Paediatric Intestinal Failure & Transplantation

Jason Y K Yap1,2; Amin J Roberts3; Julie E Bines1,2,4

1Department of Gastroenterology and Clinical Nutrition, The Royal Children’s Hospital
2Department of Paediatrics, University of Melbourne, Parkville, Australia
3Department of Paediatric Gastroenterology, Starship Child Health, University of Auckland, New Zealand
4Murdoch Children’s Research Institute, Parkville, Australia.

Corresponding author:
Julie E Bines
Department of Paediatrics, University of Melbourne,
Level 2
50 Flemington Rd
Parkville, Australia 3052
Telephone: +61 3 9345 5137 FAX: +613 9345 6665
Email: jebines@unimelb.edu.au

Key Words: 2441
Intestinal Failure
Intestinal Rehabilitation
Intestinal Transplantation

Word count: 1
Tables: 1
Figures: 1

This article is protected by copyright. All rights reserved.
Paediatric Intestinal Failure

Jason Y K Yap1; Amin J Roberts2; Julie E. Bines1,3

1Department of Gastroenterology, Royal Children’s Hospital, Department of Paediatrics, University of Melbourne, Australia
2Department of Paediatric Gastroenterology, Starship Child Health, University of Auckland, New Zealand
3Department of Paediatrics, University of Melbourne; Murdoch Children’s Research Institute, Melbourne, Australia.

Corresponding author:
Professor Julie E. Bines
Department of Paediatrics
University of Melbourne
50 Flemington Rd
Parkville 3052
Victoria, Australia
jebines@unimelb.edu.au
+613-9345-4137

Keywords:
Intestinal Failure
Short Bowel syndrome
Parenteral nutrition
Intestinal rehabilitation
Intestinal transplantation
Abstract

Intestinal failure is a complex and debilitating condition characterised by inadequate small intestinal function requiring parenteral or intravenous nutrition to maintain health and, for children, to enable growth and development. Although parenteral nutrition can be prescribed in many hospitals, children with chronic intestinal failure have improved outcomes when managed at a paediatric centre by a multidisciplinary team with specialised expertise in the comprehensive management of intestinal failure. Recent advances in the medical, surgical and nutritional approach have been effective at optimising intestinal rehabilitation and achieving enteral autonomy while limiting complications of intestinal failure. The role of intestinal transplantation in the management of the child with intestinal failure continues to evolve as an option for children with life threatening complications of intestinal failure. The aim of this review is to highlight key advances in the care of children with intestinal failure.
Intestinal failure (IF) is a complex and debilitating condition characterised by inadequate small intestinal function requiring parenteral or intravenous nutrition (PN) to maintain health and, for children, to enable growth and development. Advances in neonatal critical care and the surgical management of children with complex conditions has been associated with a significant increase in children with IF requiring home PN. In the UK the rate of home PN in children has increased from 1.54 per million children in 2000 to 21.5 per million children in 2016. Although the number of patients is relatively small, it places a significant burden on affected children, their family, and the healthcare system. Advances in intestinal rehabilitation and improvements in PN formulations and methods of safe administration mean many children who commenced PN in infancy now survive to adulthood. The aim of this review is to highlight key recent advances in the care of children with IF.

Intestinal failure is classified functionally based on onset of the underlying disease, metabolic state and expected outcome (Table 1). The common underlying conditions resulting in IF differ in children from adults (Table 2). Short bowel syndrome (SBS) due to surgical resection is the most common cause of IF in children: about 30% of SBS is associated with neonatal necrotising enterocolitis. The incidence of SBS in preterm infants (353.7 per 100,000 live births) is 100 times higher than in term infants (3.5 per 100,000). Congenital conditions requiring massive surgical resection with the development of SBS include intestinal atresia (duodenal, jejunal, ileal, or multiple intestinal atresias), abdominal wall defects (gastroschisis, omphalocele), and intestinal malrotation with volvulus. Approximately 20% of IF due to SBS occurs outside the neonatal period, predominantly secondary to volvulus or trauma. Functional neuromuscular gut disorders, including chronic intestinal pseudo-obstruction, Hirschsprung disease, hollow visceral myopathy and megacystis microcolon intestinal peristalsis syndrome comprised 43% of home PN patients in a recent UK series. With improved survival, children with cancer and severe immunological conditions associated with
extensive gastrointestinal mucosal inflammation are a growing cohort of home PN patients3,5. Another emerging group is children with neuro-disability associated with gastrointestinal dysmotility that interferes with enteral feeding, raising ethical concerns3,12.

