Visible to Long-Wave Infrared Photodetectors based on Copper Tetracyanoquinodimethane (CuTCNQ) Crystals

Sivacarendran Balendhran1,*, Zakir Hussain2, Vivek Shrestha1, Jasper Cadusch1, Ming Ye3, Hyungjin Kim4,5, Rajesh Ramanathan2, James Bullock3, Ali Javey4,5, Vipul Bansal2, and Kenneth B. Crozier1,3,6,*

1School of Physics, The University of Melbourne, Victoria-3010, Australia.
2Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory (NBRL), School of Science, RMIT University, Melbourne, Victoria-3001, Australia.
3Department of Electrical and Electronic Engineering, The University of Melbourne, Victoria-3010, Australia.
4Electrical Engineering and Computer Sciences, University of California at Berkeley, Berkeley, California-94720, USA.
5Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
6ARC Centre of Excellence for Transformative Meta-Optical Systems, University of Melbourne, Victoria-3010, Australia.

Author e-mail address: sbalendhran@unimelb.edu.au, kcrozier@unimelb.edu.au

Abstract: We demonstrate room-temperature photodetectors at wavelengths from visible (450 nm, 532 nm) to near- (850 nm), short-wave (1550 nm), mid-wave (4.5 µm) and long-wave (8.35 µm) infrared. These are based on drop-cast Cu TCNQ crystals. © 2019 The Author(s)

1. Introduction

Semiconductor photodetectors play critical roles in applications that range from imaging to telecommunications, medical sensors and environmental monitoring. These applications span wavelengths from the visible to the long-wave infrared. For commercial systems, typical materials choices for photodetectors are Si for visible wavelengths, InGaAs for optical fiber telecommunication wavelengths and HgCdTe for the mid- and long-wave infrared (IR) [1]. For the latter, commercial photodetectors often require expensive/complex fabrication processes and the devices typically operate at cryogenic temperatures [2]. Many applications would benefit from photodetectors that operate over a wide range of wavelengths at room temperature and that can be manufactured in a simple and cost-effective manner. It has been shown that graphene-based photodetectors deliver broadband high-speed operation [3]. These devices, however, often have modest responsivities and fabrication can be complex.

In this work, we investigate copper tetracyanoquinodimethane (CuTCNQ), a narrow bandgap (~0.137 eV) metal-organic semiconductor [4], for broadband photodetection. Our devices are photoconductors, and show room-temperature photoresponse for various wavelengths that span from the visible (450 nm, 532 nm) to the near-infrared (850 nm), short-wave infrared (1550 nm), the mid-wave infrared (4.5 µm) and the long-wave infrared (8.35 µm). We characterize these devices with modulated illumination and find that their rise time (step response) is on average sub-millisecond (754 µs).

2. Results and Discussions

Fabrication of the device is performed as follows. Interdigitated electrode (IDE) structures are formed on a layer of SiO₂ on an Si substrate by optical lithography, Cr/Au evaporation and the lift-off process. Cu TCNQ crystals are grown through a simple wet-chemical reaction between copper iodide and TCNQ solution in acetonitrile. The as-grown crystals suspended in acetonitrile are drop cast onto the IDE structures. Optical microscope images of the device are shown as Fig. 1a. An IDE architecture (with an electrode gap of 15 µm) is adopted to reduce the transit time of the photogenerated carriers. We next measure the temporal response of the device. The device is illuminated with light from a quantum cascade laser (QCL) at a wavelength of 8.35 µm. The laser is pulsed at a frequency of 20 Hz and has an average power of 26 mW. The temporal response is shown as Fig. 1b. The average rise and fall times are found to be 754 µs and 1.6 ms, respectively. In Fig. 1c, we plot the photocurrent and dark current as a function of bias voltage. The linear trend for the dark current indicates that CuTCNQ forms an Ohmic contact with the electrodes. We observe a slight degradation in channel conductivity, upon prolonged high-power illumination (>20 mW). Consequently, the device bias is varied between experiments (1.32-1.5 V), to achieve a constant dark current. We next characterize the device at additional wavelengths. In Fig. 1d, we show the measured photocurrent as a function of optical power when the device is biased at ~1.5 V, for illumination the following visible and near-infrared wavelengths: 450 nm, 532 nm and 850 nm. In Fig. 1e, we show the photoresponse in the short-wave to the long-wave infrared (1.55, 4.50 and 8.35 µm). The responsivity is calculated by obtaining the gradient of the linear fit to the power-dependent photoresponse and presented as a function of wavelength (Fig. 1f). The peak value responsivity occurs at a wavelength of 850 nm and takes a value of 75.46 µA/W.
3. Conclusions
In summary, we have demonstrated the applicability of CuTCNQ, for room temperature broadband photo detection. The material synthesis and the device fabrication processes are facile. The devices show relatively fast rise times (754 µs). With further improvements to the device architecture (such as p-n heterojunctions), we envision a low-cost photodetector for a wider range of wavelengths, spanning from visible to long-wave infrared.

4. Methods

Material Synthesis: Phase I CuTCNQ crystals are synthesized via a wet chemical reaction between 5 mM each of copper iodide and TCNQ solution in acetonitrile at 75 °C for 3 min [5]. The dark blue crystals are washed with acetonitrile, followed by de-ionized water and dried at room temperature under vacuum.

IDE Device Fabrication: Photolithography is carried out on 300 nm SiO$_2$ (thermal oxide) on doped Si substrates. Electron beam evaporation of Cr/Au (10/100 nm), followed by a lift-off process, is employed to realise the IDE structures. CuTCNQ crystals, suspended in acetonitrile, are drop cast onto the IDE surface. The IDE chip is then packaged into a 28-pin chip carrier.

Device Characterization: IDE devices are biased using a transimpedance amplifier (SRS 570), with the dark current offset to zero. The devices are illuminated using an optically chopped/pulsed light source, and the photocurrent is measured with a lock-in amplifier (SRS 860). Sixteen measurements are obtained at each incident power value. These are averaged. The output optical power of the lasers is attenuated using a linear polariser (450-850 nm lasers) or by varying the laser driving current (1.55-8.35 µm lasers). The optical power incident upon the IDE device is measured using a power meter (Thorlabs, PM100D) equipped with a broad band thermal sensor (Thorlabs, S401C).

5. References
Author/s:
Balendhran, S; Hussain, Z; Shrestha, VR; Cadusch, J; Ye, M; Kim, H; Ramanathan, R; Bullock, J; Javey, A; Bansal, V; Crozier, KB

Title:
Visible to Long-Wave Infrared Photodetectors based on Copper Tetracyanoquinodimethane (CuTCNQ) Crystals

Date:
2020-08-01

Citation:

Persistent Link:
http://hdl.handle.net/11343/294867