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Abstract— This paper studies the delay-accuracy
trade-off for an unconstrained quadratic Network Util-
ity Maximization (NUM) problem, which is solved
by a distributed, consensus based, constant step-
size, gradient-descent algorithm. Information theo-
retic tools such as entropy power inequality are used
to analyse the convergence rate of the algorithm
under quantised inter-agent communication. A finite-
time distributed algorithm is proposed to solve the
problem under synchronised message passing. For a
system with N agents, the algorithm reaches any
desired accuracy within 2N iterations, by adjusting
the step-size, α. However, if N is quite large or if
the agents are constrained by their memory or com-
putational capacities, asymptotic convergence algo-
rithms are preferred to arrive within a permissible
neighbourhood of the optimal solution. The analytical
tools and algorithms developed shed light to delay-
accuracy trade-off required for many real-time IoT
applications, e.g., smart traffic control and smart grid.
As an illustrative example, we use our algorithm to
implement an intersection management application,
where distributed computation and communication
capabilities of smart vehicles and road side units
increase the efficiency of an intersection.

I. INTRODUCTION
Large-scale deployment of interconnected sensors and/or
actuators is an integral part of Internet of Things (IoT).
Among the many striking applications of IoT are smart
grid and smart transportation [1]. For example, consider
smart traffic control in which vehicles and traffic lights
collaborate together to implement smooth traffic flow in a
city. Such systems, where computing, communication and
control technologies are tightly integrated, are broadly
categorised as cyber-physical systems (CPS) [2]. CPS
requires data from sensor networks to be processed in
real-time, as they have to be associated with the control
of physical systems. For an efficient operation of such a
system, control operation has to be taken by each system
agent within fraction of a second. For instance, in a smart
traffic control application, if the leading vehicle in a lane
has to slow down for some reason, all the vehicles in the
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lane should reduce speed as soon as possible.
Due to scalability and delay constraints for real-time

applications mentioned earlier, it is preferred to solve the
problem in a distributed manner, i.e., without assigning
any central node to collect and process the data from each
agents. Many problems requiring distributed processing
of large data sets can be posed in the framework of convex
optimization [3]. For example, resource allocation subject
to various constraints related to fairness and efficiency has
been formulated as network utility maximization (NUM)
problems [4], where agents try to optimise the global
objective of maximizing aggregate utility. Further, smart
objects should attain global objectives with acceptable
latency, using limited local communication, computing
and memory capabilities. Thus, distributed IoT algo-
rithms have to be developed to reach at a predetermined
neighbourhood of the optimum solution within a limited
number of iterations, as required by different applications.

In real-time applications such as smart transportation
and smart grid, the underlying communication graph and
channel conditions affect the rate of convergence to the
optimal solution. It is hence worthwhile studying the
effect of graph and channel impairments on algorithm
performance.
A. Contributions
In this work, we analyse the performance of a constant
step-size based decentralised gradient-descent algorithm
under imperfect channel conditions. The algorithm yields
a near optimal solution for an unconstrained NUM
problem, where agents try to maximise the sum of their
quadratic objective functions. In every iteration, each
agent, in parallel, performs an averaging and updating
step. It first collects the quantised estimates of system
variables from its neighbours and does weighted averaging
in order to obtain an estimate.

Next, it updates its estimate of the system variables,
following a simple constant step-size, gradient-descent
on its local objective function. Since the capacity of the
wireless communication channel is limited, the agents can
only exchange quantised versions of the system variables.
Thus, we consider limited bandwidth of channel, analyse
its convergence properties using information theoretic
tool of conditional differential entropy, for optimum
achieving quantisation schemes. In contrast to the previ-
ous works, whose results are mainly limited to specific
quantisation schemes, our bounds are applicable for a
general class of quantisation schemes. Our analysis reveals



the relationship between the underlying communication
graph, quantised channel and the maximum rate of
convergence attainable for a consensus-based, constant
step-size, gradient-descent algorithm.

The real-time constraints of the problem require us
to estimate the number of iterations required by the
algorithm to reach within an ε proximity of the optimum
solution. It is well known that the limit point of the
asymptotically converging algorithm reaches the optimum
value as the step-size tends to zero [5]. We propose a
decentralised method, to attain the limit point of constant
step-size based gradient descent algorithm in less than
2N iterations, where N is the number of agents in the
system. In that sense, our method can be indeed treated
as a finite-time distributed optimisation algorithm for
unconstrained quadratic NUM problems. There is little
emphasis in the literature on distributed algorithms that
obtain an optimum solution in a fixed number of time
steps.

