Wolbachia-induced Apoptosis Associated with Increased Fecundity in Laodelphax striatellus (Hemiptera: Delphacidae)

Yan Guo, Ary A. Hoffmann, Xiao-Qin Xu, Xu Zhang, Hai-Jian Huang, Jia-Fei Ju, Jun-Tao Gong and Xiao Yue Hong

*a, Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
b, School of BioSciences, Bio21 Institute, The University of Melbourne, Victoria 3010, Australia

*Corresponding author Tel & Fax: 0086-25-84395339.
E-mail address: xyhong@njau.edu.cn

Running title: Wolbachia-induced apoptosis in rice planthopper
Abstract

Wolbachia influence the fitness of their invertebrate hosts. They have effects on reproductive incompatibility and egg production. Although the former are well characterized, the mechanistic basis of the latter is unclear. Here, we investigate whether apoptosis, which has been implicated in fecundity in model insects, influences the interaction between fecundity and Wolbachia in the planthopper, Laodelphax striatellus. Wolbachia-infected females produced about 30% more eggs than uninfected females. We used TUNEL staining to visualize apoptosis. Microscopic observations indicated that the Wolbachia strain wStri increased the number of ovarioles that contained apoptotic nurse cells in both young and aged adult females. The frequency of apoptosis was much higher in the infected females. The increased fecundity appeared to be due to apoptosis of nurse cells, which provides nutrients to the growing oocytes. In addition, cell apoptosis inhibition by caspase mRNA interference (RNAi) in Wolbachia infected L. striatellus markedly decreased egg numbers. Together, these data suggest that wStri might enhance fecundity by increasing the number of apoptotic cells in the ovaries in a caspase-dependent manner. Our findings establish a link between Wolbachia-induced apoptosis and egg production effects mediated by Wolbachia, although the way that the endosymbiont influences caspase levels remains to be determined.

Keywords: Wolbachia, Laodelphax striatellus, apoptosis, TUNEL, caspase, RNAi

Introduction

Wolbachia are intracellular, maternally inherited bacteria that have a wide range of effects on host physiology and reproduction. As well as causing effects on hosts that enhance their spread, like cytoplasmic incompatibility (CI), male-killing, thelytokous parthenogenesis, and feminization (O'Neill et al., 1997), Wolbachia can affect host
fitness by influencing egg production. There are a range of fecundity effects
associated with Wolbachia, which include fecundity decreases (Stouthamer & Luck,
1993) as well as increases (Fast et al., 2011; Vavre et al., 1999). In fact, Wolbachia
effects on this trait can vary between closely related species (Stouthamer & Luck,
1993; Vavre et al., 1999) and different Wolbachia strains in the same species (Toomey
et al., 2013). Wolbachia effects on egg production can also evolve very rapidly as
documented in Drosophila simulans where the infection initially decreased fecundity
but then evolved to increase it despite an elapsed period of only two decades (Weeks
et al., 2007). While Wolbachia are dependent on their host for survival, and have
developed intimate associations with their hosts, most arthropods can survive and
reproduce with or without their Wolbachia infections. Nevertheless, there are cases
where the host has developed a close dependency on the endosymbiont (Dedeine et al.,
2003).

Although Wolbachia effects on fecundity were discovered several years ago, the
mechanisms involved are still unknown, particularly in cases where the infection
causes an increase in fecundity. One way Wolbachia might increase fecundity is by
influencing apoptosis, a common form of programmed cell death, which regulates cell
elimination in multicellular organisms, is needed in several physiological processes
and has been implicated in egg production rates. Apoptosis is also a classic feature of
female germ line development in both vertebrate and invertebrate species
(Kamalakannan et al., 2015; Landmann et al., 2011; Mpakou et al., 2011; Mpakou et
al., 2006; Nezis et al., 2000). Morphological changes associated with apoptosis
include chromatin and cytoplasm condensation, chromosomal DNA fragmentation,
breaking up of nuclei, and disintegration of the actin cytoskeleton (Mpakou et al.,
2006). One of the roles of apoptosis in insects involves oogenesis. In the anterior
tropharium of the ovariole, a cluster of nurse cells synthesizes all cytoplasmic
products stored in the oocyte and apoptosis of these cells is essential for oocyte
maturation (Mpakou et al., 2011).

