TM-Link: An internationally linked trade mark database

Stephen Petriea, Mitchell Adamsa, Ben Mitra-Kahnb, Matthew Johnsona, Russell Thomsona,
Paul Jensenc, Alfons Palangkarayaa, Elizabeth Webstera

aSwinburne University of Technology, Melbourne
bIP Australia, Canberra,
cUniversity of Melbourne

Abstract

This paper describes a new database – called TM-Link – that contains 12 million trade mark applications and registrations across six jurisdictions. A feature of the database is the identification of trade mark equivalents (or families) within and across national trade mark offices. Equivalent trade marks are two, or more, insignias for the same product applied for by the same company. Unlike patents, the incentive to file for global priority is comparatively weak since legal priority for trade marks is territorial. To identify the number of true trade mark equivalents we therefore create synthetic links using a neural network-based machine learning algorithm.

Corresponding author Paul Jensen, pjensen@unimelb.edu.au, Faculty of Business and Economics, University of Melbourne, Melbourne Victoria 3010, Australia. Thanks to Skye Reeve, Dustyn Taylor, Julia Price, Razib Tuhin, Christian Mulchrone, Haiyang Zhang from IP Australia for extensive comments and clarification on the text. Thanks also to John de New for helpful comments. This project was funded by ARC LP160100776 ‘Vertical dis-integration and the globalisation of branded products’ between Swinburne University of Technology, University of Melbourne and IP Australia.

This is the author manuscript accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1111/1467-8462.12373.

This article is protected by copyright. All rights reserved.
INTRODUCTION

Trade marks are signs used as a ‘badge of origin’ to identify the commercial source of the products claimed in the specification. They consist of any combination of letters, words, names, numerals, devices or brand elements, *inter alia*. Trade marks also provide information on the quality, function and origin of products or businesses. Trade mark signals are considered most socially valuable when the buyers and sellers are not personally known to each other; when a producer wants to leverage its reputation to sell a new product; or when the transaction occurs at arm’s length. In these situations, the trade mark or brand substitutes for personal trust.

However, for marks to fulfil this function, the owner needs to be assured his or her mark cannot be used by competitors (i.e. infringed). Registering the trade mark with a government trade mark office makes it easier to enforce this right of exclusivity. As trade marks are territorial (i.e. jurisdiction specific), firms need to file for the same mark with each national office that they want legal protection from other firms using that mark. The information embodied in these international marks provides a wealth of evidence about the activities and strategies of the firm, region, country or market.

1 Use as a trade mark to indicate a ‘badge of origin’ came from a passage in *Coca-Cola Co v All-Fect Distributors Ltd* (1999) 96 FCR 107 approved by the High Court in *E & J Gallo Winery v Lion Nathan Australia Pty Ltd* (2010) 241 CLR 144.

2 Protection is implemented by granting the trade mark owner the exclusive right to use, or authorise others to use, the registered sign in relation to the particular goods and services claimed. The registered owner also has the right to obtain relief from the judiciary for trade mark infringement where others may use similar signs in the market for similar products and services.

3 Under the *Trade Marks Act 1995* (Cth), the list of signs is non-exhaustive and includes three-dimensional shapes, colours, scents and sounds. See the definition of a ‘sign’ in section 6 of the *Trade Marks Act 1995* (Cth).

4 It was first recognised that trade marks indicate quality in the Second Reading Speech of Senator McGregor, Vice-President of the Executive Council; Parliamentary Debates 1904, Vol xx, 3538 (27 July).

5 As such, trade marks aide dynamic efficiency by providing incentives for firms to improve the quality of their product and aide static efficiency by reducing the cost of consumer search and unsuitable purchase (Landes and Posner 1987).

6 Priority means the second or subsequent filing retains the ‘new-to-the-world’ or ‘new-to-the-market’ status as the first filing. Applications for both trade marks and patents can claim priority (based on an earlier filing date) providing certain conditions are met.

This article is protected by copyright. All rights reserved.
However, use of this information by economists has been limited by the fact that registrations at different trade mark offices are not readily identifiable as equivalent.

Two types of formal international equivalence exist: Paris legal priority based on the prior application for the same mark in another jurisdiction, and international filing through the Madrid System (or the International Trademark System). However, an unknown number of equivalent trade marks are filed directly with national IP offices, without claiming priority based on an earlier filing elsewhere. It is not officially known whether these formal international equivalents (Paris and Madrid) represent a small or large fraction of all trans-national marks. The trade mark equivalence database we constructed suggests that the bulk of true equivalents are not registered through these two formal legal priority mechanisms.

This paper reports on the construction of a new database – called TM-Link – that connects 12 million trade mark applications and registrations across five jurisdictions – Australia (from 1983), Canada (1978), New Zealand (from 1968), the United States (from 1961) and the European Union (from 1996). We plan to incorporate data from other jurisdictions as they become available. At the time of writing, data from the United Kingdom had been included in TM-Link but had not yet been linked to the other five jurisdictions.

The paper is organised as follows. The next section discusses the largely unexploited potential of trade mark data and provides an overview of the limited literature that has used trade mark data; Section 3 gives an overview of how the database was constructed; and Section 4 presents a descriptive analysis of TM-Link; and Section 5 concludes.

7 Paris Convention for the Protection of Industrial Property (as amended on September 28, 1979).

8 The Madrid Agreement Concerning the International Registration of Marks (Madrid Agreement 1891) and the Protection Relating to the Madrid Agreement Concerning the International Registration of Marks (Madrid Protocol 1989), collectively known as the Madrid System (or the International Trademark System), is an international mechanism that allows applicants to submit a single trade mark application with a set of fees can designate the countries in which the application seeks registration. The system administered by WIPO allows applicants to seek protection in up to 117 countries. The intention of the Madrid System is to reduce the administrative burden on applicants filing in multiple jurisdictions and facilitates the maintenance of trade mark rights abroad.
BACKGROUND

Why trade mark data?