The impact of an expert multidisciplinary team

Although PN can be prescribed at many hospitals, management of children with chronic IF at a paediatric centre with specific expertise in IF management is recognised as an integral component of high quality care1,3,13-16. Critical decisions early in the course of management can have a long-term impact on the approach to care and patient outcome. A collaborative approach, involving a team experienced in acute and chronic management of patients with IF, can provide valuable input on the type or timing of surgical intervention, the placement of venous access devices, the prescribing of PN and other drugs and can provide important insights in family discussions and decision making. Focus of management often needs to be modified to respond to different phases of the disease and adapted at different stages of child development or in response to family or social factors. The composition of the team can vary between institutions, but a paediatric gastroenterologist, dietitian, nurse specialist and paediatric surgeon are frequent members of the team (Table 3)1,15. Benefits of the multidisciplinary team approach include reduced catheter related blood stream infections (11.5 to 1.1 CRBSI per 1000 catheter days)17, improved survival (relative risk of 1.22; CI 1.04-1.42; \(p = 0.005 \)) and reduced costs15,18.

Balancing nutritional needs while minimising risk of complications

Parenteral nutrition

Parenteral nutrition is a combination of water, electrolytes, amino acids, carbohydrates, fat and micronutrients aimed at providing for the age and development needs of the growing child. Balancing needs versus the potential for complications requires assessment and careful monitoring to ensure the PN provided is safe and effective and to detect any complications before they result in
clinical problems or become irreversible (Table 4). PN nutrient solutions are now available that reflect the specific nutritional needs of preterm and term infants and take into account developmental immaturity of some metabolic systems. These solutions have been developed to meet infant requirements and reduce the risk of toxicity encountered with PN solutions developed for adults and older children. The role of trace elements in supporting growth and development has been recognised and solutions specific for infants and children and adjusted for weight and age have been revised in line with evidenced-based research.19

Intestinal failure associated liver disease

Although it is a life-saving therapy for children with chronic IF, PN administration can be associated with severe, even fatal complications1,15. Long-term PN in children has been associated with cholestatic liver disease that may lead to fibrosis and end-stage liver disease1,15,16. Initially labelled PN-associated liver disease this complication is now known as intestinal failure associated liver disease (IFALD) in recognition of the multiple factors associated with the underlying requirement for PN. These factors include patient factors (prematurity, underlying disease, early diagnosis of sepsis, longer hospitalisation), nutrition factors (delayed or limited oral or enteral feeding, imbalance of PN nutrition, high lipid doses, soybean lipid emulsion, lipid peroxides), gastrointestinal factors (intestinal resection, bowel dysmotility and stasis, impaired bile acid recirculation, jejunostomy, small bowel overgrowth) and liver factors (pre-existing liver disease, drugs), see Table 41,13-16.

Focus on the potential role of intravenous fat emulsions on the pathogenesis and treatment of intestinal failure associated liver disease (IFALD) has led to the development of alternative fat emulsions as an option for the prevention and treatment of IFALD20. Intravenous soybean based lipid emulsions were initially implicated in the development of IFALD after it was observed that 70\% (17 of 24) of the children normalised their bilirubin and 91\% (11 of 12) of platelet counts returned
to normal after discontinuation of a soybean emulsion. Possible explanations included phytosterol accumulation, oxidative stress with lipid peroxidation and activation of the reticuloendothelial system. Composite and fish oil-based fat emulsions now provide an alternative for first line therapy or for specific indications in infants and children. SMOF-lipid (Fresnies Kabi: Graz, Austria) is composed of 30% soya bean oil (omega-6 fatty acid), 30% coconut oil (medium chain triglycerides), 25% olive oil (monounsaturated fatty acids) and 15% fish oil (omega-3 fatty acids) providing a balance of omega-6 to omega-3 polyunsaturated fatty acid ratio suitable for children, as well as anti-inflammatory effects provided by the fish oil and a lower phytosterol content. Children receiving SMOF-lipid had lower serum bilirubin levels and higher serum docosahexaenoic acid, eicosapentaenoic acid and vitamin E levels compared to children who received a soybean emulsion. SMOF-lipid has been reported to lower serum bilirubin in children with jaundice after receiving a soybean emulsion. Fish oil-based emulsion (Omegaven, Fresenius Kabi, Graz, Austria) has been proposed as a rescue agent to treat intestinal failure-associated liver disease. Resolution of cholestasis has been reported in 50-82.5% of children treated with Omegaven (1g/kg/day). Long-term administration with Omegaven has been discouraged due to the risk of essential fatty acid deficiency, although this has not been consistently observed. Until further information becomes available, Omegaven is recommended as a short- to intermediate-term therapy, specifically for patients at high risk of development of IFALD, or for treatment of those patients with established intestinal failure related liver disease.

