Atypical EWSR1 FISH signal patterns in bone and soft tissue tumours:— diagnostic experience with 135 cases

Ana Cristina Vargas1*, Christina Selinger1*, Laveniya Satgunaseelan1,2, Wendy A. Cooper1,3,4, Ruta Gupta1,3, Paul Stalley5,6, Wendy Brown7, Judy Soper7, Julie Schatz7, Richard Boyle5,6,8,9, David M. Thomas11, Martin HN Tattersall3,5, Vivek A. Bhadri3,5, Fiona Maclean2, S. Fiona Bonar2,8,12, Richard A. Scolyer1,3, Rooshdiya Z. Karim1,3, Stanley W. McCarthy1,3, Annabelle Mahar1, Sandra A. O’Toole1,3,11

1Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Camperdown, NSW, 2Douglass Hanly Moir Pathology, Macquarie Park, NSW, 3Sydney Medical School, University of Sydney, NSW, 4School of Medicine, University of Western Sydney, Campbelltown, NSW, 5Chris O’Brien Lifehouse, Camperdown, NSW, 6Orthopaedic Surgery, Royal Prince Alfred Hospital, Camperdown, NSW, 7Radiology/Medical Imaging, Royal Prince Alfred Hospital, 8Macquarie University, North Ryde, NSW, 9The Children’s Hospital, Westmead, NSW, 10North Shore Private Hospital, St Leonards, NSW, 11The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, NSW, 12School of Medicine, Notre Dame University, Sydney, NSW.

* These authors contributed equally.

Corresponding Author:
Sandra A. O’Toole

This is the author manuscript accepted for publication and has undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1111/his.13031

This article is protected by copyright. All rights reserved
Short running title: Atypical signal patterns seen in FISH for EWSR1

Abstract

Aims: Recurrent EWSR1 gene rearrangements characterise a select group of bone and soft tissue tumours. In our routine diagnostic practice with fluorescence in situ hybridisation (FISH), we have occasionally observed EWSR1 gene rearrangements in tumours not classically associated with EWSR1 translocations. This study aimed to review our institutional experience of this phenomenon and also to highlight the occurrence of unusual EWSR1 FISH signals (i.e. 5’ centromeric region or 3’ telomeric region signals) that do not fulfill the published diagnostic criteria for rearrangements.

Methods and Results: Using an EWSR1 break-apart probe, we performed FISH assays on formalin-fixed paraffin embedded tissue sections from 135 bone and soft tissue specimens as part of their routine diagnostic workup. EWSR1 gene rearrangements were identified in 51% of cases, 56% of which also showed an abnormal FISH signal pattern (in addition to classically rearranged signals). However, atypical FISH signals were present in 45% of the non-rearranged cases. In addition, we observed tumours unrelated to those classically described as EWSR1-associated were technically EWSR1 rearranged in 6% of cases. Borderline levels of rearrangement (affecting 10-30% of lesional cells) were present in an additional 17% of these cases.

Conclusions: While our study confirmed that FISH is a sensitive and specific tool in the diagnosis of EWSR1-associated tumours, atypical FISH signals and classical rearrangement in entities other than EWSR1-associated tumours can occur. Therefore, it is essential that the FISH result not be used as an isolated test, but must be evaluated in the context of clinical features, imaging, pathological and immunohistochemical findings.

Keywords

Fluorescent in situ hybridization, EWSR1-associated tumours, rearrangement.
Introduction

The Ewing sarcoma breakpoint region 1 (EWSR1) gene, mapping to chromosome 22q12, is one of the most commonly translocated genes identified by routine diagnostic fluorescence in situ hybridization (FISH) in a wide range of entities1-2. In the diagnostic setting, EWSR1 FISH is mostly used in the differential diagnosis of Ewing sarcoma (ES), Clear cell sarcoma (CCS), Extraskeletal myxoid chondrosarcoma (ESMCS), Desmoplastic small round cell tumour (DSRCT), Angiomatoid fibrous histiocytoma (AFH), Low-grade fibromyxoid sarcoma (LGFMS) and Sclerosing epithelioid fibrosarcoma (SEF)1-2,9,14. Less commonly encountered entities associated with EWSR1 gene fusions include pulmonary myxoid sarcoma7, clear cell sarcoma-like tumour of the gastrointestinal tract8, myoepithelial tumours of the soft tissue9-11, a proportion of salivary gland and odontogenic carcinomas10-14 and even skin adnexal tumours15. Unusual signal patterns detected by FISH for the EWSR1 break-apart probe are poorly described in the bone and soft tissue tumour (BST) literature to date and the contribution of true translocations to such abnormal FISH signals (i.e. gains or losses of signals) have only been alluded to in brief descriptions3,5,16 but have not, to the best of our knowledge, been systematically evaluated in the literature to date. In addition, performance characteristics for normal reference ranges for the interpretation of EWSR1 FISH signals are not well-established and different cut-offs for specific probes might result in false positive or negative results when interpreted in isolation of the clinical and pathological findings.