The molecular pathways of apoptosis have been examined in several insects
(Kumar & Doumanis, 2000; Xu et al., 2009; Bryant et al., 2008; Liu & Clem, 2011).
The main effectors in the apoptotic pathway are cysteine proteases called caspases
Caspases are present as inactive pro-enzyme precursors (initiation caspases) in living cells; however, once they receive an apoptotic signal, they undergo proteolytic processing and are converted into their active forms (effector caspases), which triggers the dismantling of intracellular components. Initiator and effector caspases are the core components in the apoptosis pathway. So far, apoptosis-related caspases have been analyzed in only a few insects (Mpakou et al., 2011; Mpakou et al., 2006; Nezis et al., 2000; Kumar & Doumanis, 2000). In Drosophila, seven caspase genes have been identified, including four effector caspases (Dcp-1, Drice, Damm, and Decay) which match caspase-3, the major mammalian effector caspase (Peterson et al., 2003). In Aedes aegypti, eleven caspases have been annotated, including two effector caspases like caspase-3 (Bryant et al., 2008).

The small brown planthopper, Laodelphax striatellus, is 100% infected with Wolbachia strain wStri in China (Zhang et al., 2013). Wolbachia are abundant in L. striatellus ovarian cells where they are vertically transmitted. Wolbachia cause high CI levels in L. striatellus (Noda et al., 2001). The influence of Wolbachia on host oogenesis and its associated processes is unknown, although a previous paper (Cui et al., 1998) suggests an enhancement of fecundity associated with this infection.

We therefore tested the impact of Wolbachia on fecundity, and investigated whether changes in infected ovaries were associated with apoptosis. We identified caspase genes in L. striatellus, and inhibited caspase mRNA expression by RNAi to test for impacts on fecundity. Our results demonstrate an increase in fecundity in Wolbachia-infected L. striatellus, and indicate that caspase-mediated apoptosis plays a role in this process.

Results

Effects of Wolbachia on L. striatellus fitness

Egg production in infected females (137 ± 7 (mean ± SE) eggs per female) was significantly greater ($P < 0.001$, two-tailed t test) than in uninfected females (103 ± 5 eggs per female) (Fig. 1A). Additionally, the number of offspring that reached maturity was greater for infected females (70 ± 3 per female) than for uninfected...
females (58 ± 3) (Fig. 1B). However, *Wolbachia* had no significant effect on either the proportion of offspring that were females (Fig. 1C, generalized linear mixed model: $z = 0.92, P = 0.36$) or on the proportion of eggs that hatched (Fig. 1D, generalized linear mixed model: $z = 0.33, P = 0.74$). *Wolbachia* infection also did not significantly affect development time (Fig. 1E, Cox proportional hazards mixed model: $z = 1.59, P = 0.11$) or adult female longevity (Fig. 1F, Cox proportional hazards mixed model: $z = 0.32, P = 0.75$).

Effect of Wolbachia on apoptosis in ovaries

We found that *L. striatellus* ovaries are of the telotrophic meristic type, with 11–17 short ovarioles in each of the two ovaries (Fig. 2A). The ovarioles have three parts: the terminal filament, tropharium, and vitellarium (Fig. 2B).

TUNEL staining (green fluorescence) revealed no signs of apoptosis in the vitellarium but revealed extensive apoptosis in the nurse cells of the tropharium in both uninfected and infected ovarioles (Figs. 3A-3D). Of 991 ovarioles whole-tropharias that were examined in four-day-old uninfected and infected adult females, 92 (9.3%) were undergoing apoptosis (Figs. 3A, 3B, and 4). The percentage of tropharia that were TUNEL-positive in infected females (11.8%) was somewhat higher than in uninfected females (7.5%) (Fig. 4). These percentages increased proportionately in 10-day-old adults (Fig. 4). As expected, no *Wolbachia* were observed in the ovarioles of uninfected females (Figs. 3A and 3C), and many *Wolbachia* were observed in the ovarioles of infected females (Figs. 3B and 3D). Apoptosis was more prominent in the tropharia of 4-day-old infected females than in uninfected females as shown by TUNEL and FISH staining (Fig. 4).

