This is the author manuscript accepted for publication and has undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1111/AJO.13113

This article is protected by copyright. All rights reserved
Prediction of preterm pre-eclampsia at midpregnancy using a multivariable screening algorithm

Dr Carin BLACK1,2, Daniel Lorber ROLNIK4,7, Ahmed AL-AMIN5,6, Stefan C. KANE1,2,5, Caroline STOLAREK1, Adrienne WHITE1, Fabricio DA SILVA COSTA3,4, Shaun BRENNECKE1,2

1. Pregnancy Research Centre, Department of Maternal-Fetal Medicine, Royal Women’s Hospital, Parkville, Victoria, Australia
2. The University of Melbourne, Department of Obstetrics and Gynaecology, The Royal Women’s Hospital, Parkville, Victoria, Australia
3. Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
4. Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
5. Pauline Gandel Imaging Centre, Royal Women’s Hospital, Parkville, Victoria, Australia
6. Monash Ultrasound for Women, Clayton, Victoria, Australia
7. Perinatal Services, Monash Medical Centre, Clayton, Victoria, Australia

Position Titles and Email Addresses:

Dr Carin Black (MBBS, FRANZCOG, MPhil), Obstetrician: carinblack@gmail.com, ORCID 0000-0002-1541-106X

Dr Ahmed Al-Amin (MD, FRANZCOG, DDU), Obstetrician, Gynaecologist and Sonologist: ahmed.alamin@hotmail.com.

This article is protected by copyright. All rights reserved
Dr Daniel Rolnik (MSc, MD, PhD), Obstetrician, Research Clinician:
daniel.rolnik2@gmail.com, ORCID 0000-0002-2263-3592

Dr Stefan Kane (MBBS, BA, BMedSc, FRANZCOG, CMFM, DDU), Obstetrician, PhD Schol: Stefan.Kane@thewomens.org.au, ORCID 0000-0002-5172-3263

Ms Adrienne White (Dip App Sci, BN, Grad Dip Ed (adults), MMidwifery), Clinical Research Midwife: Adrienne.White@thewomens.org.au

Dr Caroline Stolarek (MBBS, BMedSc), Registrar: carolinestolarek@gmail.com

A/Prof Fabricio da Silva Costa (MD, MSc, PhD, FRANZCOG, DDU, COGU, Diploma in Fetal Medicine (FMF, UK),) Associate Professor, Obstetrician, Gynaecologist and Sonologist:
Fabricio.dasilvacosta@monash.edu, ORCID 0000-0002-0765-7780

Prof Shaun Brennecke (BA, BMedSci(Hons), MB BS, DPhil(Oxon), FRANZCOG), Director of Department of Maternal-Fetal Medicine: s.brennecke@unimelb.edu.au, ORCID 0000-0003-3070-6971

Corresponding author:

Dr Carin Black

Pregnancy Research Centre, Department of Maternal-Fetal Medicine,

Royal Women’s Hospital,

20 Flemington Road,

Parkville, VIC 3052

Australia.

Ph: +61404030759.

Email: carinblack@gmail.com

Conflicts of interest: The authors report no conflicts of interest.

This article is protected by copyright. All rights reserved.
Title: Prediction of preterm pre-eclampsia at midpregnancy using a multivariable screening algorithm

Short title: Midpregnancy prediction of pre-eclampsia

Word Count: Abstract 246, Main text 2471

Table count: 2

Figure count: 3

Supplementary Tables: 2

Keywords: pre-eclampsia, prediction, second trimester, placental growth factor (PlGF), multivariable algorithm
Abstract

Background: Competing risk models used for midpregnancy prediction of preterm pre-eclampsia have shown detection rates (DR) of 85%, at fixed false-positive rate (FPR) of 10%. The full algorithm used between 19+0 and 24+6 weeks includes maternal factors, mean arterial pressure (MAP), mean uterine artery pulsatility index (UtAPI), serum placental growth factor (PlGF) level in multiples of the median (MoM), and soluble Fms-like tyrosine kinase-1 (sFlt-1) level in MoM.

Aims: to assess performance of the Fetal Medicine Foundation (FMF) algorithm at midpregnancy to screen for preterm (<37 weeks’) pre-eclampsia. The outcome measured was preterm pre-eclampsia.