Royal Prince Alfred Hospital (RPAH) is a tertiary referral center and one of the largest BST treatment centres in the southern hemisphere. Since commencing paraffin-based FISH for the diagnosis of BST tumours in 2010, EWSR1 was performed in 135 cases with classical rearrangements identified in 51% of cases (n=69). During routine clinical practice, we have noted that this assay can occasionally pose challenges in diagnostic interpretation and subsequently also for patient management. Only very limited data exist on the frequency, appearance and significance of “atypical” FISH patterns in BST tumours. Although the significance of these unusual FISH patterns cannot be elucidated based on the findings of this study, we present our results to emphasise the importance of interpreting FISH in the appropriate clinical, imaging, histopathological and immunohistochemical (IHC) context.

Methods
All FISH tests performed in the Department of Tissue Pathology and Diagnostic Oncology are stored in a database. We analysed all EWSR1 FISH tests performed on BST specimens at the Royal Prince Alfred Hospital, Sydney, Australia since the use of FISH was implemented (in January 2010). This study was approved by the Human Research and Ethics Committee (HREC) at Royal Prince Alfred Hospital (Sydney Local Health District), approval numbers X15-0103 and LNR/15/RPAH/143. The diagnosis of BST tumours in our unit is exclusively performed by experienced bone and soft tissue pathologists (SWM, AM, RZK, RAS, SFB & FM). All cases are discussed in a weekly multi-disciplinary, multi-institutional team meeting (MDTM), where a final consensus diagnosis is reached by pathologists, radiologists and orthopedic surgeons with specialised expertise in the diagnosis and management of BSTs. The FISH results are integrated to reach a final diagnosis, which was modified if appropriate, taking the consensus clinicopathological diagnosis of the MDTM as the gold standard.

FISH studies were performed on interphase nuclei on 3µm FFPE tissue sections using the Vysis EWSR1 Break Apart FISH Probe Kit (Abbott Molecular, Abbott Park, Illinois, USA). The FISH protocol was performed following the manufacturers’ instructions, except that Invitrogen Pretreatment Solution (Life Technologies, Carlsbad, CA, USA) was used at 98-102°C for 20 minutes. FISH interphase signals were counted in at least 50 nuclei by two independent observers (a senior FISH scientist [CS] and a molecular pathologist [SAO’T, WAC or RG]). EWSR1 gene rearrangement was considered as positive if the nuclei analysed showed a split 5’ centromeric and 3’ telomeric signals of at least one signal distance apart in at least 15% of the cells analysed, as previously reported and following in-house validation of this break apart probe. Validation involved analysis of EWSR1 rearrangement present in 15 normal tissue samples. The percentage of cells with EWSR1 rearrangement was used to calculate the normal reference range using the binomial expansion formula (Beta Inverse calculation) and confidence intervals. Using this method, we calculated a threshold of positivity of 15%. The mean percentage of balanced split signals observed in non-tumour cases was 2%, with a range of 0-12% observed. In addition, our cut-off has been independently and externally validated on a different cohort of positive and negative cases at external clinical reference laboratories (SydPath, St Vincent’s Hospital, Sydney and Peter MacCallum Cancer Centre, Melbourne) with expertise in FISH testing. FISH signal patterns were classified as atypical (non-classical) when gain or loss of the red, 5’ centromeric or
green, 3’ telomeric was identified or increased copy number of fused signals was observed. Sensitivity, specificity, positive (PPV) and negative predictive value (NPV) for the EWSRI probe was calculated using the MedCalc statistical software tool.

A literature review of the cut-offs and methodology for EWSRI FISH interpretation was performed in PubMed using the following terms: “EWSRI”, “FISH”, “Fluorescent in situ hybridization” and “Soft tissue”.