Vascular access related complications

Central line associated bloodstream infections (CLABSI) are a major cause of death and hospitalisation in patients requiring long-term PN. A protocol to prevent CLABSI reduced infection episodes in children with IF (1.7 to 0.7 per 1000 catheter days; \(p=0.018 \)). Protection of catheters from occlusion, dislodgement or leakage is key to preservation of future vascular access options (Table 4). Strategies aimed at reducing biofilm development within the catheter through instillation of ethanol or
taurolidine-citrate locks have been associated with a reduction in CLABSIs (CLABSI rate per 100 catheter days: taurolidine-citrate lock 0.25 vs 4.16 with no lock)30-32. Thromboprophylaxis using low molecular weight heparin was associated with improved catheter free cumulative infection-free survival over 3 years (46% compared with 19\%)33.

The coming of age of intestinal rehabilitation

The importance of intestinal rehabilitation as a focus of management of children with IF has evolved over the past decade1. Paediatric intestinal rehabilitation centres have been established as regional or national referral centres specialising in the care of children with IF1,8,15,16. The aim of intestinal rehabilitation is to protect and promote gut function and achieve enteral autonomy while minimising the complications of IF (Table 4). Essential to success is providing balanced nutrition to support growth and development with a focus on optimising quality of life for children with IF and their family.

Promoting the transition from PN dependence to enteral nutrition and oral diet requires recognition of factors that enhance or hasten the natural process of adaptation that occurs after bowel resection or acute loss of gastrointestinal function34. This adaptation response is mediated by a broad range of factors acting independently or in combination (Table 4). The medical, surgical and nutritional approach to rehabilitation should be tailored to meet specific anatomical and functional characteristics of the gut, a range of patient and disease related factors and co-morbidities.

Small bowel bacterial overgrowth, common in children with IF15,35 is associated with delayed PN weaning, a reduced intestinal adaptive response and an increased risk of IFALD and CLABSIs35,36. Gastrointestinal anatomical factors (gastroschisis, shorter residual bowel length), intestinal dysmotility and stasis and the use of acid suppressive therapy are linked with the development of small bowel bacterial overgrowth35. Clinical symptoms are often non-specific. Diagnosis by quantitative
culture of small intestinal aspirate is challenging in children. The use of non-invasive surrogate markers such as urinary metabolic screen has shown promise when used in conjunction with a high level of clinical suspicion. A combination therapeutic approach can include minimisation of gastric acid suppression, use of cycled enteral antibiotics and limiting dietary simple carbohydrates. There is limited evidence to support the routine use of probiotics, which may also pose a risk of bacterial translocation and sepsis in patients with abnormal intestinal barrier function.

Autologous intestinal reconstruction surgery is aimed at restoring gut function, particularly in SBS with dilatation or dysmotility in the remnant segment resulting in refractory small bowel bacterial overgrowth. Pioneered by Bianchi in the 1980’s, the Bianchi technique or LILT involves longitudinal bowel lengthening and tailoring to increase intestinal absorptive area and reduce dilatation. The Serial Transverse EnteroPlasty (STEP) technique (lengthening and tapering using a stapler along the bowel), has been associated with a median increase in bowel length of 52.9%, with 42% of patients achieving enteral autonomy. A recent modification of the STEP is the Spiral Lengthening and Tailoring (SILT) procedure which maintains the anatomical orientation of the muscle fibres of the intestine. Used in combination with the STEP or as a primary reconstructive option in complicated SBS patients, SILT has shown promise in early reports.