As an illustrative example, we consider a simple
intersection management problem, in which a group of
vehicles, along with road side units (RSU), distributively
decide on their lane velocities so as to efficiently and
safely utilise the intersection.
B. Literature Review
Convergence rate estimates explicitly characterise the
accuracy of the generated approximate optimal solutions
to the number of iteration required for an asymptotically
converging optimisation algorithm. The authors of [3]
and [4] have analytically obtained the convergence rate
estimates for their corresponding algorithms. Further,
convergence of a constant step-size based decentralised
gradient descent algorithm under perfect channel condi-
tions has been analysed in [5].

Authors of [6] study the performance degradation of
a class of averaging problem, over time-varying topolo-
gies, when exchanged data is quantised to their nearest
quantisation values. An incremental quantisation method
is proposed in [7] for a group of distributed optimisation
problem. Analysis of a distributed sub-gradient algorithm
operating under a zooming-in technique based quantiser
was done in [8].

However, the results developed in these papers are
algorithm specific, i.e., they are valid only for a particular
set of algorithms implemented using specific quantisation
schemes. A universal (quantisation scheme independent)
bound on the rate of exponential mean square conver-
gence is obtained by [9]. They analysed the primal-dual
algorithm, under quantised message passing between
agents and the system (bipartite graph topology). In
particular, the information theoretic concept of entropy
power inequality is used to derive the bound. We extend
this work to a totally distributed system implementing
consensus based, constant step-size, gradient-descent
algorithm.

In the context of smart transportation applications,

authors of [10] suggest a traffic lighting pattern that
creates a “green wave”. They advise to delay green lights
at each intersection if a sufficiently large convoy is not
formed, and conclude that convoys can improve the traffic
flow when the large empty areas between the convoys are
effectively used by crossing convoys with few interferences.
The problem of convoy formation is considered in [11],
[12], with the objective of maintaining a fixed distance
among agents of a vehicular network. Here all vehicles in
a convoy have to adjust to the velocity of the lead vehicle.
In order to find the most suited velocity for the convoy,
our proposed algorithm can be run on top of such basic
convoy forming algorithm.
C. Notation
A stands for matrix. Ai and Aj are the ith column and
jth row of A. Ai,j is the (i, j)th element of A. v and v
represent column vectors and scalars, respectively. vi is
the ith element of v. vi is the estimate of v by node i. |X|
denotes cardinality of X. h[z|A = a] is the conditional
differential entropy of variable z, given, variable A takes
the value a. We use the terms agents, nodes, vehicles
interchangeably in this paper. 1n ∈ RN is the column
vector with all elements 1.

The remaining sections of the paper are organised as
follows. Section II gives the underlying communication
network model and the optimization problem. Section III
discusses the convergence of the proposed distributed al-
gorithm to a near neighbourhood of the optimum solution.
Effect of quantised communication on our algorithm is
studied in Section IV. An alternate finite-time approach
to compute the solution for unconstrained quadratic NUM
problem is explained in Section V. Especially, we present
an illustrative application of smart traffic intersection
management using our algorithm and the simulation
details in Section VI. Section VII is dedicated to the
result discussion, followed by the concluding remarks in
Section VIII.

II. SYSTEM MODEL AND PROBLEM
FORMULATION

This section describes the mathematical formulations of
underlying communication network and the optimisation
problem we are going to solve.
A. Inter-Agent Communication Model
The communication network among agents (here, vehicles
in a cluster) can be modelled using an undirected graph,
G = (N ,E ), consisting of the set of nodes (vehicles) N =
{1, ..., n} connected by a set of edges E , where each edge
{i, j} is an ordered pair of distinct nodes. The graph is
assumed to be static and connected. Let Ni denote the
set of neighbours of node i. W is a doubly stochastic
weight matrix. Wi,j > 0, iff {i, j} ∈ E , meaning i, j
are neighbours; Wi,j = 0, otherwise. There are numerous
choices for this weight matrix, e.g., the authors of [13]
explain a simple method to compute W in a distributed
manner. In more details, if all agents have an estimate
of the total number of agents in the system or an upper



limit of N , each agent i could choose its weight vector
independently as

Wi,j =


1
N , if j ∈ Ni

0, if j /∈ Ni, j 6= i

1−
∑
k∈Ni

Wi,k, if j = i

B. The Optimization Problem
In this paper, an unconstrained NUM problem, where
a group of agents tries to cooperatively maximise the
aggregate of their individual objectives is studied. The
system will then jointly compute the solution of the
following optimization problem:

maximise F (x) =
N∑
i=1

ai
2 x

2 + cix (1)

where x is the global decision variable (in our example,
velocity of the convoy). The parameters, ai ≤ 0, ci ∈ R,
and N = |N | is the number of agents. The objective
function above is concave and the coupling is attained
through a global variable x. Thus, the optimization prob-
lem (1) can be solved using standard convex optimization
techniques. We use the consensus based, constant step-
size, gradient-descent algorithm similar to [5] in order to
obtain the solution for (1) distributively. The step-size
can be chosen based on the delay-accuracy requirement
of various applications, as explained later in the paper.
The algorithm can be implemented iteratively as,

yi(k) =
N∑
j=1

Wi,jxj(k − 1) (2)

xi(k) = yi(k) + α(aiyi(k) + ci) (3)
where xi(k) is the estimate of global variable x, by agent
i at the instant k. Let x(k) denote the column vector
whose elements are xi(k). For ease of analysis, the values
of all nodes at time-step k will be aggregated into the
value vector, x(k) = [x1(k) x2(k) ... xN (k)]T . After each
iteration the state of the system can be described using
x(k),

x(k) = (I + αDiag(a))Wx(k− 1) + αc (4)
where Diag(a) is a diagonal matrix with its diagonal
entries as elements of vector a.

III. CONVERGENCE OF THE ALGORITHM
Convergence of the iterative algorithm, implemented
using (4) to a near optimal point, for generalized NUM

problems of the form: minimise F (x) =
N∑
i=1

fi(x), where
∇fi is Lipschitz continuous with constant Lfi > 0, has
been proved in [5]. They define the average objective
error as r̄(k) := f̄(x̄(k) − f̄∗), where x̄(k) = 1

n

∑
xi(k)

and f̄(x) = 1
nF (x). Theorem 2 in [5], when applied to

our quadratic NUM problem, leads to
Theorem 1: For a quadratic NUM problem of the

form (1), if the step-size, α < 2
maxi |ai| , the objective error

r̄(k) reduces at a rate of O( 1
αk ) until it converges to an

O( α
(1−β) )- neighbourhood of the optimal solution, where

β < 1 is the second largest eigenvalue of the weight matrix,
W. Further, from Theorem 1 in [5], for k large enough,
|xi(k) − x̄(k)| < αD

(1−β) , where D, the upper bound for∑
∇fi(xi(k)), is proved finite.

From Theorem 1, it can be seen that the algorithm attains
geometric convergence, and the convergence rate can be
adjusted by choosing higher values of α. Now we are
to find the point, xlimit, to which the sequence x(k)
converges. Substituting x(k) = x(k− 1) = xlimit in (4)
yields

xlimit = (I + αDiag(a))Wxlimit + αc (5)
=⇒ (I−W− αDiag(a)W)xlimit = αc (6)

=⇒ xlimit = α(I−W− αDiag(a)W)−1c (7)
= α(I−DW)−1c (8)

where D = I + αDiag(a).
As we reduce the step-size, we move more and more close
towards the optimum solution. It is evident from our
results that the error of the limit point, εlimit, decreases
with step-size. Thus, we will be able to attain a trade-off
between accuracy and the rate of convergence, by varying
the design parameter, α. The smaller the constant step-
size, the more accurate the solution will be at the expense
of a slower convergence rate.

IV. IMPACT OF QUANTISED INTER-AGENT
COMMUNICATION

Let us consider the effect of finite channel capacity
and quantisation in the above mentioned optimization
scenario. Each node, i ∈ N , communicates xi(k) to its
neighbour, j ∈ Ni. A digital channel is assumed between
all the nodes. Quantisers, Qk{i,j}(xi(k)) : R → Ak{i,j} is
used by agent i to quantise its estimates to be shared with
agent j at time k. Each Ak{i,j} is a finite set representing
the range of Qk{i,j}(xi(k)). The asymptotic average data
rate [14] of the link (i, j), r{i,j} ∈ R is defined as,

r{i,j} = lim sup
k→∞

1
k

k−1∑
t=0

log|At{i,j}| (9)

The quantised version of updates in (3) at each agent i
can be written as

xi(k) = (1 + αai)WiQk−1
{∗,i}(x(k − 1)) + αci (10)

where, Qk{∗,i}(x(k)) = [Qk{1,i}(x1(k)) · · ·Qk{j,i}(xj(k)) · · ·
Qk{N,i}(xN (k))]T and Wi is the ith row of W.