Though 4-day-old *L. striatellus* females have the strongest fecundity, they nearly lose most of reproductive ability at about 10 days after emergence (Bai et al., 2009; Cui et al., 1998; Noda et al., 2001). At this age, apoptotic nurse cells in the tropharia were present in both uninfected and infected *L. striatellus* ovarioles (Figs. 3C and 3D), but the frequency of apoptosis was significantly higher in infected females ($t = 4.52$, df = 8, $P < 0.01$). In the tropharia of both uninfected and infected ovarioles, the posterior region had bright green spots, indicating the presence of apoptotic cells; while the anterior region had weak punctuated green fluorescence (Figs. 3C and 3D),
red arrowheads) but no signs of DAPI, which were considered as TUNEL-negative. These results indicate that the presence of wStri increases the number of nurse cells undergoing apoptosis not only in ovaries of young females but also in ovaries of females near the end of their reproductive period.

Caspase genes in Wolbachia-induced apoptosis

Fragments of four different caspase genes were found in the L. striatellus transcriptome (Ju et al., 2017). We used PCR, 5' RACE and 3' RACE methods to obtain the full lengths of the four caspase genes (Extended Data File 1). Two genes (Lscaspase-1a MG279146 and Lscaspase-1c MG279148) were highly homologous to each other (Fig. 5A left panel) and shared significant sequence similarities with insect caspase-1s (Figs. 5A left panel, 5B). Two long prodomain-carrying caspase genes were also identified. One (Lscaspase-8 MG279147) shares similar characteristics with the caspase-8 gene in brown planthopper, Nilaparvata lugens (Fig. 5A middle panel), which is the closest species to L. striatellus. The other (Lscaspase-Nc MG279149) has significant sequence identities with the caspase-Nc gene in N. lugens that feature a recruitment domain (CARD) (Fig. 5A right panel). A phylogenetic analysis based on the maximum likelihood method suggested that caspase genes in L. striatellus were related to similar caspase genes in the other planthopper characterized as well as other insect species (Fig. 5B).

The timing of expression of the four caspases and Vg in uninfected and infected female L. striatellus at different times after emergence was examined by RT-qPCR. In 5-day-old females, the expression levels of the four caspase genes and Vg gene were higher in infected females than in uninfected females (Figs. 6A-6E). The particularly high expression levels in infected females on day 5 coincided with a higher Wolbachia density on this day, as shown by the increased copy number of wsp (Fig. 6F). However expression levels were also high later for some genes, suggesting that there is no simple relationship between expression and Wolbachia density, and that there are other ways of triggering caspase/Vg rather than through a density effect in Wolbachia-infected L. striatellus.
Effect of inhibition of caspases mRNA expression

To confirm that apoptosis has a role in oogenesis, we knocked down Ls caspase-specific genes expression using RNAi by microinjecting dsRNA (dscas-) into the L. striatellus with dsGFP as a control. Egg production in dscas- females were significantly decreased than in dsGFP females (Fig. 7). The newly emerged adult ovaries targeted mRNA levels of Ls cas-1a, Ls cas-1c, Ls cas-8 or Ls cas-Nc were greatly reduced by approximately 90, 90, 90, and 80%, respectively; while there were no apparent reductions for non-target genes, indicated that the dsRNA mediated silencing was sequence specific (Fig. 8A-8D). Additionally, the percentage of tropharia that were TUNEL-positive in 4-day-old dscas- adult females was lower than in dsGFP females (Fig. 8E). RNAi microinjection had no significant effect on the Wolbachia density in dscas- ovaries (Fig. 8F). These results indicate that dscas- significantly reduces egg production in Wolbachia-infected L. striatellus.