The use of trophic hormones to reduce PN requirement in patients with IF has been heralded as a major advance in IF management. GLP-2 is a 33 amino acid peptide, produced by the post-translation cleavage of proglucagon in the enteroendocrine L-cells of the intestine in response to nutrient intake. It acts via the GLP-2 receptor located in enteroendocrine cells, sub-epithelial myofibroblasts and neurons of the enteric nervous system and appears to stimulate gut hypertrophy, reduce gastric emptying and intestinal motility. GLP-2 has a half-life of minutes, so a GLP-2 analogue (teduglutide) with longer half-life has been developed. In the pivotal trial of the GLP-2 analogue (Teduglutide) in adults, a 20% reduction in total
PN volume provided was achieved in 27/43 (63%) of adults receiving GLP-2 for 24 weeks compared to 13/43 (30%) receiving placebo (p<0.01). Improvement was associated with an increase in plasma citrulline, a marker of intestinal mucosal mass. On the basis of this and subsequent supportive data on long term use, teduglutide has been licensed internationally for the treatment of adults with SBS. Data on the impact of teduglutide in children remains restricted to small numbers. In children with SBS associated IF, teduglutide for 24 weeks (n=50) versus standard of care (n=9) was associated with a ≥20% reduction in administered PN volume in 13/24 (54%) and 18/26 (69%) patients receiving 0.025mg/kg or 0.05mg/kg teduglutide respectively compared to 1/9 (11%) receiving standard care. PN calories, days per week and hours per day PN, and increased enteral nutrition was observed in children after 24 weeks’ teduglutide therapy compared to baseline. Five children receiving tedulgutide were able to wean from PN during the 24-week trial (10%). As clinical experience with teduglutide increases there is hope, at last, of an effective medical option to treat chronic IF without the need for PN. However, there remain unanswered questions such as whether life-long therapy will be required and safety considerations with long-term therapy, particularly for children. Cost is also likely to be a significant barrier.

Longterm outcomes in children with IF

Survival of children with IF has improved markedly, with transplant free survival for IF patients at most specialised programs reported at >90%. Weaning from PN can be achieved in a significant proportion of SBS patients with chronic IF, even in the presence of very short bowel (<40cm). Factors predicting successful PN weaning in patients with SBS include longer residual small bowel length and preservation of the ileocaecal valve and/or colon. As survival rates have improved there has been renewed focus on associated health-related outcomes and quality of life in children with IF and their family. Low bone mineral density was reported in 24.3% of children at a median age of 6 years, reduced to 16.2% when corrected for growth failure. Children with IF are at risk of neurocognitive
problems, in particular children born preterm or with short bowel syndrome. Poorer neurodevelopment outcomes were associated with ≥2 episodes of sepsis in the first year of life. IF children may have decreased quality of life measures in physical, emotional and social life domains. Parents of children with short bowel syndrome reported lower health-related quality of life and family relationships compared to parents of other chronically ill hospitalised children.

Intestinal transplantation

Intestinal transplantation has been restricted to children with irreversible intestinal failure suffering from life threatening complications of PN. Transplant options include an isolated small intestine, combined small intestine and liver, and variations involving the stomach, colon, pancreas, kidney or a multi-visceral transplant. With the success of intestinal rehabilitation strategies, the number of paediatric intestinal transplants has decreased in the US from 1500 since 1985 to <50 transplants per year over the past decade. Long-term outcomes have remained relatively stable over this period, overall 1-year and 5-year survival being 60% and 50% respectively, with better outcomes reported in experienced high-volume transplant centres. The leading cause of death post-transplantation is sepsis although other long-term complications, such as chronic renal disease and lymphoproliferative disease, are not uncommon in transplant recipients. Most children with a successful intestinal transplant are able to cease PN although supplemental enteral tube feeding is often still required.

Intestinal transplant listing criteria were recently revised to consider additional factors including home PN outcomes, quality of life and early referral to a transplant program and cost. New disease indications include invasive intra-abdominal desmoids in adolescents and adults, acute diffuse intestinal infarction with hepatic failure and failure of first intestinal transplant. Refinements specific to children are persistent hyperbilirubinemia >75 micromol/L despite use of Omegaven lipid emulsion, presence of non-cholestatic IFALD with portal hypertension, thrombosis of 3 of 4
upper body central veins or occlusion of one brachiocephalic vein in children and life-threatening sepsis or other complications of intestinal failure necessitating 2 or more admissions to an intensive care unit49,50. The frequency and severity of co-morbidities remain an important factor influencing the decision to list individual patients for transplantation48-50.

Conclusion

Intestinal failure (IF) is a complex and devasting condition. Children with IF have improved outcomes when managed at a paediatric centre with specific expertise. Over the past decade, there have been significant advances in medical and surgical approaches to intestinal rehabilitation with the development of centres of excellence in intestinal rehabilitation. The role of intestinal transplantation in the management of the child with IF continues to evolve as an option for children with life-threatening complications of IF.
Acknowledgements

We would like to acknowledge the IF patients and their families who have provided the inspiration for this paper. This work is supported through the Victorian Government Infrastructure Program.