Results

EWSRI FISH was performed in 135 cases with rearrangement identified in 69 (51% of cases; with a mean of classically split signals within those cases of 61% of cells; range of rearranged cells: 16-99%). In 93% of cases (n=64), the FISH result supported the MDTM diagnosis of a tumour from the classically described the EWSRI-rearranged group of tumours, which included ES (40/48 rearranged cases), CCS (7/9 rearranged cases), ESMCS (7/8 rearranged cases) and other entities associated with EWSRI rearrangement (Figure 1). The remaining five EWSRI-rearranged assays (7%) were identified in entities, which do not characteristically harbour an EWSRI translocation, and therefore the FISH results did not change the original MDTM diagnosis. For instance, a CIC-DUX4 translocated sarcoma diagnosed in a 30 year-old male with a cervical mass showed an unexpected but consistent EWSRI rearrangement pattern (30% split signals) in two separate FISH tests (Figure 2A) at our institution and independently confirmed at the Memorial Sloan Kettering Cancer Center, New York (where the diagnosis of a CIC-DUX4 translocated sarcoma was also made on review of the pathology including detection of CIC-DUX4 translocation). The other unexpectedly EWSRI “rearranged” cases were a synovial sarcoma (SS; with proven SS18 gene fusion and with clinical, imaging, histopathological and immunohistochemical results supporting the diagnosis), an ossifying fibromyxoid tumour, a high-grade neuroendocrine carcinoma and a gastrointestinal stromal tumour (GIST). Interestingly, the EWSRI “rearranged” SS showed loss of one copy of the red (5’ centromeric) signal in 95% of the cells (Figure 2B-C).

For the non-rearranged EWSRI cases (49% of diagnostic cases; n=66 with a mean of 5% of cells with classically split signals, range 0-15%), the majority (47/66, 71%) were instances where the diagnosis of an EWSRI-rearranged tumour was not favoured based upon review of all clinical, radiological, pathological and immunohistochemical findings (i.e. poorly differentiated
carcinomas, metastatic melanomas and undifferentiated tumours) but difficult to entirely rule out on the basis of the clinicopathological features (e.g. for a tumour favoured to represent a poorly differentiated carcinoma in a young patient it is difficult to entirely rule out a myoepithelial carcinoma). In 23% (15/66) of the non-rearranged tumours, a member of the EWSR1-associated tumour group was the preferred clinicopathological diagnosis (8 ES, 2 CCS, 2 myoepithelial carcinomas, one ESMCS and one DSRCT) but FISH did not confirm an EWSR1 gene translocation (an additional case of LGFMS with absence of FUS rearrangement was also included in this group). In these cases, however, the final diagnosis remained unchanged despite the absence of a positive FISH result because other typical clinical, imaging, histological, and immunohistochemical features provided sufficient evidence to support the diagnosis in each case and also recognizing that EWSR1 gene rearrangement is reported in less than 100% of cases of these entities.

Finally, in 6% of the cases (n=4), the diagnosis was modified from ES to that of undifferentiated small round cell sarcoma as a result of the negative FISH analysis. Overall, FISH for EWSR1 in our department showed a sensitivity and specificity of 81% and 91%, respectively (PPV: 93%; NPV: 77%).

In addition to the fused and split paired signals, we noted atypical signal patterns characterised by the presence of unusual red (5’ centromeric region) or green (3’ telomeric region) signals in a significant proportion of both re-arranged (56%, n=39) and non-rearranged (45%, n=30) cases. For instance, numerous 5’centromeric signals suggestive of amplification of the EWSR1 gene (sclerosing epithelioid fibrosarcoma, Figure 2D), increased (metastatic melanoma) or decreased (sarcomatoid mesothelioma) gene copy number and loss or gain of green/red isolated signals (Figure 2E-F) were identified. Atypical signals were observed in a mean of 16% (range 2-76%) of tumour cells in non-rearranged cases and a mean of 24% (range 4-95%) of tumour cells in rearranged cases. The interpretive challenge of atypical signals is illustrated by a case with the differential diagnosis between CCS and metastatic melanoma, unresolvable by morphology, IHC and molecular findings, which showed only 12% of classical split EWSR1 signals (diagnostic cut off 15%) with a further 16% of tumour cells with additional atypical signals. However, as atypical signals are of uncertain clinical significance, and are largely disregarded in almost all series published to date in the literature (Table 1), the case was interpreted as technically non-rearranged.

A further issue that must be considered in the interpretation of cases with borderline signal count
and equivocal morphology is that by using a lower cut-off (10%), as in other series (Table 1), the case would have been interpreted as EWSR1-rearranged. This diagnostic dilemma has major clinical implications because the treatment and prognosis is quite different for primary CCS and metastatic melanoma. Another case with a high proportion of atypical signals (76% of cells with loss of the green, 3′telomeric signals and a further 45% of cells with up to 3 red signals) was a sclerosing epithelioid fibrosarcoma (SEF) primary from the bone with associated positive MUC4 immunostaining.