Discussion

The increased fecundity and number of mature offspring produced by infected L. striatellus is consistent with findings in other invertebrates, including the fruit flies D. mauritiana and D. simulans (Weeks et al., 2007; Fast et al., 2011), as well as a previous report for L. striatellus (Cui et al., 1998). Other findings also point to an interaction between Wolbachia and oogenesis, including the observation that the parasitic wasp Asobara tabida cannot produce mature oocytes without the presence of Wolbachia (Pannebakker et al., 2007), and the observation that removal of Wolbachia from the nematode Brugia malayi disrupted embryogenesis and caused widespread intracellular changes in adults (Landmann et al., 2011). The higher egg and offspring production suggests that Wolbachia can increase the fitness of L. striatellus, reflecting a possible mutualistic association between Wolbachia and L. striatellus. Because Wolbachia are maternally transmitted, the host-bacteria partnership favors infected females. This fitness effect of Wolbachia on host reproduction should increase its prevalence in the population, which could contribute to the widespread distribution.
Apoptosis has previously been connected to egg development and can be influenced by ectoparasites and symbionts. Apoptosis of ovarian nurse cells has been implicated in fecundity of the ladybird beetle, *Adalia bipunctata*, and is considered as an essential component of normal female germline development (Mpakou *et al.*, 2011). Extracellular parasitic worms, such as filarial nematodes, schistosomes, and the cestode *Taenia crassiceps*, can induce apoptosis in host cells (Jame & Green, 2004). Bacterial pathogens such as *Neisseria*, *Chlamydia*, and *Legionella pneumophila* can either block or induce apoptosis in host cells, depending on the stage of infection (Faherty & Maurelli, 2008; Lancellotti, 2009). Apoptosis might even have a symbiotic origin (Kroemer, 1997).

In *D. melanogaster*, *Wolbachia* increased the frequency of cyst cell apoptosis in ovarian cells, but it was unclear how apoptosis affected reproduction (Zhukova & Kiseleva, 2012). In the present study, *Wolbachia*-infected *L. striatellus* female ovaries contained apoptotic nurse cells. Thus, *Wolbachia* appears to have the potential through apoptosis of nurse cells to continuously provide nutrition for oogenesis, increasing reproduction in the host.

Although we found evidence that *Wolbachia* triggered apoptosis, the infection can also inhibit programmed cell death (PCD) in the host germarium of some insects (Fast *et al.*, 2011; Pannebakker *et al.*, 2007). In these insects, intracellular bacteria may control host cell death by a different method. Apart from apoptotic PCD, there are two other major types of PCD: lysosomal and cytoplasmic cell death (Bröker *et al.*, 2005; Sperandio *et al.*, 2000). To achieve a rapid and efficient clearance of defunct cells, these programs usually operate synergistically (Mpakou *et al.*, 2011). Perhaps *Wolbachia* in *D. mauritiana* germarium increase apoptosis, while decreasing lysosomal and cytoplasmic cell death at the same time. The role of different types of PCD mechanisms in *Wolbachia*-infected *D. mauritiana* oocyte development and ovary maturation warrants further study, as well as the role of these processes in the dynamic evolutionary interactions between *Wolbachia* which rapidly shifted a fecundity deficit (Hoffmann *et al.*, 1990) into a fecundity advantage (Weeks *et al.*, 2007).

Four caspase homolog genes were identified in *L. striatellus*, including two genes (*Lscaspase-1a* and *Lscaspase-1c*) with similarities to insect caspase-1s. Caspase-1s...
proteins are effector death proteases thought to execute apoptosis in insects, which are most closely related to the mammalian apoptotic effectors caspase-3. Two other long prodomain-carrying caspase homolog genes (Lscaspase-8 and Lscaspase-Nc) showed significant sequence similarities with insect caspase-8 and Nedd2-like caspase (Nc), respectively. We speculate that these genes have similar functions with their closest caspase relatives in other insects. Wolbachia increased the expression levels of the four caspase genes in 5-day-old L. striatellus females. The increased caspase mRNAs and Vg mRNA observed in Wolbachia-infected L. striatellus also support the hypothesis that Lscaspase-1a, Lscaspase-1c, Lscaspase-8, and Lscaspase-Nc are critical in Wolbachia-induced apoptosis pathways. Although caspase RNAi in Wolbachia infected L. striatellus markedly decreased egg numbers, the detailed functions of these Lscaspase genes and their interactions in the caspase activation cascades require further elucidation, as does the ways in which the Wolbachia directly affect the expression of these genes.

In our study, we found that there was no simple relationship between caspase genes expression and Wolbachia density in Wolbachia-induced apoptosis. While, no other apoptosis gene was obtained after comparing the apoptosis genes that have been reported with the L. striatellus transcriptome sequences. In apoptosis pathway, there may have some apoptosis inhibitors which function together with caspases in L. striatellus ovaries cell apoptosis as they do in Drosophila (McCall, 2004).