Materials and Methods: Prospective study including singleton pregnancies 19-22 weeks’ gestation. Maternal bloods were collected and analysed using three different immunoassay platforms. Maternal characteristics, medical history, MAP, mean UtAPI, serum PlGF MoM and serum sFlt-1 MoM were used for risk assessment. DR and FPR were calculated, and receiver operating characteristic curves produced.

Results: 512 patients were included. Incidence of preterm pre-eclampsia was 1.6%. Using predicted risk of pre-eclampsia of 1 in 60 or more and 1 in 100 or higher, as given by the FMF predictive algorithm, the combination with the best predictive performance for preterm pre-eclampsia included maternal factors, MAP, UtAPI and PlGF MoM, giving DR’s 100% and 100%, respectively, and FPR’s 9.3 for all platforms and 12.9-13.5, respectively. Addition
of sFlt-1 to the algorithm did not appear to improve performance. sFlt-1 MoM and PlGF MoM values obtained on the different platforms performed very similarly.

Conclusions: Second trimester combined screening for preterm pre-eclampsia by maternal history, MAP, mean UtAPI and PlGF MoM using the FMF algorithm performed very well in this patient population.

INTRODUCTION

Pre-eclampsia is a multisystem disorder affecting 3% of pregnancies in Australia 1, responsible for maternal and perinatal morbidity and mortality 2. Current evidence indicates that midpregnancy screening for pre-eclampsia may be less useful than first trimester screening, as the window of opportunity for women considered high risk for pre-eclampsia to benefit from aspirin administration will have diminished $^{3, 4}$. However, given that up to one third of patients in Australia commence antenatal care beyond 14 weeks’ gestation 5, midpregnancy screening would still prove useful, avoiding unnecessary interventions in low risk women and ensuring that those at high risk are triaged to appropriate models of care.

Traditionally, pre-eclampsia risk assessment has been based on maternal demographic characteristics and medical and obstetric history, collectively referred to as maternal factors. These traditional methods, whilst inexpensive and requiring minimal resources, have poor detection rates (DR) and high false positive rates (FPR) $^{6, 7}$. Within the last decade, multivariable prediction algorithms have shown superior performance for the prediction of pre-eclampsia than the traditional approach of screening with maternal history alone 6. The Fetal Medicine Foundation (FMF) in the United Kingdom has devised a multivariable algorithm for prediction of pre-eclampsia, based on a competing risks model 8. The FMF algorithm calculates the individual risk of developing pre-eclampsia, similar to screening for fetal chromosomal abnormalities. This calculation takes into account maternal characteristics

This article is protected by copyright. All rights reserved
(such as weight, height, ethnicity), medical history (chronic hypertension, SLE, etc), obstetric history (parity, previous pre-eclampsia), and family history (mother with pre-eclampsia) to estimate the background or a priori risk. This predicted risk is then adjusted according to the results of biophysical markers (uterine artery Doppler, mean arterial pressure) and biochemical markers (PlGF, sFlt-1), and the final risk is reported. This algorithm has been validated and calibrated in several different patient populations and is available online at www.fetalmedicine.org. When used between 19+0 and 24+6 weeks, markers required for the full algorithm include maternal factors, mean arterial pressure (MAP), mean uterine artery pulsatility index (UtAPI), serum placental growth factor (PlGF) level in multiples of the median (MoM), and soluble Fms-like tyrosine kinase-1 (sFlt1) level in MoM.

Previous studies using algorithms for the prediction of preterm and early-onset pre-eclampsia in the second trimester, defined as pre-eclampsia requiring delivery <37 weeks’ and <32 weeks’, respectively, have shown detection rates of around 85% and 99%, respectively, at a fixed false-positive rate of 10%. The FMF clinical algorithm has been previously validated in the Australian population for first trimester screening for pre-eclampsia. The present study aims to assess the clinical validity of using this algorithm to screen for preterm pre-eclampsia between 19 and 22 weeks’ gestation within a similar Australian population.

MATERIALS AND METHODS

Study population

This was a prospective observational study in singleton pregnancies. Women booking for antenatal care between 19 and 22 weeks’ gestation at The Royal Women’s Hospital in Melbourne, Australia, between June 2012 and January 2015 were eligible. Gestational age was confirmed by crown-rump length measured in the first trimester. Women with multiple
pregnancies, major fetal anomalies, fetal aneuploidy, fetal death or pregnancy loss prior to 24 weeks’ gestation were excluded, as were women with substantial missing outcome data.