A. Optimum Achieving Quantisation Scheme
Since our scheme converges to a value in the neighbour-
hood of the optimum solution, we modify the definition
accordingly for optimum achieving quantisation scheme
proposed in [9].

Definition 1: The quantisation scheme Qa is called
an optimum achieving (OA) quantisation scheme if,
under Qa, the sequence generated by the update rule
converges to the same limit, i.e., xlimit irrespective of the
introduction of quantisation. i.e., lim

k→∞
x(k) = xlimit.



Let us assume optimum achieving quantisation scheme is
being implemented. We could define ‖ek‖2 as the total
distance between values of the system variables at time
k and their limit values, i.e.,

‖ek‖2 =

√√√√ N∑
i=1

(xi(k)− xlimit i)2 (11)

We assume that the vector x0 is randomly drawn accord-
ing to the probability density function px0(x) with finite
entropy. Then, the average error norm square at time k
under the quantisation scheme Q is defined as E[‖ek‖2

2].
We define error decay exponent (EDE), as in [9], to
measure the convergence rate, i.e., lim inf

k→∞
1
k logE[||εk||22].

Note that EDE is a non-positive quantity, and a more
negative EDE implies faster convergence to the limit point.
We obtain a lower bound of EDE in the above defined
scenario.

Theorem 2: A lower bound of EDE for the constant
step size distributed optimization algorithm is

lim inf
k→∞

1
k

logE[||εk||22] ≥ (12)

2
N

(( N∑
i=1

log(1 + αai)
)

+ log|det(W)| −
N∑

i,j=1,i6=j
ri,j

)
B. Proof of Theorem 2
The following is a proof on lower bound of EDE. The
differential entropy power of z ∈ RN conditioned on the
event A = a, N[z|A = a] can be defined as N[z|A = a] =

1
2πee

2
N h[z|A=a]. Given A = a, the average conditional

entropy power of z, that is, EA[N[z|A = a]] can be upper
bounded as in [14],

EA[N[z|A = a]] ≤ e 1
N−1E[||z||22] (13)

Let Dk−1
i,j = {Qn{i,j}(xi(n)) = q{i,j}(n)}k−1

n=0, where
q{i,j}(n) is a possible output of scheme Q{i,j} at time
n. Also, let Dk−1

i = {Dk−1
i,j |j ∈ Ni} and Dk−1 =

{Dk−1
1 , Dk−1

2 ...Dk−1
n }.

Using (13), E[||εk||22] can be lower bounded as:
E[||εk||22] ≥ e1− 1

N EA[N[εk|Dk−1]] (14)

≥ e1− 1
N

2πe e
2
N E[h[εk|Dk−1]] (15)

(15) follows from Jensen inequality. Now,
h[εk|Dk−1] = h[xk − xlimit|Dk−1] (16)

= h[xk|Dk−1] (17)
(17) follows from translation invariance property of dif-
ferential entropy.
h[xk|Dk−1] = h[(I + αDiag(a))Wxk−1 + αc|Dk−1]

=
N∑
i=1

log(1 + αai) + log|det(W)|+ h[xk−1|Dk−1] (18)

= h[x0|Dk−1] +
k−1∑
n=0

(( M∑
i=1

log(1 + αai)
)

+ log|det(W)|
)

(19)
We use translation invariance property of differential

entropy and the fact that h[Tz] = log|det(T)| + h[z]
in (18) to obtain (19). The following lemma from [14]
gives a lower bound on E[h[xk|Dk−1]].

Lemma 1: The average conditional entropy of x0
given Dk−1 i.e., ED[h[x0|Dk−1]], can be lower bounded
as

ED[h[x0|Dk−1]] ≥ h[x0]−
k−1∑
n=0

(
N∑
j=1

N∑
i=1,i6=j

log|An{i,j}|)

Applying Lemma 1 in (19), we have
E[h[xk|Dk−1]] ≥ E[h[x0]]+

k−1∑
n=0

(( M∑
i=1

log(1 + αai)
)

+ log|det(W)|
)
−

(
N∑
j=1

N∑
i=1,i6=j

log|An{i,j}|)) (20)

Using Equations (15), (17) and (20), and the assumption
that px0(x) has finite entropy, we could obtain lower
bound of EDE as,

lim inf
k→∞

1
k
logE[||εk||22] ≥

2
N

(
( M∑
i=1

log(1 + αai)
)

+ log|det(W)| −
N∑

i,j=1,i6=j
ri,j)

�

Remark 1: It should be noted that our theorem does
not impose any restriction on the structure of the quan-
tiser used (many previous studies are focused on uniform
quantisation), rather it is applicable to any optimum
achieving quantisation scheme. In that sense, ours is a
universal lower bound.