In summary, the present results show that Wolbachia wStri increases the fecundity of L. striatellus. This effect appears at least partly mediated through caspase genes. The resulting fitness benefits are likely to promote the spread of Wolbachia infection and account for its high prevalence, and potentially increase the pest status of L. striatellus through population level effects.

Experimental procedures

Insect maintenance and line production

Two different L. striatellus lines were used: the naturally infected Wolbachia wStri line, which originated from Nanjing, Jiangsu, China, and a tetracycline-cured counterpart. A tetracycline-cured uninfected line was generated by antibiotic treatment of infected insects. Tetracycline hydrochloride solution (0.1%) was added to rice seedlings that were fed to Wolbachia-infected L. striatellus. The treatment lasted two consecutive generations until

This article is protected by copyright. All rights reserved
Wolbachia was not detected by diagnostic PCR. The cured *L. striatellus* were maintained for over 10 generations on antibiotic-free rice seedlings in a laboratory to eliminate any effects of residual tetracycline (Ju *et al.*, 2017). To ensure a similar nuclear background, all uninfected insects treated by tetracycline and infected insects were offspring of one infected pair of *L. striatellus* (Extended Data Fig. 1).

Fitness effects of Wolbachia on *L. striatellus*

To analyze the effect of *Wolbachia* on *L. striatellus*, infected and uninfected lines were scored for fecundity, adult longevity, development time, egg hatch rate, sex ratio, and number of mature offspring. All insects used in the experiments were checked to confirm that intracellular bacteria other than *Wolbachia* were not present using an approach previously described (Koukou *et al.*, 2006; Negri *et al.*, 2006).

For reproduction, 20 newly emerged uninfected and infected *L. striatellus* pairs were randomly selected, and each pair was introduced into a glass beaker (7-cm diameter × 14-cm height) with antibiotic-free rice seedlings. Seedlings were changed every 24 h, and eggs were counted by gently stripping the sheaths under a binocular stereomicroscope. Eggs were counted until the female died, and newly emerged males were supplemented if the original male died before the experiment ended. Then, fecundity and adult longevity were recorded.

At the same time, 20 eggs were randomly selected from each of the 20 uninfected and infected *L. striatellus* pairs. The eggs developed into adults in individual glass tubes with rice seedlings, and their emergence was checked daily until all nymphs completed development. The developmental time of a randomly selected individual of the *F_1* generation was recorded. The eggs that were not selected for observation were left to develop. When the *L. striatellus* *F_1* generation was visible as nymphs, the survival of juveniles was calculated based on the numbers of eggs. All nymphs were kept on rice seedlings until they developed into adults. Then, the sex ratio and number of *F_1* mature offspring were recorded. The experiments were undertaken at 25.0°C and 60% relative humidity, with a 16: 8 h light: dark photoperiod. All experiments that measures fitness traits were replicated four times.

To test the effect of *Wolbachia* on *L. striatellus*, data were analyzed with different tests. Female adult longevity and development time were analyzed using a Cox proportional hazard model in R (version 2.3.0)(Ahmed *et al.*, 2015). We analyzed both the fecundity and amount of mature offspring using a two-tailed *t* test in IBM Statistics SPSS (version 20.0). Both egg hatch rate and sex ratio were treated as ratios and analyzed using generalized linear mixed models with a binomial error structure model. The model parameters were estimated by maximum likelihood in R (version 2.3.0) (Ahmed *et al.*, 2015).

This article is protected by copyright. All rights reserved
Wolbachia was detected in ovarioles by fluorescence in situ hybridization (FISH) as described by Gold et al. (1994). Specific oligonucleotide probes were designed against the 16S rDNA of Wolbachia. Two Wolbachia probes labeled with rhodamine red at the 5′ end were used: W1, 5′-AATCCGGCCGARCCGACCC-3′, and W2, 5′-CTTCTGTGAGTACC-3′.