Conflict of Interest:

JEB and AR report no conflict of interest.

JY is a member of the Takeda Paediatric SBS-IF Advisory Board, Takeda Pharmaceuticals.
References

27. Ong ML, Venick RS, Shew SB, Dunn JCY, Reyen L, Grogan T, Calkins KL. Intravenous Fish Oil and Serum Fatty Acid Profiles in Pediatric Patients With

34. Tappenden K. Intestinal adaptation following resection. *JPEN J Parenter Enteral Nutr* 2018; **38**:23S-31S.

<table>
<thead>
<tr>
<th>Type</th>
<th>Characteristics</th>
<th>Level of care required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type I</td>
<td>Relatively temporary
Duration <1 month
Result of illness or recovering from surgery</td>
<td>Acute care hospitals able to administer inpatient PN safely to children</td>
</tr>
<tr>
<td>Type II</td>
<td>Acute condition
Managed with medical and/or surgical intervention
Duration variable but can be months/year
Majority may require long-term PN therapy</td>
<td>Acute care hospitals with experience in complex IF surgery and medical management and able to offer comprehensive IF management working in consultation with an expert IF centre</td>
</tr>
<tr>
<td>Type III</td>
<td>Chronic intestinal failure
Often permanent PN dependency
Home PN</td>
<td>Acute care hospital with specialised multidisciplinary team with expertise in the comprehensive management of patients with chronic IF. Strong links with an intestinal transplant programme</td>
</tr>
</tbody>
</table>

IF = Intestinal failure; PN = Parenteral nutrition
<table>
<thead>
<tr>
<th>Pathophysiology</th>
<th>Cause</th>
<th>Underlying disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduction in small intestinal length or mass</td>
<td>Short bowel syndrome due to</td>
<td>Necrotising enterocolitis</td>
</tr>
<tr>
<td></td>
<td>(i) Surgical resection</td>
<td>Abdominal wall defects including</td>
</tr>
<tr>
<td></td>
<td>(ii) Congenital malformation</td>
<td>Gastroschisis, Omphalocele</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Intestinal atresia/s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Malrotation/Volvulus</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Trauma</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Congenital short bowel syndrome</td>
</tr>
<tr>
<td>Mechanical abnormality of the intestine</td>
<td>Intestinal fistula</td>
<td>Post-surgical complication</td>
</tr>
<tr>
<td></td>
<td>Obstruction</td>
<td>Inflammatory or infective complication</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Intra-abdominal tumour</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Congenital Diaphragmatic hernia</td>
</tr>
<tr>
<td>Intestinal dysmotility</td>
<td>Chronic intestinal pseudo-obstruction</td>
<td>Unknown</td>
</tr>
<tr>
<td></td>
<td>Congenital disorder involving intestinal neurones</td>
<td>Total or sub-total aganglionosis</td>
</tr>
<tr>
<td></td>
<td>Generalised neurological and metabolic disorders</td>
<td>Hollow viscous myopathy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Megacystis, microcolon, intestinal hyperperistalsis syndrome</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Congenital: structural neural defects, severe neurodisability, mitochondrial disorders, congenital glycosolation defects</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Acquired: Injury, Post-neurosurgical</td>
</tr>
<tr>
<td>Extensive small intestinal mucosal disease</td>
<td>Congenital enteropathies</td>
<td>Tufting enteropathy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Microvillus inclusion disease</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Other rare conditions: including</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tetratricopeptide repeat domain 7A</td>
</tr>
</tbody>
</table>
| Severe inflammatory or post-inflammatory intestinal injury | deficiency, Tricohepaticentric syndrome, Diacylglycerol-acyltransferase 1 deficiency
Severe crohns disease
Severe combined immune deficiency (SCID)
Immune-mediated polyendocrinopathy X-linked syndrome (IPEX)
Graft versus host disease
Oncological disease/treatment |
Table 3

Members of the Paediatric Intestinal Failure and Rehabilitation Multidisciplinary Team