For economists, management scientists and legal scholars, trade mark data are a valuable source of information that sheds light on three areas of interest. First, the operation of the economy, especially in relation to exporting and global value chains. Second, the branding and marketing strategies of firms, and, third the proficient operation of the trade mark system with respect to its dynamic and static efficiency goals (Schmoch and Gauch 2009; Millot 2009; Nasirov 2018; Castaldi 2019).

Trade mark data has several advantageous features compared with other firm-level innovation and export data. The low cost of trade mark registration makes it an attractive tool for brand promotion, especially for small business. Trade marks are used by all industries and sectors and the data do not suffer from the sectoral biases inherent in patent and design statistics. They cover consumer goods as well as intermediate inputs that are traded in supply chains. Trade marks are firm-level records, but the location of the owner can be aggregated up to city, region and country levels using embedded geo-coded information.

Analysts can also link trade mark data to other data sources utilising information on the trade mark owner. It is this linkage to other administrative and survey datasets, such as patents, export, sales and employment data, which enables analysts to address the most interesting questions, such as branding strategies for new products, export intentions or agglomeration economies. Trade mark applications, and the details of their owners, can be used to identify the name and location of would-be innovators and exporters (see, for example, Petrie et al. 2019). The information embodied in trade mark data are also typically quite timely, and unlike most business data collected by national statistical offices, they may be used for predictive analysis and forecasting.

9 It has been well documented that patents, as statistics, have a biased coverage of inventions by industry (see Arundel and Kabla 1998) and that the coverage of registered designs is similarly biased.
As in the case of patent data, trade mark data nevertheless have drawbacks as indicators of innovative activities, and, depending on their use, they can be biased or unreliable sources of information. For instance, not all signs and brands need be registered to be considered trade marks. In common law countries, firms may rely solely on the protection offered from the common law (i.e. unregistered trade marks), such as an action for passing off or equivalent consumer protection laws. In addition, strategic decisions may affect the decision to apply for trade mark registration which limits its value as a predictor of innovative products and exports. There are anecdotes that some firms register marks in off-line territories to avoid giving information to competitors. Moreover, trade mark data’s predictive qualities may be compromised if firms delay applying for registration until use has been established in jurisdictions where ownership of trade marks is awarded to those that first use the trade mark in the territory.10 This can lead to firms using the trade mark in the territory to accumulate evidence of use before filing to secure trade mark registration. Giarratana and Torrisi (2010) have also suggested that foreign trademark registrations can be used as an indicator of entry into a foreign market.

This strategic use of trade marks, along with different trade mark laws in different jurisdictions (e.g. trade mark law in China is an area of study in itself) can diminish the value of the data as a source of information about innovation, exports and foreign investment. In addition, some sectors use many trade marks to do their business (e.g. cleaning chemicals), but others will use relatively few (e.g. services or industries where few high value products are the norm). This will impact on the value of any individual trade mark. Finally, there could be sampling bias. Baroncelli, Fink and Javorcik (2005) believe that firms from developing countries are less likely to trade mark in developed countries due to a lack of established reputation or reliable trade performance.

10 Common law countries such as Australia, NZ, US, Canada, Singapore, UK are is a first to use jurisdiction. Civil law countries such as China have a ‘first to file’ rule.
What have trade mark data told us?

Business performance

The information content of trade mark data has not gone unnoticed and there is an emerging empirical literature which uses trade mark applications and registrations data. A recent review of the literature (Nasirov 2018) finds that the focus has been on explaining firm value, productivity and profitability. Economists have modelled how well trade mark applications reflect firm-level innovation and, its twin, intangible assets (Economides 1988; Hall 1999; Bosworth and Rogers 2001; Feeny and Rogers 2003; Schmoch 2003; Mendonça, Pereira and Godinho 2004; Malmberg 2005; Greenhalgh and Rogers 2006; Buddelmeyer, Jensen and Webster 2010; Helmers and Rogers 2011; Griffiths, Jensen and Webster 2011; Sandner and Block 2011; Greenhalgh and Rogers 2012; González-Pedraz and Mayordomo, 2012; González-Pedraz and Mayordomo, 2012; Ceccagnoli and Jiang (2013); Gotsch and Hipp 2014; Flikkema et al. 2014; de Rassenfosse 2017; Castaldi 2018; Flikkema et al 2019; Dinlersoz et al. forthcoming). Furthermore, the econometric study by González-Pedraz and Mayordomo (2012) found that diverse trademark portfolios are not necessarily good measure of intangible assets. In economic modelling, trade marks as indices of innovation or intangible assets are used as both the dependent and explanatory variables. Trade marks have also been used to identify product innovation (Jensen and Webster 2009) and study market survival (Buddelmeyer, Jensen and Webster 2010; Helmers and Rogers 2010).

Trade mark data are increasingly being used to understand and measure firm brand value. In this regard, trade mark data have the practical advantage that data are more available than company’s investment in brand. This approach is based on the notion that trademarks and brands are closely related, because trademarks are the legal basis for a brand (Aaker 1991; Cohen 1986, 1991). The use of trademark counts as an indicator for brand investment is relatively new but is becoming increasingly common in the recent literature, (Krasnikov et al. 2009; Castaldi and Giarratana 2018; Drivas and Iliopoulos 2017 and Grashuis 2017).
However, very little use has been made of trade mark data to inform us about international economic activities such as export and foreign investment. One plausible reason for this is that, unlike global patent databases such as PATSTAT,11 a fit-for-purpose global trade mark database has not been readily available as a research tool. This serves as one of the main motivations behind our construction of the TM-Link database.