CATTAC-3′. Ovaries from 4- and 10-day-old adult female L. striatellus were dissected in phosphate buffered saline (PBS) and separated into individual ovarioles. The ovarioles were fixed in 4% formaldehyde solution plus 0.1% Triton X-100 (Sigma) for 15 min, washed twice in PBS for 5 min each, permeabilized with 20 µg/ml DNAse-free proteinase K (Roche Applied Sciences) in 10 mM Tris-HCl pH 7.5 for 10 min at 37°C, preincubated at 50°C in 0.1% SDS, 5 × SSC, 20 mM Tris-HCl, 50% formamide, 250 mg/ml Salmon sperm DNA, and 0.5 × Denhardt’s solution for 1 h, incubated in 10 ng of each probe for 6 h, rinsed in a 2 × SSC wash buffer with 0.1% SDS and 20 mM Tris-HCl twice for 15 min each at 55°C, washed twice in 1 × SSC wash buffer for 15 min each, washed in PBS three times for 10 min each, washed in wash solution for 15 min and double labeled for apoptotic cells by hybridization.

TUNEL assay

TUNEL preferentially labels apoptotic cells relatively late in the apoptotic process (Landmann et al., 2010) and facilitates independent identification of apoptotic cells in the ovaries. The TUNEL reaction and subsequent steps were performed using the Dead End™ Fluorometric TUNEL System kit (Promega) according to the manufacturer’s protocol. Fluorescein-labeled dUTP was used to detect the fragmented genomic DNA at 37°C for 1 h in the dark. Nuclei that contained fragmented DNA and/or denatured cytoplasm of the cells stained green. After hybridization, the ovarioles were washed in PBS and mounted on a glass slide with the DAPI-containing mounting Vectashield (Vector Laboratories). Finally, samples were observed under a Zeiss LSM-710 confocal laser scanning microscope.

To quantify the TUNEL-labeled apoptosis in the tropharium of ovarioles, representative confocal Z stacks were imaged at 0.5 µm intervals. For each ovariole 30 µm thick sections of the tropharium were obtained and projected onto single images. Cells stained with TUNEL and DAPI fluorescences were considered as apoptotic cells. Due to ovaries under staining were difficult to keep integrity, TUNEL-positive tropharia were counted and expressed as a percentage of the examined tropharia. The frequency of apoptotic tropharia was compared between the uninfected and infected females using a two-tailed t test in IBM Statistics SPSS.
Identification of caspase genes

The fragment of caspase genes were searched against the *L. striatellus* transcriptome sequences as developed in a previous study (Huang et al., 2015). The full lengths of the four caspase genes were obtained by 5’ RACE and 3’ RACE methods with the SMARTer® RACE 5’/3’ Kit (Clontech laboratories) following the manufacturer’s instructions (Extended Data File 1). *L. striatellus* caspase genes were aligned with the best-matched homologs of other insect species using ClustalX with multiple alignment parameters.

A phylogenetic tree was constructed by the maximum likelihood (ML) method using proMega 6.06. Caspase gene sequences were aligned using MUSCLE algorithm; large gaps and ambiguous sites were deleted manually. ML analyses were performed using the GTRGAMMAI model in raxmlGUI 1.3. Clade support was assessed using a nonparametric bootstrap with 1000 replicates.

RNA interference (RNAi)

L. striatellus caspase-specific nucleotide sequences were cloned into the pGEM-T Easy vector (Promega) individually. *Aequorea victoria* green fluorescent protein (GFP) was used as a control. The specific primers used to generate DNA templates are shown in Extended Data Table 1. dsRNA was synthesized, as previously described (Huang et al., 2015).

Second instar nymphs of infected *L. striatellus* were used in the RNAi microinjection. Each nymph was anesthetized using carbon dioxide. Approximately 250 ng of dsCas- or dsGFP was microinjected into the thorax of each nymph using the FemtoJet Microinjection System (Eppendorf). Microinjected nymphs were reared under laboratory conditions. Relative silencing efficiency of the ovaries of newly emerged adults was calculated by RT-qPCR. To confirm the effect of dsCaspase on *L. striatellus* females in reproductive period, ovaries from 4-day old dsCas- adult females were dissected to observe TUNEL-positive tropharia under confocal laser scanning microscope and detect *Wolbachia* density by qPCR.