The lower bound obtained in Theorem 2 is controlled
by the number of agents, the slope of objective function,
weight matrix and average aggregate data rate under
quantisation scheme. Determinant of weight matrix in-
deed depends on the underlying graph structure.

V. DECENTRALISED SOLUTION IN FINITE
NUMBER OF ITERATIONS

This section explores the methods to compute xlimit
distributively in finite number of iterations. In [13],
authors solve a consensus problem of the form x(k + 1) =
WN×N x(k), where WN×N is an N ×N weight matrix,
in N + 1 iterations. They utilise minimal polynomial of
WN×N to distributively compute the consensus value.
Since our optimisation problem has a similar structure,
we could also solve this unconstrained quadratic NUM
problem in 2N iterations, using a similar approach.
Equation (4) can be rewritten as,

x(k) = Bx(k− 1) + αc (21)
where B = (I + αDiag(a))W.

The characteristic polynomial of B has degree D < N .
i.e., BD +αD−1BD−1 + ....α1B +α0I = 0. Therefore, for



all k > 0, we have
x(k + D)
= Bx(k +D − 1) + αc (22)
= B2x(k +D − 2) + (B + I)αc
....

= BDx(k) + (
D−1∑
j=1

Bj + I)αc

= −(αD−1BD−1 + · · ·α1B + α0I)x(k) + (
D−1∑
j=1

Bj + I)αc

= −(αD−1x(k +D − 1) + · · ·α1x(k + 1) + α0x(k))

−
(D−1∑
i=2

αi

i∑
j=1

(Bj + I) + α1αc−
D−1∑
j=1

(Bj + I)
)
αc

= −(αD−1x(k +D − 1) + · · ·α1x(k + 1) + α0x(k))− ĉ
(23)

where ĉ =
(D−1∑
i=2

αi
i∑

j=1
(Bj + I)+α1αc−

D−1∑
j=1

(Bj+I)
)
αc

is a constant vector. Thus, for all 1 ≤ i ≤ N , satisfies a
linear difference equation of the form

xi(k +D) =− (αD−1xi(k +D − 1) + · · ·
α1xi(k + 1) + α0xi(k))− ĉi (24)

It can be seen from Section III that xi(k + D + 1)
converges to a limit point, i.e., k → ∞,xi(k + n) =
xlimiti, for finite n. If we know αD−1, · · ·α1 and ĉi, the
limit point can be easily found as in [15], from the
recurrence relation (24).
xlimiti = −(αD−1xlimiti + · · ·α1xlimiti + α0xlimiti)− ĉi

=⇒ xlimiti = −ĉi

1 +
D−1∑
d=0

αd

(25)

A. Decentralised Calculation of The Minimal Polynomial
We now explain how each agent could compute the
unknowns, αD−1, · · ·α1 and ĉi, in a distributed manner.
We assume that each agent knows N (or an upper limit
on N). Initially by assuming that D = N , the agent
has to update and communicate the system variables
for 2 ∗ (N + 1) iterations of the asymptotic converging
algorithm following (4). Thus, providing N + 1 equations
of the form (24), from which the unknowns can be
estimated. Each agent takes N equations of the form (24)
and expresses them in a matrix form as xi(N + 1)

...
xi(2N)

 = Mxi

 αD−1
...α0
ĉi

 (26)

where Mxi = −

 xi(N) · · · xi(0) 1
...

xi(2N − 1) · · · xi(N) 1

.

Remark 2: It should be noted that agents can stop

iterations when the matrix, Mxi , loses rank. The rank of
Mxi will be D + 1. Because D + 1 linearly independent
equations of (26) can be used to solved for D+1 unknowns,
a maximum of N +D+ 1 iterations are required to reach
the limit value. An alternative approach, for distributed
computation of the minimal polynomial, which requires
utmost (N + 1)× (N + 2) iterations is proposed in [13].