Strategic use of trade marks

According to Nasirov (2018), there is a general lack of systematic evidence about management engagement in the use of trade marks and the literature is dominated by anecdotal evidence. Many articles on strategic objectives are based on relatively small samples of data (Mendonça, Pereira and Godinho 2004; Amara, Landry and Traoré 2008; Krasnikov, Mishra and Orozco 2009; Semadeni and Anderson 2010; Gotsch and Hipp 2014; Block \textit{et al.} 2015; Li and Deng 2017).

There is however, an emerging literature based on larger trademark datasets. These have used trade mark data in one of three way: strategies; to show how firms’ behaviour is having unintended consequences; and to show how trademarking activity is a strategic tool in itself. For example, trade marks can be used to reflect the development of marketing capabilities; or to show how trademarking interacts with other R&D strategies; or to be a market strategy itself (Xiong & Bharadwaj 2011; Huang \textit{et al} 2013).

In a study where trademarks reflect a firm’s commercial strategy, Link and Scott (2012) and Guzman and Stern (2015) find that start-ups with more trademarks have higher employment growth. Noting the economic studies (cited in the previous section), Malmberg (2005) qualifies the accuracy of trademarks as indicators of new-to-the-firm innovation. He claims they are better indicators in industries with frequent use of trade marks and with products targeting consumers or professional end-users. Gao and Hitt (2012) provide evidence that the high trade mark turnover in the IT industry reflects their shorter product lifecycles. Semadeni and Anderson (2010) used

text analysis on the trademarks of 50 companies to assess when firms chose to imitate a new, unproven product, or to forgo imitation. Trademarking behaviour can also be a signal of soft innovation (Stoneman 2010), service innovation (Schmoch and Gauch, 2009), product innovation especially for brand extension (Flikkema et al. 2019), or, less plausibly, organizational innovation (Millot 2009).

As an example of when trademarking activity might be having unintended consequences, Block et al (2014) show that too few or too many trademarks can reduce financiers’ valuation of start-ups. In contrast, Srinivasan et al. (2008) find that larger number of trademarks can assist survival in the context of product diversity. A separate study by Block, Fisch and Sandner (2014) showed that financial markets value only those trademarks that develop existing brands, not new ones. Castaldi and Dosso (2018) found that trademarking complemented R&D and patenting activities.

Finally, de Vries et al. (2017); Block, Fisch and Sandner (2014); Block et al (2014); Zhou et al. (2016) use trademark data to illustrate where trademarking is part of the strategy such as signalling to investors. Mendonça, Pereira and Godinho (2004) argue that trademarks can be used to increase the price inelasticity of demand, improve appropriation of profits, enhance the appropriation of complementary forms of intellectual property, open new markets, increase bargaining power with suppliers and signal changes in brand and corporate identity. Greenhalgh and Rogers (2007) have argued that trademarks can substitute for patents where an invention is not patentable subject matter such as the service industry or for incremental inventions. After noting the correlation between trademarking and patenting, Dinlersoz et al. (forthcoming) point out that the direction of causation can work two ways: trademarks may be used to appropriate innovation profits (by establishing brand loyalty and signalling quality) or trademark profits may be used to finance product and process innovation.

Most of the above studies are based on data from one jurisdiction except for Baroncelli, Fink and Javorcik (2005) who found that the trademark intensity of goods relates to the income of the exporting country not the importing country.

Efficiency of the trade mark system

Trade marks carry information about the quality of the wares of a particular company – in doing so, they help avoid adverse selection issues associated with the ‘market for
lemons’ inefficiencies (Landes and Posner 1987; Akerlof 1970). In the face of product quality uncertainty, consumers will pay a price reflecting the average quality of goods on the market, which in turn creates an incentive for producers to only offer goods of an average or lower quality. An efficient trademark system balances the costs of enforcement with the gains. Unlike technology, brands protected by trade marks are generally rival goods – that means infringing a trade mark diminishes its value to all users. Clarity of the signal to consumers can be weakened where many similar or overlapping marks exist.

Investigating the efficiency of the trade mark system requires comprehensive and accurate data that goes beyond anecdotes. Scholars examining the efficiency of the trade mark system have used such data to understand the incidence of applications (Jensen and Webster 2006; Block, Fisch, Hahn and Sandner 2015; Squicciarini, Millot and Dernis 2012) and to document register cluttering (von Graevenitz 2013; Dinwoodie 2016; Zhang 2019). Both these behaviours may have implications for the health of the trade mark system. Von Graevenitz (2013) and Dinwoodie (2016) have also examined the nature of territorial overlaps and international mechanisms that could contribute to increased numbers of trade marks on registers that could ultimately lead to instances of clutter. In addition, systematic data can reveal if there is any bias in the examination decision against foreign applicants [as found by Baroncelli, Krivonos and Olarreaga (2007) in China, Hong Kong, India, and South Africa]; whether accession to the Madrid protocol increased the level of international trademarking increase; or whether the Madrid protocol aided export by lowering the barriers to international trademarking?

12 see Ramello 2006 for an introduction into the economics of trademarks

13 Strong trade mark protection also does not stymie dynamic knowledge spill-overs, cumulative innovation or lead to the coordination and hold-up problems associated with patents over complex technology.

14 Australia joined on July 11, 2001; Canada on June 17, 2019; New Zealand on December 10, 2012; USA on November 2, 2003.
HOW HAS THE DATA BEEN CONSTRUCTED?

TM-Link comprises data on trade mark filings from the USPTO Trademark Case File Dataset (TCFD), the Australian Intellectual Property Open Government Data (IPGOD), the New Zealand Trade Mark Information API, the Canadian Trademarks Database, and the EUIPO Community Trade Mark Database. All these trade mark data sources capture information from applicants that are seeking trade mark registration. The data sources do not include common law trade marks, which firms may rely upon in the course of trade.