We were prompted by these experiences to investigate the presence of atypical signals in high grade malignant neoplasms completely unrelated to the EWSR1 rearranged associated tumours (mostly undifferentiated carcinomas) in a separate cohort included in a tissue microarray (TMA; n=24, Supplementary Table 1). In this set enriched for high-grade tumours, atypical signals were observed in up to 26% of the tumour cells in 12 of 24 cases (where atypical signals were seen >10% of lesional cells). In addition, even by using a higher diagnostic cut-off of 15% (adopted in some institutions including our own), the EWSR1 FISH assay again proved problematic as a case of a poorly differentiated pancreatic adenocarcinoma would have technically been classified as “positive” (16% split signals) based exclusively on the FISH result (Figure 2G). Moreover, five further cases (a myofibroblastic sarcoma [Figure 2I], an undifferentiated endometrial carcinoma, an epithelioid malignant peripheral nerve sheath tumour [MPNST, Figure 2H], a neuroendocrine carcinoma and a radiotherapy-associated sarcoma) would have been interpreted as EWSR1-rearranged if a 10% cut-off had been used (Supplementary Table).

Our literature search (Table 1) revealed 30 articles (series with at least 6 cases) where EWSR1 break apart probes have been used in the classification and differential diagnosis of EWSR1 translocated tumours. In fact, we identified that the majority of these published series do not describe the cut-off selected to establish gene rearrangement (n=10, 33% of the papers). In the remainder of the studies, 10% is the most common cut-off used (n=9, 30% of the studies) followed by 20% (n=7, 23% of the studies), 15% (n=3; 10%) and 30% (3%; n=1). In our institution, we have selected a 15% cut-off following the study by Bridge et al\(^{18}\), who published the first large series demonstrating the utility of EWSR1 FISH in the differential diagnosis of round cell tumours (and still today the most frequently cited paper in the differential diagnosis of round cell tumours), and which is in agreement with our internal in house validation.
Discussion

The use of EWSR1 FISH to detect characteristic gene rearrangement has been an invaluable tool for more accurate diagnosis and treatment of patients with BSTs at our institution. In our cohort, FISH was supportive of the preferred clinicopathological diagnosis of an EWSR1-rearranged tumour group member in 93% of the rearranged cases but did not support the preferred diagnosis in 23% of the non-rearranged cases, producing an overall sensitivity and specificity of 81% and 91%, respectively (PPV: 93%; NPV: 77%). Although our sensitivity and specificity is similar to that described in prior reports in the literature, it should be noted that accurate calculation of these parameters for a specific FISH probe is problematic. For instance, it has been shown that in cases with classical histopathological features, FISH demonstrates the specific rearrangement in over 95% of the cases but the level of specificity and sensitivity decreases for cases with equivocal histopathological features in which greater discrepancy between histopathology and FISH tends to be observed. It must also be emphasized that other tumours apart from EWSR1-associated tumours (pleomorphic sarcomas, carcinomas, lymphomas, melanomas, rhabdomyosarcomas, mesotheliomas and small cell osteosarcoma) can show EWSR1 rearrangement. Our assessment of EWSR1 FISH on a TMA containing mostly high-grade tumours (none of which are recognised as characteristically containing an EWSR1 translocation), confirms these findings. In addition, secondary complex rearrangements involving the EWSR1 gene may occur. For instance, it can be hypothesized that the CIC-DUX4-associated round cell tumour and SS identified in our series (Figure 2A-C) harbor a secondary EWSR1 rearrangement. This has been described for SS and was supported by the conventional cytogenetics result in our case, but has not yet been documented in the recently described entity CIC-DUX4-associated round cell tumour.