RT-qPCR and qPCR

This article is protected by copyright. All rights reserved
Nearly no egg was laid within 72 h after L. striatellus female eclosion (Cui et al., 1998). While Vg, the precursor of egg yolk protein associated with oviposition capacity, began to be absorbed into ovaries within 12 h after female emergence (Dong et al., 2011). We detected relative caspase mRNA and Vg mRNA levels in ovaries of L. striatellus female that emerged at the first day and every other day (1, 3, 5, 7, 9, 11 days after emergence) by RT-qPCR with the SYBR Primex Ex Tap™ Kit (Takara Biotechnology) following the manufacturer’s instructions. Total RNA was extracted using TRIZOL reagent (Takara) and converted to cDNAs using PrimeScript™ RT reagent Kit with gDNA Eraser (Takara), according to the manufacturer’s instructions. RT-qPCR was performed in 20µl reactions containing 10µl SYBR Primex Ex Tap, 2 µl of diluted cDNA template, 0.4 µl of each primer, 0.4 µl ROX Reference Dye II, 6.8 µl ddH2O, on a 7500 real-time system (Applied Biosystems) using the following procedures: denaturation at 95 °C for 30 s, followed by 40 cycles of amplification (95 °C for 5 s and 60 °C for 34 s). Primers are shown in Extended Data Table 2. The dissociation curve analysis was analyzed for both primer pairs, and all experimental samples had a single sharp peak at the amplicon’s melting temperature. The relative expression levels of caspase and Vg genes were calculated according to the 2^ΔΔCt method (Livak & Schmittgen, 2001) and the actin gene of L. striatellus was used as a housekeeping gene. All the RT-qPCR experiments were repeated three times. All the data were presented as relative mRNA expression (mean ± SD).

Wolbachia density in L. striatellus that emerged at different times was characterized by qPCR as described previously (Lu et al., 2012). Wolbachia genome copy number was determined by qPCR with primers specific for the surface protein (wsp) of wStri (Extended Data Table 2). The copy number of the Wolbachia wsp gene was normalized to that of the host gene actin.

Acknowledgements
This work was supported by a grant-in-aid for Scientific Research (31672035, 31371944, and 31172131) from the National Natural Science Foundation of China. AAH is supported by a Fellowship from the National Health and Medical Research Council. We are very grateful to Professor Horacio Frydman of Boston University,
USA for his valuable comments on the early version of the manuscript. We thank Zhiyong Xi of Michigan State University, USA for his thoughtful suggestions on the research. We thank Xue Xia, Pei-Wen Mo and Peng-Yu Jin of the Department of Entomology, Nanjing Agricultural University, China for help with rearing planthoppers in the laboratory.

Declarations of interest:

None.

References

Zyginidia pullula (Insecta, Hemiptera), a leafhopper with an XX/X0 sex-determination system.

ovarian nurse and follicle cells is regulated independently from DNA fragmentation during

level in two planthopper species, Laodelphax striatellus and Sogatella furcifera. Insect Biochem.

Stouthamer, R., Luck, R. (1993) Influence of microbe-associated parthenogenesis on the fecundity of

Wolbachia-encoded factors control pattern of stem-cell niche tropism in Drosophila ovaries and

that does not induce thelytoky in Trichogramma. Insect Mol. Biol. 8: 67-72.

This article is protected by copyright. All rights reserved

Figure legends

Figure 1. Impact of *Wolbachia* on *L. striatellus* fitness. A: female adult fecundity, B: mature offspring number, C: proportion of offspring females, D: egg hatch rate, E: development time, and F: female adult longevity. Box and whiskers represent data quartiles and ranges, respectively. (**P < 0.01, ***P < 0.001, NS = not significant)**

Figure 2. *L. striatellus* telotrophic meristic ovary. A: Each of the two *L. striatellus* ovaries are composed of 11–17 short ovarioles that open into the bulbous end of the lateral oviducts. B: Previtellogenic ovariole stained with DAPI for DNA (blue). The *L. striatellus* ovariole is composed of a terminal filament on the tip, followed by the egg tube. The tropharium is at the tip of egg tube, which is composed of nurse cells and a trophic core, the vitellarium, just below the tropharium, in which oogenesis is completed. ET: egg tube, LO: lateral oviduct, MO: median oviduct, CP: copulatory pouch, SG: spermathecal gland, TF: terminal filament, Tr: tropharium, Vt: vitellarium.