To identify equivalent trade marks, we developed a neural network linking algorithm which identifies similar trade marks across different countries, as described previously by Petrie et al. (2019). This involves assessing trade mark equivalence through comparison of: trade mark text (i.e. the words or text depicted in the trade mark)\(^\text{15}\); filing date; Nice classification; and applicant name. Once we have cleaned the data from each national office and consolidated duplicate records\(^\text{16}\), we algorithmically identify equivalent trade marks across jurisdictions – i.e. families of trade marks from a given firm filed across different national offices. We apply this international trade mark linking algorithm to all applications that contain trade mark text (i.e. 96% of all trade mark applications include text). To date we have linked trade mark applications from the USA, Canada, Australia, New Zealand and the European Union. Note that we define the ‘country of owner’ of a family of trade marks as the address of the first filed application in a family. As such we have over 250 countries of ownership.

\(^{15}\) Trade marks can include words or other text as well as visual designs or typographic elements. We only consider trade mark text in our linking algorithm and do not consider the associated trade mark images (i.e. stylistic elements and visual designs).

\(^{16}\) Multiple applications for the same identical trade mark can reflect recording errors, where all fields contain identical data, and we remove these. Also, for some offices, multi-Nice Class trade marks historically required separate applications each with a single Nice Class, as older applications could only be filed under a single Nice class. We consolidate any such multi-Nice applications into a single application with a single associated application number, removing any associated duplicate applications.
The trade mark linking algorithm involves two separate stages; a blocking algorithm followed by a neural network classification algorithm (Petrie et al., 2019). The blocking (or “binning”) algorithm involves efficiently grouping trade mark applications together into blocks containing similar trade marks (TMs). We then further refine these groups of linked trade marks using a more computationally intensive neural network linking algorithm, which improves the linking accuracy by searching within each block to remove false positive TM-TM links.

Blocking algorithm

Our blocking algorithm groups similar trade mark applications into the same block if they share similar trade mark text, as described previously in Petrie et al. (2019). The process involves systematically simplifying trade mark text (e.g., removing punctuation), in order to avoid the issue that exact matching the raw trade mark text would miss many equivalent trade marks due to minor text differences. We also remove any applications which do not share Nice classification numbers with any other applications in the same block. The procedure aims to maximize the collection of similar trade marks into the same block while avoiding the generation of large, non-specific blocks which would contain many false positive associations and increase computation time for the neural network stage of the linking algorithm.

Following this blocking process, randomly sampling within-block TM-TM pairs and visually checking the accuracy of those matches indicates that approximately 40% of candidate positive links are false positives. To further reduce this false positive proportion, we trained a neural network machine learning algorithm to remove as many false positive links as possible, while retaining true positive links.

Neural network algorithm

The neural network linking algorithm is based on an adaptation of a previous inventor name disambiguation algorithm introduced by Petrie and Julius (2019).17 The

17 The Petrie and Julius (2019) classification algorithm obtained highly accurate results (F1 Score: 99.09%, precision: 99.41%, recall: 98.76%), outperforming the previous world standard (Li et al. 2014; Ventura et al. 2015; Kim et al. 2016; Morrison et al. 2017; Yang et al. 2017).

This article is protected by copyright. All rights reserved.
algorithm processes a single pair of records at a time, classifying the record pair as either matched (equivalent TMs) or non-matched (not equivalent TMs). This requires that text-based record data be converted into a 2D colour image representation of that text. A modified version of the “AlexNet” neural network (Krizhevsky et al. 2012) is then trained to perform the pairwise match/non-match classification. Petrie and Julius (2019) provide further details on the inventor name disambiguation version of the neural network linking algorithm.

Applying the neural network linking algorithm to trade marks requires training the network on a sub-sample of labelled TM-TM pairs. As described previously in Petrie et al. (2019), we use a labelled sub-sample which includes a set of true positive links from the Madrid Protocol, and true negative links from a random sample of any within-block TM-TM pairs which have different filing jurisdictions, very different filing dates (over 20 years), and non-identical applicant names. We use this sub-sample of labelled TM-TM pairs to train the neural network to identify whether the image representation of a given TM-TM pair corresponds to an equivalent pair, and then deploy the trained network to classify each within-block TM-TM pair as either matched (equivalent TMs) or non-matched (not equivalent TMs).

Obtaining single firm trade mark families

To separate cases of multiple firms applying for the same trade mark, we require that all linked trade mark applications share an applicant with one or more equivalent trade marks in the same family. We do this by requiring that each application's applicant name has a high degree of string similarity to the applicant name of one or more trade marks in the same family group, as described previously in Petrie et al. (2019). We remove any applications that do not meet this requirement and assign them to a different family ID. Note that instances of multiple different firms applying for the same trade mark or very similar trade marks could potentially indicate squatting or competition for very similar marks, therefore trade mark groups generated prior to requiring within-group firm similarity could potentially be used to investigate these processes. However, we do not investigate such research questions in this work, focusing instead on trade mark families belonging to the same firm.

The accuracy of the linking algorithm was estimated by manually assessing a random sample of asserted positive links, with 95% of those links being true positives and 5%
being false positives (Petrie et al., 2019). Also, some TM-TM pairs are known to be linked a priori due to shared international registration number (via the Madrid Protocol), and the linking algorithm recalls approximately 92% of a priori known links. A copy of TM-Link may be found here https://www.tmlink.net.au/.

DESCRIPTIVE ANALYSES OF TM-LINK

Potential use of TM-Link

Aside from Baroncelli, Fink and Javorcik (2005), surprisingly little is known about the nature of trade mark filings abroad and the extent to which firms are engaging in international trade mark registration for their brands. The TM-Link database we constructed can assist the literature by providing firm-level information for the first time on the incidence, timing and extent of trade marking activity across multiple jurisdictions. TM-Link can provide a clearer glimpse into international trade mark activity via linked national office trade mark filings and open new research possibilities. For example, TM-Link could help to identify trade mark squatting on an international level, assist with identifying prospective exporters, especially firms entering global value chains, and aid analysis of strategic branding and marketing (Petrie et al. 2019).