In our routine diagnostic practice using the EWSR1 FISH assay, atypical signals (gain or loss of the red, 5’ centromeric or green, 3’ telomeric) and borderline levels of rearrangement around the cut off, posed significant interpretative problems. We noted atypical signal patterns in 56% and 45% of rearranged and non-rearranged cases, respectively. Such abnormal signal patterns are very infrequently reported in the literature; the majority of the BST series reported to date only counted cells containing four intact signals assuming that any other signal pattern was indicative of a
sectioning related truncation artefact (Table 1). However, the limited reports of this phenomenon in the literature suggest that atypical signal patterns identified by FISH might instead be associated with true translocations and/or other gene abnormalities. Ventura et al., and Wolff et al., in the context of haematological malignancies, have described that “unusual” patterns (i.e. extra fusion and/or gain or loss of loci signals) should not be ignored when they are present in the vast majority of the cells, as they might be predictive of a gene rearrangement or other gene alterations (e.g. a concurrent deletion)\(^{43, 48}\). However, other studies have shown that, although these patterns can account for a significant proportion of the cases, a subset are unrelated to a concurrent translocation, requiring thorough investigation with alternative methods\(^{49}\). Arbajian et al., using break-apart FISH for EWSR1, FUS and CREB3L1-2 in a series of SEFs interpreted that loss of the EWSR1 5’-part in combination with loss of the 3’-part of CREB3L1 or CREB3L2 was equivalent to a split signal and therefore, indicative of a gene fusion (confirmed by RT-PCR)\(^3\). Similarly, Tanas et al., and Antonescu et al., have indicated that loss of the telomeric (3’part) of the EWSR1 probe is suggestive of unbalanced translocations\(^{10, 16}\). In addition, EWSR1 gene amplification can produce an atypical signal pattern characterised by increased 5’centromeric signals\(^5\), which was identified in a case of SEF in our series (Figure 2D). Moreover, in a single case report, it was suggested that EWSR1 cryptic translocations can potentially give rise to additional signals by FISH\(^{44}\). Adding to the complexity, pseudogenes have been shown to contribute to gene amplification detected by FISH and PCR-based techniques\(^{1, 38}\) but this requires further study for confirmation. Finally, poor hybridization due to poor fixation or suboptimal performance of the assay might also be a contributing factor in such cases. From the findings of our study, the significance of these atypical signals is unclear. The fact that such atypical signals were more commonly identified in tumour cells from rearranged cases than those in non-rearranged (25% vs. 16%) supports the possibility that these atypical signal patterns represent gene rearrangements. It would appear appropriate, in selected cases, to consider adding the atypical signal count to the final split signal estimation if this is a repetitive pattern in most of the nuclei analysed and in the context of appropriate clinicopathological correlation, as discussed by Ventura et al.\(^{43}\). Some of the cases identified in our study with a high percentage of atypical signals were consistent with an EWSR1-associated tumour based on clinicopathological features but showed no definite gene rearrangement when the established cut-off (>15%) was utilised. Examples of this include two myoepithelial soft tissue tumours (26% and 68% of atypical signals, respectively), a CCS and a SEF (16% and 18%,

This article is protected by copyright. All rights reserved.
respectively).

We also encountered problems assessing cases with levels or rearrangement near the cut off. In our search of the literature for FISH interpretation of these BST assays, we identified significant inconsistency in the cut-offs reported by authors from different institutions for EWSR1 (e.g. 10%, 15%, 20% vs. 30%, Table 1). Although this would not be a problem for the majority of the cases in which a clear rearrangement is present or absent, this would not be the case for samples with borderline levels of rearrangement. Therefore, cases with a borderline level or rearrangement (e.g. between 10 and 30% of rearranged cells) testing at different institutions may result in either positive or negative FISH results, likely with very different prognosis and therapeutic approaches, depending on the cut-off utilised. When assessing such cases, technical aspects of the FISH performance such as the degree of separation of the break-apart signals expected by an interchromosomal rearrangement, the hybridisation efficiency of the test and the degree of signal visualisation should be carefully assessed to ensure the reliability of the result. Although stringent performance characteristics might be followed by different laboratories, as can be observed in Table 1, unified standardisation of in house validation for FISH probes has yet to be published. On the other hand, selection of scoring criteria based on specific publications instead of establishing internal properly validated cut-offs, can also potentially lead to incorrect results.

In our opinion, it seems sensible to adopt the approach recommended by Ventura et al, and others that atypical cell patterns in a high proportion of tumour nuclei likely represent a rearrangement event, although it is essential to always interpret the FISH result in the appropriate clinicopathological context. Ideally, such cases with equivocal or borderline FISH results should be tested with another molecular assay, where available, to avoid potential misclassification and instigation of inappropriate management. Unfortunately this may be very challenging if there is only FFPE material available. Many tissue pathology departments will not have access to a second molecular assay, where FISH may be the only modality available to identify a translocation on FFPE.