Further, the limit, N + D − 1, is independent of the
choice of α. Hence, ideally, one can choose α to be
arbitrarily small and thereby reach arbitrarily close to
the optimum solution in N +D − 1 iterations.
B. Finite-Time vs. Asymptotic Convergence: Application

Perspective
The permissible error is supposed to be ε, We know that
the initial values of the system variables lie within a
range of δ from the optimum solution. Then, the error
estimate for asymptotic convergence algorithm after 2N
iterations will be maxi(|1−α|ai||)2Nδ+‖xlimit−xopt‖. It
is worth pointing out that our finite-time algorithm could
attain desired accuracy within 2N iterations, by using
small enough values of α. If application allows for a delay
of 2N iterations and the agents have sufficient memory
and computing capacities, the finite-time convergence
algorithm is always preferred to asymptotic convergence
algorithm.

VI. INTERSECTION MANAGEMENT IN
SMART TRAFFIC

This section shows the practicality of our proposed
algorithm through intersection management as a smart
transportation application, where clusters of smart ve-
hicles negotiate for an intersection slot with the aid
of Road Side Units (RSUs) and adjust their velocities
accordingly. Each vehicle arriving at the intersection may
have a desired velocity (e.g., set by user in cruise control).
Further, all vehicles are not equally willing to deviate from
their preferred velocity (Factors like mass, dynamics of
the vehicles, fuel economy etc. decide the willingness of a
vehicle to vary its velocity). Therefore, utility (happiness)
of vehicle i, at a particular velocity can be modelled using
a quadratic utility function of the form fi(x) = ai

2 x
2 +cix,

where x is the global decision variable (i.e., velocity of
the convoy). In our case, we set ai ≤ 0 to be −a and ci to
be a ∗ v, where a and v are the acceleration and desired
velocity of vehicle i. The overall problem of intersection
management is decomposed in to several sub-problems,
using dual decomposition techniques [16]. The master
problem (running at RSUs) solves for the constraints
and passes a corresponding Lagrangian to each vehicle
cluster (sub-problems). Each vehicle cluster then solves
an unconstrained quadratic NUM problem and updates
the master regarding their updates.
VII. NUMERICAL RESULTS AND DISCUSSION
In order to validate Theorem 2, a sparse network with 5
agents was assumed. Each agent uses 2 bits to quantise
its estimate before transmitting to its neighbours. We



calculated a lower bound of EDE to be −9.7564. It
can be seen from Fig. 1 that the EDE is well above
the bounds estimated using Theorem 2. For the above
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Fig. 1: Log(Mean Square Error) divided by k versus time
index under quantisation scheme Qa
mentioned sparse network with 5 agents, using the
algorithm mentioned in Section V, we were able to
compute exactly the limit values of convergence in a
decentralised manner in finite number of iterations. In
our case, the degree of the characteristic polynomial, D,
was found to be 5 for all the agents. D is directly linked
to the gradient of the individual objective functions and
the structure of the graph. Further, the upper limit on
D is the number of agents, N , in the system. Fig. 2
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Fig. 2: Comparing convergence of x to near optimal solu-
tion in case of Finite-time algorithm and asymptotically
converging algorithm for varying step-size α values.
compares the convergence of finite-time and asymptotic
converging algorithms, with step-size .04 and .004, to a
near optimal solution. Both the algorithms reach a near
optimal solution, and the accuracy of the solution reduces
with increasing step-size value, α. It has to be noted that
the finite-time algorithm could compute the limit point
of the corresponding asymptotic algorithm, in N + D
iterations, irrespective of the step-size.

VIII. CONCLUSION
In this paper, we analysed an unconstrained quadratic
NUM problem in which a group of agents distributively
seeks to maximise the sum of their individual utility
functions using a consensus based, constant step-size,
gradient descent algorithm. First, the effect of quantised
inter-agent communication on the performance of the
algorithm using the notion of differential entropy power

is analysed. An upper bound on the rate of convergence
of the algorithm was established, which depends on
the number of agents, the slope of objective function,
weight matrix and average aggregate data rate under the
quantisation scheme.

Further, a finite-time version of the same algorithm
was proposed. It was shown that the algorithm could
estimate the global optimum value with desired accuracy
in less than 2N iterations. Considering the delay-accuracy
trade-off of real-time IoT algorithms, for systems with
fewer number of agents, it is preferable to switch to the
finite-time optimisation scheme. Asymptotic convergence
scheme is better if N is large or when the agents are con-
strained by memory or processing power. A smart traffic
intersection management application was briefly included
to illustrate our algorithm for practical operation.
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