A range of important research and policy questions could potentially be addressed, including: Are firms producing higher quality products more likely to apply for international trade marks, not so much to permit exports or foreign direct investment, but to protect their reputation abroad from squatters and imitators? Are such internationally engaged firms also more likely to create more differentiated products, as indicted by a proliferation of trade marks? What is the role of economies of scale and scope in this decision?

TM-Link not only groups multi-office trade marks into families, but also collates similar intra-office marks into a common family. These intra-office marks, which usually evolve from a single core mark, may represent a product variation or a new evolved product. Alternatively, firms may seek a thicket of marks around the core mark in order to protect the latter from look-a-likes. Although marks that remain unused are vulnerable to removal after a few years (depending on the rules of the jurisdiction), we have no evidence that they are removed from the trade mark register.

This article is protected by copyright. All rights reserved.
Unused marks may thereby continue to operate as a barrier, for better or worse, for similar marks in the market. In contrast to the other offices in our (current) database, the US has an *ex officio* removal for non-use process. If the registrant cannot provide evidence of use on all the goods/services claimed 7 years after registration, the office will remove the trade mark.

When linked to firm-level accounting and corporate datasets, TM-Link has the potential to enable further progress toward answering these questions. In addition, the data can provide more nuanced descriptive analysis on whether international trademarking varies by industry, firm size, patenting activity, corporate type and regional location.

Growth in single- and multi-jurisdiction applications

According to the TM-Link database, multi-jurisdiction applications for American, Australian and New Zealand owned firms mimic single jurisdiction applications over time. Figure 1 shows these two types of trade mark applications for each applicant country with multi-jurisdiction applications measured on the left-hand side and single-jurisdiction applications measured on the right-hand side. Although we have data on trade marks owned by over 200 countries, we only present those owned by firms whose address is in the USA, Canada, Australia and New Zealand. These four countries show strong upward trends in the number of applications with spikes. The dot.com bubble, which occurred in the lead up to 2000, is apparent in the US, Australia and Canada for both single and multi-office applications. There appears to be only a limited multi-office bubble in New Zealand. There also appears to be a downturn in both single and multi-jurisdiction applications at around the time of the global financial crisis in 2008, regardless of the owner country.
Note: * Country of owner is defined as the address given on the first trade mark filed for each family within our dataset of five jurisdictions.

Figure 1: Trend in single- and multi-jurisdiction trade mark applications by country of owner, 1990 to 2012.

filing a trade mark between 1990 and 2012) in the TM-Link database. There were 1,781,258 American trade mark-active firms, and of these 95.0 per cent filed in the United States Patent and Trademark Office (USPTO); 4.9 per cent in the Canadian Intellectual Property Office (CIPO) just over 2 per cent at IP Australia and the European Union Intellectual Property Office (EUIPO). Canadian firms are the least likely to file at their home office (80.3 per cent) with nearly a quarter filing at the USPTO. Among Australian firms, 92.5 per cent filed at IP Australia with the USPTO being the next most popular office followed by Intellectual Property Office of New Zealand (IPONZ). New Zealand firms are second most likely to file at IP Australia after IPONZ.

This article is protected by copyright. All rights reserved.
Table 1: Counts of trade mark active firms by country of owner* and office applied, 1990-2012.

<table>
<thead>
<tr>
<th>Jurisdiction</th>
<th>USA</th>
<th>Canada</th>
<th>Australia</th>
<th>New Zealand</th>
<th>Other*</th>
<th>%</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>USPTO</td>
<td>1,691,312</td>
<td>95.0</td>
<td>55,323</td>
<td>17,270</td>
<td>3,392</td>
<td>5.1</td>
<td>271,103</td>
</tr>
<tr>
<td>CIPO</td>
<td>86,517</td>
<td>4.9</td>
<td>171,946</td>
<td>80.3</td>
<td>4,141</td>
<td>1.4</td>
<td>72,662</td>
</tr>
<tr>
<td>IP Aust</td>
<td>36,908</td>
<td>2.1</td>
<td>2,845</td>
<td>1.3</td>
<td>267,147</td>
<td>92.5</td>
<td>6,376</td>
</tr>
<tr>
<td>IPONZ</td>
<td>14,393</td>
<td>0.8</td>
<td>1,130</td>
<td>0.5</td>
<td>12,642</td>
<td>4.4</td>
<td>22,198</td>
</tr>
<tr>
<td>EUIPO</td>
<td>41,023</td>
<td>2.3</td>
<td>4,692</td>
<td>2.2</td>
<td>3,008</td>
<td>1.0</td>
<td>275,087</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1,781,258</td>
<td>100.0</td>
<td>214,206</td>
<td>100.0</td>
<td>288,718</td>
<td>100.0</td>
<td>67,050</td>
</tr>
</tbody>
</table>

Note: * Country of owner is defined as the address given on the first trade mark filed for each family within our dataset of five jurisdictions. The total does not sum to 100.0 as firms can file in multiple jurisdictions.

Not all applicants apply to their country of residence first. Filing overseas can be part of the firms marketing and appropriation strategy. According to Table 2, at least one in four firms file in a jurisdiction which is not the address they put on their first application. There is a two-way relation happening. American and Canadian firms are most often likely to choose each other’s office as the first office (after their own office), and the same is true for Australian and New Zealand.
Table 2: Multi-jurisdiction trade marks by country of owner* and first office applied, 1990-2012.