Our study has a number of limitations. By using break-apart FISH as the single modality to detect EWSR1 gene rearrangement, it is not possible to elucidate the true nature of the atypical signal patterns identified in our cases and a definite rearrangement or lack thereof cannot be confirmed.
Similarly, we cannot distinguish false negative results, which can occur as a result of rearrangements below the sensitivity of the test such as cryptic translocations or even true negative results associated with alternative genetic mechanisms (e.g. non-ETS genes). Further molecular techniques such as RT-PCR, conventional cytogenetics, alternative FISH strategies (i.e. dual fusion probes) would provide insight into these challenging cases, increasing our understanding of FISH interpretation and tumour biology. However, we believe that there is value in presenting our findings, as this phenomenon is essentially unrecognised outside the research setting and can potentially lead to misdiagnosis in centers with no routine access to other molecular diagnostic tools, like ours. Another significant limitation of our study, which is only briefly addressed in the current WHO classification, is regarding the classification of ES in the absence of the expected genetic abnormality. According to the WHO classification, the absence of a molecular confirmation does not rule out the diagnosis of ES but it should prompt to a clinicopathological review. Nonetheless, there are no universal guidelines with regards to the minimum clinicopathological diagnostic criteria for a small round cell tumour to be regarded as ES or alternatively, when the diagnosis should be strictly modified to that of small round cell tumour. With the current molecular characterisation and biological diversification of small round cell primitive sarcomas, soft tissue pathologists are relying more on specific genetic abnormalities, which are becoming the defining features of emerging specific subgroups. However, this field is rapidly evolving and until robust data is available, specific classification of these tumours is likely to be subjected to variability in the application of clinicopathological criteria based on individual cases. This might account for a change in the diagnosis in a subset of our cases but not for all. Moreover, we cannot entirely exclude that the discussion of the FISH findings at MDTM can potentially introduce bias into the final tumour classification but this is also likely to occur in any other tertiary centres where discussion of the pathology and the molecular findings is an essential aspect of patient care and clinical management. Importantly, ES and “Ewing-like” small round cell tumours are currently subjected to the same therapeutic strategies regardless of the underlying genetic abnormality. It is possible that this will change in the near future with the advent of personalized targeted therapy and hence, the need to recognize the molecular driving event.

In conclusion, there is poor formal recognition of atypical FISH patterns in the published literature to date and further investigation of their significance will be important for better classification and understanding of EWSR1-associated tumours. The increasing availability of high throughput
technologies may assist in characterizing the underlying changes associated with such atypical signals although their use in FFPE material remains challenging.

Conflict of interest statement
There are no conflicts of interest to disclose.

Acknowledgements
We acknowledge the Memorial Sloan Kettering Cancer Center, New York for performing the CIC-DUX4 FISH. We gratefully acknowledge the assistance of A/Prof Adrienne Morey for her helpful comments on the manuscript. We also acknowledge gratefully the funding from the Cancer Institute NSW, the Sydney Breast Cancer Foundation, the Cancer Council NSW (APP 1088778) as well as philanthropic support from Mr David Paradice, the Tag Family Foundation, ICAP and the O’Sullivan family.

ACV performed the analysis of the FISH database and wrote the paper. SOT designed the study, scored and interpreted the FISH and wrote the paper. CS optimised, validated and pre-scored the FISH assays, captured all the images, created and maintained the database and contributed to the writing of the manuscript. WAC and RG scored and interpreted the FISH and contributed to the writing of the manuscript. LS contributed with the data analysis on the TMA cohort. PS, WB, JS, JS, RB, DMT, MHNT and VAB are part of the clinical team involved in the diagnosis and management of the patients presented in this manuscript and provided expert input into the study and manuscript. FML, SFB, RAS, RZK, SWM and AM are the BST pathologists who made histopathological diagnosis integrating the FISH results and provided extensive expert input into the study design and writing of the manuscript.

References

This article is protected by copyright. All rights reserved

Cancer Genet Cytogenet 2010;200:60-64.

Figure legends

Figure 1 Diagnostic flow diagram of cases tested for EWSR1 FISH. The final clinicopathological diagnosis after integration of the FISH results is shown. ES: Ewing Sarcoma; CCS: Clear cell sarcoma; ESMCS: Extraskeletal myxoid chondrosarcoma; LGFMS: Low grade fibromyxoid sarcoma/sclerosing epithelioid fibrosarcoma; AFH: Angiomatoid fibrous histiocytoma; CCS-GI: Clear cell sarcoma-like of the gastrointestinal tract; HCC-CA: Hyalinizing clear cell carcinoma of the salivary gland; DSRCT: Desmoplastic small round cell tumour; CIC-DUX: CIC-DUX-associated sarcoma; SS: synovial sarcoma, GIST: gastrointestinal stromal tumour; NEC: neuroendocrine carcinoma; OFT: Ossifying fibromyxoid tumour of the soft tissue; Myo CA: Myoepithelial carcinoma.

Figure 2 Cases showing atypical signal patterns by FISH. (A) CIC-DUX4 rearranged sarcoma showing typical EWSR1 rearrangement. (B) EWSR1-rearranged synovial sarcoma, which demonstrated loss of the red 5’ centromeric signals in the majority of the cells. (C) This case showed classical SS18 rearrangement in 92% of the nuclei. (D) Sclerosing epithelioid fibrosarcoma showing an increase in the EWSR1 isolated red (5’ centromeric)
signals consistent with gene amplification. (E) Melanoma with increased *EWSR1* copy number (>4 fused signals per nucleus. (F) Sarcomatoid mesothelioma with monosomy for Chromosome 22 showing lost of one pair of signals. (G) Poorly differentiated primary pancreatic adenocarcinoma showing classical rearrangement for *EWSR1*. (H) Case of epithelioid malignant peripheral nerve sheath tumour in a 30-year old male showing classical plus atypical *EWSR1* FISH signals. (I) Mesenteric mass with the preferred histological diagnosis of myofibroblastic sarcoma showing classical split signals. Dual-color break-apart probes (images taken at 60x).
Table 1 Literature review (PUBMED) search for series of cases for EWSR1 FISH.

