therapy. It is possible that the groups differed in ways not identified by this study that had a bearing on outcomes. This is
Controlled O2 in COPD

a single health service (two sites) study and may not be generalizable to other sites or health systems. The study has not adequately powered for the mortality outcome.

Conclusion

Patients with exacerbations of COPD receiving controlled oxygen therapy were more likely to achieve SpO2 within the COPD-X target range of 88-92% and less likely to be over-oxygenated without being more likely to be hypoxic. However, the proportion of patients with SpO2 within the target range was low, suggesting that further work on processes to optimize oxygenation in this group of patients is needed. There is a trend towards lower mortality with controlled oxygen therapy which is worthy of further research.

REFERENCES

Table 1. Comparison of controlled vs. uncontrolled oxygen groups

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Overall (n=378)</th>
<th>Controlled oxygen cohort (=258)</th>
<th>Uncontrolled oxygen cohort (n=120)</th>
<th>P value for comparison</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (median, IQR)</td>
<td>73,64-79</td>
<td>73, 65-79</td>
<td>72,62-78</td>
<td>0.09</td>
</tr>
<tr>
<td>Gender, number male, %</td>
<td>202,53%</td>
<td>134,52%</td>
<td>68,57%</td>
<td>0.39</td>
</tr>
<tr>
<td>Home oxygen number, %</td>
<td>100,27%</td>
<td>82,32%</td>
<td>18,15%</td>
<td>0.0006</td>
</tr>
<tr>
<td>Arrival by ambulance, number, %</td>
<td>310,82%</td>
<td>216,84%</td>
<td>94,78%</td>
<td>0.20</td>
</tr>
<tr>
<td>Length of stay, median, IQR</td>
<td>5.0, 4-8</td>
<td>5.0, 4-8</td>
<td>5.0,3-7</td>
<td>0.17</td>
</tr>
<tr>
<td>In-hospital mortality, number %</td>
<td>14,3.7%</td>
<td>7,2.7%</td>
<td>7,5.8%</td>
<td>0.23</td>
</tr>
</tbody>
</table>
Legends

Figure 1. Sample derivation

COPD=chronic obstructive pulmonary disease; O2 =oxygen, NIV=non-invasion ventilation, SpO2=oxygen saturation.

Figure 2. Proportion of patients in each SpO2 range at 30 minutes.
Oxygen therapy and mortality in COAD patients

<table>
<thead>
<tr>
<th>Study number: ____________________</th>
<th>Date of ED presentation: ____________</th>
</tr>
</thead>
</table>

Eligibility

<table>
<thead>
<tr>
<th></th>
<th>Yes</th>
<th>No</th>
<th>Exclude if</th>
</tr>
</thead>
<tbody>
<tr>
<td>ED diagnosis of COAD</td>
<td>☐yes</td>
<td>☐no</td>
<td>YES</td>
</tr>
<tr>
<td>Intubated and mechanical</td>
<td>☐yes</td>
<td>☐no</td>
<td>YES</td>
</tr>
<tr>
<td>ventilation at ED arrival</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No oxygen therapy after initial</td>
<td>☐yes</td>
<td>☐no</td>
<td>YES</td>
</tr>
<tr>
<td>nurse assessment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Discharged home from ED</td>
<td>☐yes</td>
<td>☐no</td>
<td>YES</td>
</tr>
</tbody>
</table>

If any exclusion criteria are met, do not collect further data

<table>
<thead>
<tr>
<th>Age</th>
<th>Years</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>☐ Male (1) ☐ Female (2)</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
</tr>
<tr>
<td>ED diagnosis COAD</td>
<td>☐ No (1) ☐ Yes (2)</td>
</tr>
<tr>
<td>Home oxygen</td>
<td>☐ No (1) ☐ Yes (2)</td>
</tr>
<tr>
<td>Arrival by ambulance</td>
<td>☐ No (1) ☐ Yes (2)</td>
</tr>
<tr>
<td>Pre-hospital oxygen therapy for those arriving by ambulance</td>
<td>☐ Prongs (1) ☐ Mask (2) ☐ None (3) ☐ Assisted ventilation (4) ☐ Unknown (5)</td>
</tr>
<tr>
<td>Last SpO2 by ambulance (put 222 if unknown or not by ambulance)</td>
<td></td>
</tr>
<tr>
<td>SpO2 at initial presentation – first ED obs.</td>
<td></td>
</tr>
<tr>
<td>ED oxygen delivery after initial nursing assessment as recorded on nursing obs chart</td>
<td>☐ Venturi (1) ☐ Prongs (2) ☐ NIV (3) ☐ None (4) ☐ Other, including hudson mask (5) ☐ Unknown (6)</td>
</tr>
<tr>
<td>SpO2 after 30 minutes ED treatment (first set >30 minutes)</td>
<td></td>
</tr>
<tr>
<td>Disposition status</td>
<td>☐ Admitted (1) ☐ Discharged (2)</td>
</tr>
<tr>
<td>Date of discharge/ death</td>
<td></td>
</tr>
<tr>
<td>Total LOS (days; count all dates or part thereof)</td>
<td></td>
</tr>
<tr>
<td>Primary discharge diagnosis COAD</td>
<td>☐ No (1) ☐ Yes (2)</td>
</tr>
<tr>
<td>Inpatient outcome</td>
<td>☐ Discharged alive (1) ☐ Died (2)</td>
</tr>
</tbody>
</table>
Potentially eligible patients: 864

Patients screened: 642

Final study sample = 378

Not screened 222 – records not accessible during study timeframe

Exclusions:
- No O2 after initial assessment = 132
- NIV on arrival = 81
- COPD diagnosis not confirmed = 17
- Discharged home = 10
- Mechanical ventilation pre-hospital = 3
- Records unavailable = 9
- More than one exclusion criterion = 12

Controlled oxygen therapy = 258

Uncontrolled oxygen therapy = 120

Target SpO2 = 82 (32%)

Target SpO2 = 19 (16%)

In-hospital mortality = 7 (2.7%)

In-hospital mortality = 7 (5.8%)
Author/s: Chow, J.W.Y; Khullar, K; Katechia, K; Klim, S; Kelly, A-M

Title: Controlled oxygen therapy at emergency department presentation increases the likelihood of achieving target oxygen saturations in patients with exacerbations of chronic obstructive pulmonar y disease

Date: 2016-02-01

Persistent Link: http://hdl.handle.net/11343/290798