Study participants represented the general pregnant population, but were required to be able to give written informed consent in English. The study was approved by the Royal Women’s Hospital Research and Ethics Committee (project approval number 11/23). Study data were collected and managed using REDCap (Research Electronic Data Capture) tools hosted at The University of Melbourne.

Baseline characteristics and confirmation of eligibility were obtained through participant interview. Pregnancy outcomes were determined and diagnosis of pre-eclampsia was confirmed or excluded by review of individual medical records by two independent adjudicators.

Pre-eclampsia was defined according to the International Society for the Study of Hypertension in Pregnancy (ISSHP) research definition, as de novo hypertension (systolic BP ≥140mmHg and/or diastolic BP ≥90mmHg) after 20 weeks’ gestation, plus proteinuria, defined as ≥300mg per day on 24 hour collection or a spot protein/creatinine ratio ≥30mg/mmol. While the ISSHP guidelines have since been revised, the guidelines published in 2014 were applicable at the time this study was designed and conducted. Pre-eclampsia was classified according to gestation at delivery as 1) early-onset pre-eclampsia (<34 weeks); 2) preterm pre-eclampsia (<37 weeks) or 3) term pre-eclampsia (≥37 weeks). In women with pre-existing hypertension, worsening of hypertension, defined by a rise in systolic blood pressure of 20mmHg above baseline, and an increase in proteinuria from their baseline protein to creatinine ratio resulted in a diagnosis of pre-eclampsia.
Blood sample collection and storage

A single blood sample was collected from each participant at recruitment. A volume of 10mL of maternal blood was drawn and divided between non-heparinised, silicone coated tubes for serum samples and ethylenediaminetetraacetic acid (EDTA) tubes for plasma samples. Samples were centrifuged and transferred into plain polypropylene tubes and stored as serum or plasma at -80°C until the time of analysis. Sample analysis was undertaken by one technician blinded to clinical outcomes.

Immunoassay platforms

Single measurements for each patient were performed on each of three immunoassay platforms between April 2015 and February 2017 in the following order:

1) DELFIA® Xpress (Perkin Elmer, Inc. Wallac Oy, Turku, Finland): PI GF only,
2) cobas® e 411 (Roche Diagnostics, GmbH): PI GF and sFlt-1, and

Sample analysis was performed according to manufacturer’s instructions for each platform. Inter- and intra-assay CVs obtained within our laboratory fell within an acceptable range to demonstrate minimal variation between samples tested.

Maternal demographic characteristics and medical, obstetric and family history were recorded at enrolment, as were values for MAP, following two measurements taken from each arm according to a previously published technique. A standardised colour Doppler technique was used to measure the right and left UtAPI by transabdominal ultrasound and the
average value was recorded \(^{19,20}\). These ultrasound parameters were obtained at the time of
the routine morphology scan.

Statistical analysis

Patient baseline characteristics were compared using the Mann-Whitney U test for continuous
variables and Fisher’s exact test for categorical variables. Data were assessed for normality
and found to be non-parametric. After logarithmic transformation, the results for PlGF, sFlt-1
and the sFlt-1/PlGF ratio from each immunoassay platform were adjusted for maternal
characteristics found to significantly influence the logarithmic results on backward stepwise
linear regression analysis and expressed as multiples of the expected median (MoM).

Individual patient risk calculations for preterm pre-eclampsia, using the FMF multivariable
algorithm, were undertaken retrospectively at the completion of the study by the same
clinician (DR), who was blinded to patient outcomes. Maternal characteristics required for
the purpose of the algorithm included maternal date of birth, height, weight, racial origin,
smoking status, conception method, parity, history of maternal pre-eclampsia, history of
chronic hypertension, diabetes, systemic lupus erythematosus or antiphospholipid syndrome.

Screening performance for different combinations was then evaluated using receiver
operating characteristic (ROC) curves. Sensitivities and specificities at risk cut-offs of 1 in 60
and 1 in 100 were evaluated to compare predictive performance using DR and FPR for
preterm (<37 weeks) pre-eclampsia. Data analysis was performed using Microsoft® Excel™
2016 (Redmond, Washington, USA) and IBM Statistical Package for the Social Sciences (SPSS) Version 24 (Armonk, New York, USA).