<table>
<thead>
<tr>
<th>Reference</th>
<th>No Cases (n)</th>
<th>No Cells counted</th>
<th>Cut-off</th>
<th>Entities included</th>
<th>Criteria to establish EWSR1 break-apart probe cut-off</th>
<th>Additional scoring criterion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tanas et al.</td>
<td>240</td>
<td>-</td>
<td>10%</td>
<td>Round cell sarcomas</td>
<td>-</td>
<td>Atypical signals described</td>
</tr>
<tr>
<td>Aribajian et al.</td>
<td>15</td>
<td>-</td>
<td>30%</td>
<td>LGFMS/SEF</td>
<td>Not discussed; confirmation with RT-PCR, mRNA and sequencing</td>
<td>Atypical signals described</td>
</tr>
<tr>
<td>Antonescu et al.</td>
<td>23</td>
<td>200</td>
<td>20%</td>
<td>Hialinizing CCC</td>
<td>Not discussed; RT-PCR confirmation</td>
<td></td>
</tr>
<tr>
<td>Flucke et al.</td>
<td>18</td>
<td>50</td>
<td>20%</td>
<td>Cutaneous myoepithelial tumours</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Skalova et al.</td>
<td>94</td>
<td>100</td>
<td>10%</td>
<td>Salivary gland tumours</td>
<td>Reference to Ventura et al.</td>
<td></td>
</tr>
<tr>
<td>Böhdeau et al.</td>
<td>22</td>
<td>-</td>
<td>20%</td>
<td>Clear cell odontogenic Carcinoma</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Stahl et al.</td>
<td>15</td>
<td>100</td>
<td>10%</td>
<td>Hyalinizing clear cell carcinoma</td>
<td>-</td>
<td>Only tumour nuclei with all 4 signals present were evaluated</td>
</tr>
<tr>
<td>Antonescu et al.</td>
<td>66</td>
<td>200</td>
<td>20%</td>
<td>Soft tissue myoepithelial tumours</td>
<td>Not discussed; RT-PCR confirmation</td>
<td>Only tumour nuclei with all 4 signals present were evaluated</td>
</tr>
<tr>
<td>Bridge et al.</td>
<td>67</td>
<td>100</td>
<td>15%</td>
<td>Round cell tumours</td>
<td>Calculated using a probe-specific normal range: 3 SD from the mean + PCR correlation</td>
<td></td>
</tr>
<tr>
<td>Warren et al.</td>
<td>32</td>
<td>-</td>
<td>ES</td>
<td>ES</td>
<td>Not discussed; confirmation with RT-PCR, sequencing & conventional cytogenetics</td>
<td></td>
</tr>
<tr>
<td>Miura et al.</td>
<td>280</td>
<td>50</td>
<td>10%</td>
<td>Range of sarcomas</td>
<td>Reference to Yamaguchi et al.</td>
<td>Distance between the green and the red signals: 2-3 signal diameter</td>
</tr>
<tr>
<td>Horn et al.</td>
<td>64</td>
<td>100</td>
<td>ES/CCS</td>
<td>ES/CCS</td>
<td>Calculated using a probe-specific normal range: 3 SD from the mean + PCR correlation</td>
<td></td>
</tr>
<tr>
<td>Neville et al.</td>
<td>286</td>
<td>-</td>
<td>PNET, DSRCT, ML</td>
<td>Not discussed; RT-PCR confirmation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Italiano et al.</td>
<td>22</td>
<td>200</td>
<td>20%</td>
<td>Small round cell tumours</td>
<td>Not discussed; RT-PCR confirmation</td>
<td></td>
</tr>
<tr>
<td>Downs-Kelly et al.</td>
<td>61</td>
<td>100</td>
<td>ES/CCS</td>
<td>ES/DSRCT/CCS</td>
<td>Calculated using in-house validation and PCR-based confirmation</td>
<td>Only tumour nuclei with all 4 signals present were evaluated</td>
</tr>
<tr>
<td>Yamaguchi et al.</td>
<td>28</td>
<td>100</td>
<td>ES/DSRCT/CCS</td>
<td>Not discussed; RT-PCR confirmation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wang et al.</td>
<td>20</td>
<td>200</td>
<td>-</td>
<td>CCS</td>
<td>Not discussed; confirmation with RT-PCR, ranger sequencing & cytogenetics</td>