<table>
<thead>
<tr>
<th>Jurisdiction of first filing</th>
<th>USA</th>
<th>Canada</th>
<th>Australia</th>
<th>New Zealand</th>
<th>Other*</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>USPTO</td>
<td>171,208</td>
<td>8,570</td>
<td>2,082</td>
<td>444</td>
<td>64,767</td>
<td>29.0</td>
</tr>
<tr>
<td>CIPO</td>
<td>15,317</td>
<td>37,152</td>
<td>363</td>
<td>78</td>
<td>21,768</td>
<td>9.8</td>
</tr>
<tr>
<td>IP Aust</td>
<td>9,618</td>
<td>494</td>
<td>27,201</td>
<td>1,950</td>
<td>34,618</td>
<td>15.5</td>
</tr>
<tr>
<td>IPONZ</td>
<td>6,011</td>
<td>245</td>
<td>4,329</td>
<td>7,250</td>
<td>11,610</td>
<td>5.2</td>
</tr>
<tr>
<td>EUPO</td>
<td>12,133</td>
<td>770</td>
<td>508</td>
<td>202</td>
<td>90,417</td>
<td>40.5</td>
</tr>
</tbody>
</table>

TOTAL | 214,287 | 47,231 | 34,483 | 9,924 | 223,180 | 100 |

Note: * Country of owner is defined as the address given on the first trade mark filed for each family within our dataset of five jurisdictions.

Approximately half of all multi-office trade mark families are filed within the 6-month limit for recognition of legal priority, as shown in Table 3. The exception are applications that were filed first at CIPO. Our preliminary inspection of the data shows that the percentage of multi-office trade mark pursing the Madrid route is low, as shown in Table 4. In 2013, when the US, Australia and New Zealand were established participants of the Madrid protocol, the percentage of domestic firms, with an international family, using this route was 15.8 per cent for Australia, 12.3 per cent for New Zealand and 7.8 per cent for the US. Canada was not a member within the window of our dataset.

Table 3: Length of time (days) between first and last filing in the multi-jurisdiction trade mark family, by first office applied and sample percentile, 1990-2012.

<table>
<thead>
<tr>
<th>Jurisdiction of first filing</th>
<th>SAMPLE PERCENTILE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
</tr>
<tr>
<td>USPTO</td>
<td>241,335</td>
</tr>
<tr>
<td>CIPO</td>
<td>74,758</td>
</tr>
<tr>
<td>IP Aust</td>
<td>71,563</td>
</tr>
<tr>
<td>IPONZ</td>
<td>29,486</td>
</tr>
<tr>
<td>EUPO</td>
<td>104,377</td>
</tr>
</tbody>
</table>

This article is protected by copyright. All rights reserved.

<table>
<thead>
<tr>
<th>Country of Owner*</th>
<th>Number of Madrid applications</th>
<th>Percentage of multi-office applications using Madrid</th>
</tr>
</thead>
<tbody>
<tr>
<td>US</td>
<td>3,499</td>
<td>7.8</td>
</tr>
<tr>
<td>AU</td>
<td>976</td>
<td>15.8</td>
</tr>
<tr>
<td>NZ</td>
<td>215</td>
<td>12.3</td>
</tr>
<tr>
<td>OT*</td>
<td>14,964</td>
<td>31.5</td>
</tr>
</tbody>
</table>

Note: * This is a biased sample of ‘Other’ country owners as it does not include applications to offices other than the 5 offices under consideration. Country of owner is defined as the address given on the first trade mark filed for each family within our dataset of five jurisdictions.

The median time between first and last filing in the family varies by Nice class, as shown in Appendix Table A1. Although most classes have a median lag of less than the 182 days (the maximum allowed for legal priority recognition), there are notable exceptions. These consist of Classes 14 (precious metals), 18 (leather), 21 (kitchen utensils), 22 (rope), 24 (textiles); 25 (clothing); 26 (lace); 27 (carpets); 28 (games); 29 (meat etc); 30 (coffee etc); 31 (raw foodstuff); 32 (beverages); 33 (alcoholic beverages); 34 (tobacco); 35 (office functions); and 43 (hospitality).

Global trade marking and economic performance

It is not the intention here to undertake a definitive study on the link between global trade marking and economic performance, but to reveal the outline of what global trade mark data can say about this topic. Table 5 presents some basic data on the ratio of exports to GDP and the ratio of multi-nation to all trade marks for the four countries in the TM-Link database. A multi-jurisdiction trade mark family contains equivalent marks filed in two or more jurisdictions (out of the sample of five jurisdictions). We have classified each family by the country-of-origin of the first filed mark.

Table 5 shows that between 1990 and 2012, New Zealand and Canada both had the highest rate of exports to GDP and the highest rate of multi-nation trade marks to all trade marks. We find different patterns if we look at rates of growth, as shown in
Table 6. Over the same period, the USA had the fastest growth in both exports and exports relative to GDP but the slowest growth in relative multi-nation trade marks. Canada had the fastest growth in relative multi-nation trade marks (last column).

Table 5: Average annual level, 1990 to 2012

<table>
<thead>
<tr>
<th>Country</th>
<th>GDP ($m)</th>
<th>Exports ($m)</th>
<th>(b)/(a) %</th>
<th>All trade mark app</th>
<th>Multi-nation trade mark app</th>
<th>(d)/(c) %</th>
</tr>
</thead>
<tbody>
<tr>
<td>USA (USD 2012 prices)</td>
<td>13,001,758.2</td>
<td>1,362,428.9</td>
<td>10.5</td>
<td>169,430.2</td>
<td>6,522.3</td>
<td>3.8</td>
</tr>
<tr>
<td>Canada (CAD 2007 prices)</td>
<td>1,321,932.2</td>
<td>424,489.0</td>
<td>32.1</td>
<td>20,654.1</td>
<td>1,653.7</td>
<td>8.0</td>
</tr>
<tr>
<td>Australia (AUD 2015 prices)</td>
<td>1,115,165.3</td>
<td>179,626.8</td>
<td>16.1</td>
<td>25,227.3</td>
<td>1,247.9</td>
<td>4.9</td>
</tr>
<tr>
<td>New Zealand (NZD 2009 prices)</td>
<td>157,437.3</td>
<td>44,104.9</td>
<td>28.0</td>
<td>481.5</td>
<td>105.3</td>
<td>21.9</td>
</tr>
</tbody>
</table>

Source: OECDStats and TM-Link.