RESULTS

Descriptive Statistics

There were 600 patients recruited for the overall research study, and of these, 88 (14.6%) were excluded from analysis. Seven exclusions occurred due to diagnosis of aneuploidy or major fetal anomaly, and 81 exclusions were due to incomplete data, leaving 512 patients for inclusion in the analysis (Figure 1). There were 25 patients (4.9%) with pre-eclampsia, including 17 patients (3.3%) with term pre-eclampsia (≥37 weeks), 8 patients (1.6%) with preterm pre-eclampsia (<37 weeks) and 3 patients (0.6%) with early-onset pre-eclampsia (<34 weeks). The group who developed preterm pre-eclampsia included those who developed early-onset pre-eclampsia.

Baseline demographic and clinical characteristics of the study population are summarised in Table 1. Baseline demographic and clinical characteristics of the study population are summarised in Table 1. The majority of patients were white (75.4%), with the minority (8.6%, 8.0% and 3.5%) being East Asian, South Asian and Black, respectively. The majority of patients (45.5%) were in the healthy weight category, with 32.8% being overweight and 21.1% being obese.
ROC curves of predicted risks using the FMF algorithm for prediction of pre-eclampsia using combined values for maternal history, MAP, UtAPI MoM and PIGF MoM +/- sFlt-1 MoM are shown in Figures 2 and 3. DR and FPR using predicted risk of pre-eclampsia of 1 in 60 or more and 1 in 100 or higher before 37 weeks and areas under the curve (AUC) are summarised in Table 2.

Maternal factors alone in this patient population performed well based on AUC. The addition of PIGF MoM significantly improved the AUC compared with use of maternal factors alone, with further addition of MAP and UtAPI resulting in excellent AUC’s. sFlt-1 MoM and PIGF MoM values obtained on the different platforms performed very similarly.

The best markers for prediction of preterm pre-eclampsia for the patient population in this study were UtAPI and PIGF MoM, hence combinations including these two markers demonstrated the best predictive performance (Table 2 and Supplementary Table S1). AUC was not significantly improved by the addition of sFlt-1 MoM to the algorithm.

AUC for prediction of preterm and early-onset pre-eclampsia using maternal factors, MAP, UtAPI and PIGF MoM from one of the three platforms were 0.983-0.984 (Table 2) and 0.971-0.974 (Supplementary Table S2), respectively.

As shown in Table 2 and Supplementary Table S1, the addition of PIGF MoM halved the FPR compared to maternal factors and UtAPI alone and reduced the FPR by a further 30% compared to using maternal factors, MAP and UtAPI. PPV’s using the multivariable algorithm was significantly higher than that when using biomarkers alone (Supplementary Table S2).

This article is protected by copyright. All rights reserved
DISCUSSION

A cut-off of 1 in 100 for preterm pre-eclampsia results in a screen positive rate of about 10%, and the fact that this cut-off has been utilised in larger studies4,10-13 was the reason we chose it for our study. In this study population using a screen positive as a risk of 1 in 100, for the 512 participants, 76 (14.8%) screened positive, of which 8 (1.6%) were true positives and 68 (13.2%) were false positives. We also decided to evaluate a higher risk group defined by a cut-off of 1 in 60, as this would identify approximately 5% of the population at higher risk of preterm pre-eclampsia. Using predicted risk of pre-eclampsia of 1 in 60 or more and 1 in 100 or higher, as given by the FMF predictive algorithm, the combination with the best predictive performance for preterm pre-eclampsia included maternal factors, MAP, UtAPI and PlGF MoM, giving DR of 100% and 100%, respectively, and FPR 9.3 and 12.9-13.5, respectively. Addition of sFlt-1 to the algorithm did not appear to improve performance. sFlt-1 MoM and PlGF MoM values obtained on the different platforms performed very similarly.