<table>
<thead>
<tr>
<th>Professional Group</th>
<th>Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paediatric Gastroenterologist</td>
<td>Inpatient and outpatient medical management, assessment of gastrointestinal function and absorptive status including endoscopy</td>
</tr>
<tr>
<td>Paediatric Surgeon</td>
<td>Gastrointestinal surgery, stomal care, central venous catheter placement, inpatient and outpatient surgical management</td>
</tr>
<tr>
<td>General Paediatrician</td>
<td>Inpatient and outpatient general paediatric care; specific behavioural and learning needs</td>
</tr>
<tr>
<td>Neonatologist</td>
<td>Care of the critically ill newborn</td>
</tr>
<tr>
<td>Interventional radiologist</td>
<td>Central venous line access and care</td>
</tr>
<tr>
<td>Nurse Specialist</td>
<td>Co-ordination of patient care, central venous access device management, Ostomy care, education and training for home care including parenteral and enteral nutrition, support for home PN</td>
</tr>
<tr>
<td>Dietitian</td>
<td>Monitoring of nutritional status, oversight of nutritional intake vs requirements, dietary advice, drug-nutrient interactions, management of enteral nutrition (formulae, equipment etc)</td>
</tr>
<tr>
<td>Pharmacist</td>
<td>Parenteral nutrition prescribing advice, manufacture and dispensing of PN, dispensing other drugs, drug-nutrient interactions</td>
</tr>
<tr>
<td>Social Worker</td>
<td>Social and emotional support to patient and the family, access to social benefits including NDIS, family support packages, emergency housing, carers and respite for families</td>
</tr>
<tr>
<td>Speech Therapist</td>
<td>Oral stimulation and support for early feeding, support for introduction of oral feeding in patients with oral aversion</td>
</tr>
<tr>
<td>Physiotherapist</td>
<td>Stimulation and mobilisation, particularly with prolonged hospitalisation or in association with other disabilities.</td>
</tr>
<tr>
<td>Mental Health professional</td>
<td>Behavioural and individual and family support strategies</td>
</tr>
<tr>
<td>Ward Unit Manager</td>
<td>Coordinate inpatient admissions and inpatient training</td>
</tr>
</tbody>
</table>
Table 4

Intestinal Failure Management

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Aim</th>
<th>Management Approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provision of Safe and Effective Parenteral Nutrition</td>
<td>Optimise nutritional status</td>
<td>Age and condition appropriate PN to meet fluid, electrolyte macro- and micro-nutrient requirements</td>
</tr>
<tr>
<td></td>
<td>Limit PN complications</td>
<td>Balanced PN solutions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prevention of PN contamination</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cycling PN</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Routine monitoring of all aspects of PN provision</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stimulation of enterohepatic circulation (oral/enteral feeding)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Awareness of potential for potential drug-PN interactions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lipid minimisation/use of alternative lipid source</td>
</tr>
<tr>
<td></td>
<td>Limit complications related to central venous access</td>
<td>Training in meticulous line care</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Line placement by experienced personnel</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Line and equipment selection – size, site, type, connectors, lines, filters, pumps etc</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Site care – dressing types, changes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Line locks – ethanol, Tauralock®, antimicrobial</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Anticoagulation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Early identification and appropriate treatment of infection</td>
</tr>
<tr>
<td></td>
<td>Maintain quality of life</td>
<td>Holistic supportive approach to patient and family care</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Adapting to changing needs of the growing child</td>
</tr>
</tbody>
</table>

This article is protected by copyright. All rights reserved.
| Intestinal Rehabilitation | Enhance intestinal adaptive response | Intraluminal nutrition and specific nutrients:
Glutamine, pectin, short and long chain fatty acids
Intestinal secretions:
Pancreatic and bile
Trophic hormones:
Glucagon-like peptide-2, epidermal growth factor, insulin-like growth factor-1, growth hormone, others
Autologous intestinal reconstruction surgery
To improve dysmotility, reduce intestinal stasis
Increase functional absorptive surface area
Prokinetic agents
To improve dysmotility, reduce intestinal stasis
Anti-secretory agents
Reduce fluid, electrolyte and intestinal hormone losses; gastric acid suppression
Pre- and probiotics
Address imbalance of the gut microbiome |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimise factors that may negatively impact on adaptation</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Intestinal Transplantation | Restore enteral autonomy
Cease PN
Eliminate dependency on a central venous access device
Reduced mortality in patients with life threatening complications of IF
Improve quality of life | Isolated intestinal transplant
Intestinal-liver transplant
Gastro-small and large intestinal transplant +/- liver transplant
Multivisceral transplant |
Minerva Access is the Institutional Repository of The University of Melbourne

Author/s:
Yap, JYK; Roberts, AJ; Bines, JE

Title:
Paediatric intestinal failure and transplantation

Date:
2020-11-01

Citation:

Persistent Link:
http://hdl.handle.net/11343/276561