Table 6: Average annual growth rates, percentage, 1990 to 2012

<table>
<thead>
<tr>
<th>Country</th>
<th>GDP (%a)</th>
<th>Exports (%b)</th>
<th>(b)/(a) %</th>
<th>All trade mark app</th>
<th>Multi-nation trade mark app</th>
<th>(d)/(c) %</th>
</tr>
</thead>
<tbody>
<tr>
<td>USA (USD 2012 prices)</td>
<td>2.7</td>
<td>5.0</td>
<td>2.3</td>
<td>4.2</td>
<td>4.0</td>
<td>-0.2</td>
</tr>
<tr>
<td>Canada (CAD 2007 prices)</td>
<td>2.7</td>
<td>3.7</td>
<td>1.0</td>
<td>2.4</td>
<td>6.5</td>
<td>4.1</td>
</tr>
<tr>
<td>Australia (AUD 2015 prices)</td>
<td>3.4</td>
<td>4.4</td>
<td>1.0</td>
<td>6.9</td>
<td>6.8</td>
<td>-0.1</td>
</tr>
<tr>
<td>New Zealand (NZD 2009 prices)</td>
<td>3.0</td>
<td>3.9</td>
<td>0.9</td>
<td>5.3</td>
<td>7.9</td>
<td>2.6</td>
</tr>
</tbody>
</table>

Source: OECDStats and TM-Link.

CONCLUSION

Internationally linked trade mark data can reveal new information about the export, investment and marketing strategies of firms. For the first time, a database18 of trade mark equivalents has been constructed using data from the USA, Canada, Australia,

18 https://www.tmlink.net.au/

This article is protected by copyright. All rights reserved.
New Zealand and the European Union, and we have released the database as an open tool for researchers and policy makers.

We found that at least one in four firms file in a jurisdiction which is not the address they put on their first application. Furthermore, American and Canadian firms are most often likely to choose each other’s office as the first office (after their own office), and the same is true for Australian and New Zealand firms. We also found that countries with higher rates of exports relative to GDP seemed to have higher rates of multi-nation trade marks to all trade marks, but further investigation is required to investigate potential links between global trade marking and economic performance.

Going forward, the TM-Link team is in the process of making further improvements in reducing the rate of false positive matches, integrating new offices’ data into the database and introducing processes to make the data more timely.

REFERENCES

This article is protected by copyright. All rights reserved.

Castaldi, C. and Dosso, M. 2018, From R&D to market: Using trademarks to capture the market capability of top R&D investors, JRC working papers on Corporate R&D and Innovation no. 01/2018. Brussels: Joint Research Centre.

This article is protected by copyright. All rights reserved.

This article is protected by copyright. All rights reserved.

This article is protected by copyright. All rights reserved.
Li, Q. and Deng, P. 2017, From international new ventures to MNCs: Crossing the chasm effect on internationalization paths. *Journal of Business Research*, vol. 70, pp. 92–100.

This article is protected by copyright. All rights reserved.

APPENDIX A: INTERNATIONAL REGISTRATION

International cooperation primarily takes the form of international agreements to harmonise trade mark law in jurisdictions. Harmonisation involves minimum standards in administration, enforcement and remedies for intellectual property rights.

This article is protected by copyright. All rights reserved.
The purpose is to reduce the possibility of discrimination against foreign nationals and disparities in protection across jurisdictions. The Paris Convention for the Protection of Industrial Property is the most well-known agreement providing national treatment (which means national offices must treat foreign applicants on an equal basis with local applicants). The Paris Convention provides for a six-month right of priority for applicants filing internationally. This allows applicants to retain the filing date of their domestic application if they claim a subsequent application within six-months of that date in a country that is a signatory of the Convention.

The *Agreement on Trade-Related Aspects of Intellectual Property Rights* (TRIPS) sets the minimum standards for trade mark protection providing for procedures and remedies to be implemented in national laws on, *inter alia*, trade mark enforcement. Such standards allow firms to expand their brands with confidence that others will not file speculative applications for trade marks and seek enforcement where there is dishonest use of a similar mark.

Alongside these mechanisms is the supernational registration systems that coexist alongside national offices. The European Union Intellectual Property Office, the African Intellectual Property Organisation and the African Regional Industrial Property Organisation, for example, provide registration systems where applicants can submit a single application to register a trade mark and obtain simultaneous protection in multiple jurisdictions.

APPENDIX

Table A1: Multi-office trade marks by length of time (days) between first and last filing in the family, by Nice class, 1990-2012.