Given that no single screening test for pre-eclampsia to date has demonstrated adequate performance for international health authorities to recommend use in everyday clinical practice, many researchers have combined tests in attempt to improve overall predictive value6, 7, 9, 11, 12, 21-24. By using multiple parameters, pathological biochemical and biophysical abnormalities behind this multifactorial condition are more likely to be captured and hence prove beneficial in a screening setting. Combining risk factors into an algorithm to provide an individualised risk assessment has been shown to be significantly more effective than screening by maternal factors alone. Gallo in 201511 used a competing risks model in 8079 pregnancies between 19-24 weeks gestation and reported that screening by maternal factors only predicted 52%, 47% and 37% of pre-eclampsia at <32, <37 and ≥37 weeks’ gestation,
respectively, for a FPR of 10%. The respective values for combined screening with maternal factors, MAP, UtAPI and PlGF MoM were 99%, 85% and 46%, with no further improvement in performance with the addition of sFlt-1. Al-Amin 2018 used the same patient population as ours to compare the performance of the NICE (National Institute for Health and Clinical Excellence) and ACOG (American College of Obstetricians and Gynecologists 2013) guidelines for the prediction of pre-eclampsia using the multivariable FMF algorithm between 19-22 weeks’ gestation including maternal history, MAP and UtAPI without the use of biochemical markers. They showed that DR using the FMF algorithm showed far superior performance over maternal factors alone, with DR for prediction of preterm pre-eclampsia 75%, 87%, 100% and 100% for NICE guidelines, ACOG recommendations, FMF algorithm with a cut-off 1 in 60 and FMF algorithm with a cut-off 1 in 100, respectively. The addition of PlGF MoM from one of the three platforms to the FMF algorithm in the present study could not further improve this DR but resulted in lower FPR’s. Using a cut-off value 1 in 60, 100% cases of early-onset and preterm pre-eclampsia were detected with FPR 9.3% across all three platforms. At a cut-off of 1 in 100, 100% cases of early-onset and preterm pre-eclampsia were detected with FPR 12.9-13.5 across the three platforms.

In agreement with the study by Gallo in 2015, addition of sFlt-1 MoM did not significantly improve the predictive performance of the algorithm, which was expected given that sFlt-1 values were not significantly different in affected and unaffected pregnancies for the prediction of pre-eclampsia within our patient cohort. It would therefore be reasonable to exclude sFlt-1 MoM from the algorithm in order to minimise costs and resources and recommend that screening for preterm pre-eclampsia with the FMF algorithm, using maternal history, MAP, UtAPI and PlGF MoM gives the best predictive performance at 19-22 weeks’ gestation.
Screening for preterm pre-eclampsia using the FMF multivariable algorithm significantly improved DR and lowered FPR compared with use of biomarkers alone, results which have been previously reported \(^{27}\). PPV using the multivariable algorithm in the present study was significantly higher than that when using biomarkers alone, with values between 22\% and 24\%. When using the FMF algorithm including PlGF MoM for the prediction of preterm pre-eclampsia, all 8 cases of preterm pre-eclampsia were detected, with no false negatives.

The implementation of a multivariable algorithm should prove feasible within a tertiary hospital setting. Recording of maternal factors should be routinely arranged at pregnancy booking. Measurement of MAP can easily be performed by healthcare professionals after minimal training using inexpensive blood pressure devices \(^{18}\). Measurement of UtAPI requires specific training for sonographers but can be performed relatively quickly during the routine midpregnancy morphology scan \(^{20}\). Conversion of raw data values to MoM and pre-eclampsia risk calculation requires expertise with this technique. Regular ongoing audits for quality assurance of biomarker measurement would need to be implemented, along with auditing of pregnancy outcomes.

Adding PlGF MoM levels to this algorithm would incur costs associated with collection and analysis of blood results, commercial immunoassay machines and consumables. Whilst a formal cost-benefit analysis is required, the lower FPR observed by adding PlGF MoM to the model would reduce costs of unnecessary monitoring and could justify the cost of addition of PlGF MoM to the algorithm. The lower FPR may also reduce anxiety associated with a positive test result \(^{28}\).
Use of the FMF algorithm at midpregnancy to determine whether patients are at high risk or low risk for the development of preterm pre-eclampsia has multiple advantages over screening methods currently used in everyday clinical practice, which tend to detect pre-eclampsia only once symptoms arise beyond 20 weeks’ gestation. Clinically, prophylactic agents shown to reduce the risk of pre-eclampsia include low-dose aspirin and calcium commenced in the first or early second trimester. Other benefits in stratifying pre-eclampsia risk in midpregnancy include triaging to appropriate models of care, enhanced surveillance for those at high risk, and reassurance for those who screen negative. From a research perspective, accurate prediction of preterm pre-eclampsia aids recruitment for future studies investigating prophylactic or therapeutic agents for pre-eclampsia, or the validation of additional predictive markers. Outcomes of such studies have the potential to improve current understanding and management of this complex disease.