<td>Distance between the green and the red signals > than 1 signal diameter</td>
</tr>
<tr>
<td>Wang et al.</td>
<td>16</td>
<td>-</td>
<td>20%</td>
<td>ESMSC</td>
<td>Calculated using a cut-off of 5% and negative controls from bone marrow aspirates</td>
<td>Only tumour nuclei with all 4 signals present were evaluated</td>
</tr>
<tr>
<td>Song et al.</td>
<td>18</td>
<td>100</td>
<td>10%</td>
<td>CCS and melanoma</td>
<td>Calculated using in-house validation and PCR-based confirmation</td>
<td>Distance between the green and the red signals > than 1 signal diameter</td>
</tr>
<tr>
<td>Patel et al.</td>
<td>42</td>
<td>100</td>
<td>10%</td>
<td>CCS and melanoma</td>
<td>Calculated using probe-specific normal range ≤ 4%; 2 SD from the mean</td>
<td>Only tumour nuclei with all 4 signals present were evaluated</td>
</tr>
<tr>
<td>Hantschke et al.</td>
<td>12</td>
<td>50</td>
<td>-</td>
<td>Cutaneous CCS</td>
<td>Calculated using a probe-specific normal range: 2 SD from the mean + PCR correlation</td>
<td></td>
</tr>
<tr>
<td>Machado et al.</td>
<td>9</td>
<td>200</td>
<td>15%</td>
<td>Atypical ES</td>
<td>Not discussed; RT-PCR confirmation</td>
<td></td>
</tr>
<tr>
<td>Shi et al.</td>
<td>21</td>
<td>-</td>
<td>15%</td>
<td>AFH</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Tiway et al.</td>
<td>17</td>
<td>-</td>
<td>-</td>
<td>AFH</td>
<td>Not discussed; RT-PCR confirmation</td>
<td></td>
</tr>
<tr>
<td>Milione et al.</td>
<td>7</td>
<td>100</td>
<td>-</td>
<td>ES from small bowel</td>
<td>Not discussed; RT-PCR confirmation</td>
<td>Only tumour nuclei with all 4 signals present were evaluated</td>
</tr>
<tr>
<td>Kao et al.</td>
<td>11</td>
<td>100</td>
<td>20%</td>
<td>AFH</td>
<td>Only tumour nuclei with all 4 signals present were evaluated</td>
<td></td>
</tr>
<tr>
<td>Tanas et al.</td>
<td>18</td>
<td>-</td>
<td>AFH</td>
<td>-</td>
<td>Confirmation with RT-PCR & cytogenetics; reference to Downs-Kelly et al.</td>
<td>Distance between the green and the red signals > than 1 signal diameter</td>
</tr>
<tr>
<td>Shingde et al.</td>
<td>7</td>
<td>100</td>
<td>10%</td>
<td>Cutaneous ES</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Naguchi et al.</td>
<td>18</td>
<td>100-120</td>
<td>-</td>
<td>ESMCS</td>
<td>Not discussed; RT-PCR confirmation</td>
<td>Distance between the green and the red signals: 2-3 signal diameter</td>
</tr>
</tbody>
</table>
LGFMS/SEF: Low grade fibromyxoid sarcoma/sclerosing epithelioid fibrosarcoma; CCC: Clear cell carcinoma; ES: Ewing Sarcoma; CCS: Clear cell sarcoma; PNET: Primitive neuroectodermal tumor; DSRCT: Desmoplastic small round cell tumor; ML: Myxoid liposarcoma; ESMCS: Extraskeletal myxoid chondrosarcoma; AFH: Angiomatoid fibrous histiocytoma; RT-PCR: Reverse transcription polymerase chain reaction; SD: Standard deviation.
Author/s:
Vargas, AC; Selinger, CI; Satgunaseelan, L; Cooper, WA; Gupta, R; Stalley, P; Brown, W; Soper, J; Schatz, J; Boyle, R; Thomas, DM; Tattersall, MHN; Bhadri, VA; Maclean, F; Bonar, SF; Scolyer, RA; Karim, RZ; McCarthy, SW; Mahar, A; O'Toole, SA

Title:
Atypical Ewing sarcoma breakpoint region 1 fluorescence in-situ hybridization signal patterns in bone and soft tissue tumours: diagnostic experience with 135 cases.

Date:
2016-12

Citation:

Persistent Link:
http://hdl.handle.net/11343/291751