<table>
<thead>
<tr>
<th>Nice class</th>
<th>Number of applications</th>
<th>p10</th>
<th>p50</th>
<th>p90</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>224,797</td>
<td>1</td>
<td>179</td>
<td>3086</td>
</tr>
<tr>
<td>2</td>
<td>212,375</td>
<td>1</td>
<td>180</td>
<td>3156</td>
</tr>
<tr>
<td>3</td>
<td>205,565</td>
<td>1</td>
<td>181</td>
<td>3052</td>
</tr>
<tr>
<td>4</td>
<td>149,351</td>
<td>2</td>
<td>180</td>
<td>2954</td>
</tr>
<tr>
<td>5</td>
<td>167,441</td>
<td>2</td>
<td>182</td>
<td>3163</td>
</tr>
<tr>
<td>6</td>
<td>94,026</td>
<td>2</td>
<td>181</td>
<td>3218</td>
</tr>
</tbody>
</table>

This article is protected by copyright. All rights reserved.
<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>58,576</td>
<td>1</td>
<td>177</td>
<td>3338</td>
</tr>
<tr>
<td>8</td>
<td>81,075</td>
<td>1</td>
<td>181</td>
<td>3134</td>
</tr>
<tr>
<td>9</td>
<td>183,113</td>
<td>1</td>
<td>176</td>
<td>2864</td>
</tr>
<tr>
<td>10</td>
<td>31,326</td>
<td>1</td>
<td>178</td>
<td>2896</td>
</tr>
<tr>
<td>11</td>
<td>26,845</td>
<td>1</td>
<td>176</td>
<td>3364</td>
</tr>
<tr>
<td>12</td>
<td>23,254</td>
<td>1</td>
<td>179</td>
<td>3628</td>
</tr>
<tr>
<td>13</td>
<td>2,010</td>
<td>2</td>
<td>182</td>
<td>3928</td>
</tr>
<tr>
<td>14</td>
<td>16,348</td>
<td>2</td>
<td>254</td>
<td>4023</td>
</tr>
<tr>
<td>15</td>
<td>2,198</td>
<td>1</td>
<td>185</td>
<td>4268</td>
</tr>
<tr>
<td>16</td>
<td>55,723</td>
<td>2</td>
<td>181</td>
<td>3318</td>
</tr>
<tr>
<td>17</td>
<td>11,622</td>
<td>1</td>
<td>180</td>
<td>3622</td>
</tr>
<tr>
<td>18</td>
<td>21,415</td>
<td>2</td>
<td>359</td>
<td>4183</td>
</tr>
<tr>
<td>19</td>
<td>13,840</td>
<td>1</td>
<td>179</td>
<td>3352</td>
</tr>
<tr>
<td>20</td>
<td>21,347</td>
<td>2</td>
<td>182</td>
<td>3696</td>
</tr>
<tr>
<td>21</td>
<td>20,400</td>
<td>2</td>
<td>207</td>
<td>3815</td>
</tr>
<tr>
<td>22</td>
<td>4,395</td>
<td>2</td>
<td>236</td>
<td>4189</td>
</tr>
<tr>
<td>23</td>
<td>1,872</td>
<td>1</td>
<td>176</td>
<td>3628</td>
</tr>
<tr>
<td>24</td>
<td>13,054</td>
<td>3</td>
<td>244</td>
<td>4088</td>
</tr>
<tr>
<td>25</td>
<td>50,265</td>
<td>2</td>
<td>264</td>
<td>3762</td>
</tr>
<tr>
<td>26</td>
<td>4,848</td>
<td>3</td>
<td>295</td>
<td>4266</td>
</tr>
<tr>
<td>27</td>
<td>4,916</td>
<td>2</td>
<td>222</td>
<td>4367</td>
</tr>
<tr>
<td>28</td>
<td>34,550</td>
<td>1</td>
<td>180</td>
<td>3271</td>
</tr>
<tr>
<td>29</td>
<td>17,372</td>
<td>2</td>
<td>242</td>
<td>3996</td>
</tr>
<tr>
<td>30</td>
<td>25,325</td>
<td>1</td>
<td>215</td>
<td>3893</td>
</tr>
<tr>
<td>31</td>
<td>10,566</td>
<td>2</td>
<td>186</td>
<td>3643</td>
</tr>
<tr>
<td>32</td>
<td>14,309</td>
<td>2</td>
<td>245</td>
<td>3859</td>
</tr>
<tr>
<td>33</td>
<td>16,928</td>
<td>1</td>
<td>225</td>
<td>3616</td>
</tr>
<tr>
<td>34</td>
<td>3,902</td>
<td>2</td>
<td>324</td>
<td>4318</td>
</tr>
<tr>
<td>35</td>
<td>71,423</td>
<td>2</td>
<td>181</td>
<td>3018</td>
</tr>
</tbody>
</table>

This article is protected by copyright. All rights reserved.
<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
<td>27,472</td>
<td>2</td>
<td>180</td>
<td>3062</td>
</tr>
<tr>
<td>37</td>
<td>20,826</td>
<td>1</td>
<td>181</td>
<td>3306</td>
</tr>
<tr>
<td>38</td>
<td>28,718</td>
<td>1</td>
<td>174</td>
<td>2403</td>
</tr>
<tr>
<td>39</td>
<td>15,492</td>
<td>2</td>
<td>182</td>
<td>3371</td>
</tr>
<tr>
<td>40</td>
<td>11,900</td>
<td>2</td>
<td>179</td>
<td>2978</td>
</tr>
<tr>
<td>41</td>
<td>54,932</td>
<td>2</td>
<td>181</td>
<td>2958</td>
</tr>
<tr>
<td>42</td>
<td>72,465</td>
<td>2</td>
<td>179</td>
<td>2912</td>
</tr>
<tr>
<td>43</td>
<td>10,644</td>
<td>2</td>
<td>226</td>
<td>3627</td>
</tr>
<tr>
<td>44</td>
<td>12,741</td>
<td>2</td>
<td>182</td>
<td>2786</td>
</tr>
<tr>
<td>45</td>
<td>9,397</td>
<td>2</td>
<td>181</td>
<td>2879</td>
</tr>
</tbody>
</table>
Minerva Access is the Institutional Repository of The University of Melbourne

Author/s:
Petrie, S; Adams, M; Mitra-Kahn, B; Johnson, M; Thomson, R; Jensen, P; Palangkaraya, A; Webster, E

Title:
TM-Link: An Internationally Linked Trademark Database

Date:
2020-06-01

Citation:

Persistent Link:
http://hdl.handle.net/11343/276879