Figure 3. Visualization of TUNEL- and DAPI-stained *L. striatellus* tropharium cells. Morphology of the structure and organization of the developing tropharia (Tr) from 4-day-old *Wolbachia*-uninfected (A) and -infected (B) female *L. striatellus* stained with TUNEL (green) and DAPI (blue) clearly demonstrates that the TUNEL-labeled cell nuclei lost their normal morphology and were undergoing apoptosis. In aged tropharia (Tr) from 10-day-old *Wolbachia*-uninfected (C) and -infected (D) female *L. striatellus*, apoptosis-specific TUNEL staining also showed copious apoptotic cell nuclei. A large majority of nurse cell nuclei in all examined tropharia (Tr) exhibited a positive and strong staining
pattern. The anterior region of the aged tropharium had punctuated TUNEL fluorescences (red arrowheads) (no DAPI signs), which were considered as TUNEL-negative. Red represents Wolbachia, blue represents L. striatellus DNA, and green represents TUNEL-labeled apoptotic cells.

Figure 4. TUNEL quantification. For each Wolbachia-uninfected and -infected sample, TUNEL-positive tropharia were counted and expressed as a percentage of the examined tropharia. The total number of examined tropharia is indicated in black; bars show the average percentage per experiment ± SEM.

Figure 5. Caspase genes in L. striatellus. (A) Sequence alignment of caspase domains of the deduced L. striatellus caspase proteins. The ClustalX program was used for alignments. The active site histidine, and cysteine residues are boxed. The cleavage sites that generate the large (p20), small (p10) subunit and CARD domain are marked by arrows. Black and gray shades in amino acids indicate the conserved and type-conserved residues, respectively. Left panel: caspas-1; Middle panel: caspas-8; Right panel: caspas-Nc. (B) Phylogenetic analysis used maximum likelihood method with 1000 bootstrap replications. Four caspase genes (arrowheads) belong to the family of cysteine proteases. The caspases fall into three major clusters, caspas-1s, caspas-Ncs and caspas-8s.

Figure 6. Transcript levels of caspases and Vg in ovaries of uninfected and infected L. striatellus females at different times after emergence. (A) caspase-1a; (B) caspase-1c; (C) caspase-8; (D) caspase-Nc; (E) Vg; (F) wsp. The genome copies of Wolbachia wsp were measure by qPCR. The copy number of wsp and mRNA content of caspase genes and Vg gene are expressed as fold change relative to 1-day-old females. Bars show the average fold change per experiment ± SD. * represents a significant difference in transcript levels of caspases and Vg between W- and W+ females on the same day. * P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 0.0001.

Figure 7. Impact of ds cas- on L. striatellus fecundity. The egg production of dscaspase (dscas-1a, dscas-1c, dscas-8, and dscas-Nc) L. striatellus was examined. 20 newly emerged dscas- and dsGFP L. striatellus pairs were randomly selected, and each pair was introduced into a glass beaker with rice seedlings. Seedlings were changed every 24 h, and eggs were counted until the female died. Newly emerged males were supplemented if the original male died before the experiment ended; bar show the average eggs per female ± SD.
Figure 8. The silencing of Lcaspase genes expression in *L. striatellus*. Second instar nymphs were microinjected with each dscaspase (dscas-1a, dscas-1c, dscas-8, and dscas-Nc) individually. Relative silencing efficiency of the newly emerged adult ovaries was calculated by RT-qPCR. Low Lcaspase mRNA was detected in dscas- treated ovaries. (A) dscas-1a; (B) dscas-1c; (C) dscas-8; (D) dscas-Nc. Bars show the average relative transcript level per experiment ± SD. (E) TUNEL-positive tropharia in 4-day-old dscas- adult female ovaries were counted and expressed as a percentage of the examined tropharia. The total number of examined tropharia is indicated in black; bars show the average percentage per experiment ± SEM. (F) The genome copies of *Wolbachia wsp* in 4-day-old dscas- adult female ovaries were measured by qPCR. The copy numbers of *wsp* are expressed as fold change relative to dsGFP females. Bars show the average fold change per experiment ± SD.
Minerva Access is the Institutional Repository of The University of Melbourne

Author/s:
Guo, Y; Hoffmann, AA; Xu, X-Q; Zhang, X; Huang, H-J; Ju, J-F; Gong, J-T; Hong, X-Y

Title:
Wolbachia-induced apoptosis associated with increased fecundity in Laodelphax striatellus (Hemiptera: Delphacidae)

Date:
2018-12-01

Citation:

Persistent Link:
http://hdl.handle.net/11343/284217