The strengths of this study included: 1) two independent adjudicators checking patient outcomes; 2) use of fully automated platforms to optimise accuracy of results; 3) one technician for blood sample analysis, blinded to outcomes throughout testing and 4) conversion of biomarker levels to MoM. Limitations included: 1) small sample size, particularly for preterm (8 patients) and early-onset (3 patients) pre-eclampsia. Another potential limitation was the increasing proportion of previously thawed samples when using the second (Cobas) and third (Kryptor) analysers, however, in a previous paper published by our group (submitted for publication), there did not appear to be any marked difference in results obtained for samples that had undergone up to five freeze-thaw cycles.

Screening at midpregnancy for the development of preterm pre-eclampsia using the multivariable FMF algorithm, incorporating maternal factors, MAP, UtAPI and PI GF MoM,
appears to be effective within an Australian population, with superior performance compared with screening using PlGF or the sFlt-1/PlGF ratio alone. Whilst the addition of PlGF reduced the false-positive rate and different platforms performed equally well, the use of sFlt-1 was not useful. Future studies comparing patients who are screened with this algorithm with those undergoing usual care are required to determine the extent to which combined screening may optimise clinical outcomes.
TABLE AND FIGURE LEGENDS

Table 1. Characteristics of the study population for midpregnancy prediction of pre-eclampsia

Table 2. Detection rates (DR) and False-positive rates (FPR) for preterm pre-eclampsia using different combinations of biophysical and biochemical markers with maternal factors. MAP = mean arterial pressure. UtAPI = mean uterine artery pulsatility index. AUC = area under the receiver operating characteristics curve.

Figure 1. Consort Observational Study Diagram

Figure 2. ROC curves using the FMF algorithm for prediction of pre-eclampsia using combined values for maternal history, MAP, UtAPI MoM and PlGF MoM for Delfia, Cobas and Kryptor platforms.

Figure 3. ROC curves using the FMF algorithm for prediction of pre-eclampsia using combined values for maternal history, MAP, UtAPI MoM, PlGF MoM and sFlt-1 MoM for Cobas and Kryptor platforms.

Supplementary Table S1. Detection rates (DR) and False-positive rates (FPR) for preterm pre-eclampsia using different combinations of biophysical and biochemical markers with maternal factors.

Supplementary Table S2. Prediction of preterm pre-eclampsia using the FMF algorithm, combining values for maternal history, MAP, UAPI MoM, PlGF MoM +/- sFlt-1 MoM values.
REFERENCES

This article is protected by copyright. All rights reserved

<table>
<thead>
<tr>
<th>Maternal Characteristics</th>
<th>Unaffected (n=487)</th>
<th>PE < 34 weeks (n=3)</th>
<th>PE < 37 weeks (n=8)</th>
<th>PE ≥ 37 weeks (n=17)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maternal age in years</td>
<td>35.4 (31.2-38.3)</td>
<td>35.7 (33.3-36.9)</td>
<td>33.8 (30.0-36.0)</td>
<td>33.1 (29.5-35.4)</td>
</tr>
<tr>
<td>Maternal weight in kg</td>
<td>68.2 (62.0-78.0) *</td>
<td>96.0 (84.0-97.0) *</td>
<td>85.5 (70.5-97.0) *</td>
<td>76.0 (64.0-93.0) *</td>
</tr>
<tr>
<td>Maternal height in cm</td>
<td>164.8 (160.0-169.0)</td>
<td>164.0 (160.0-167.3)</td>
<td>163.3 (157.8-169.3)</td>
<td>164 (163-167)</td>
</tr>
<tr>
<td>BMI</td>
<td>25.2 (23.0-28.4) *</td>
<td>33.7 (30.3-36.6) *</td>
<td>32.1 (27.3-34.8) *</td>
<td>28.7 (23.8-34.6) *</td>
</tr>
<tr>
<td>GA in weeks</td>
<td>20.3 (20.0-20.9)</td>
<td>20.7 (20.4-21.0)</td>
<td>20.3 (20.1-21.0)</td>
<td>20.6 (20.1-21.3)</td>
</tr>
<tr>
<td>GA at delivery</td>
<td>39.3 (38.1-40.4)</td>
<td>30.1 (29.2-31.1)</td>
<td>35.9 (31.1-36.3)</td>
<td>38.14 (37.7-39.1)</td>
</tr>
<tr>
<td>Racial origin, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caucasian</td>
<td>366 (75.2)</td>
<td>2 (66.6)</td>
<td>5.0 (62.5)</td>
<td>15.0 (88.2)</td>
</tr>
<tr>
<td>Afro-Caribbean</td>
<td>17.0 (3.5)</td>
<td>0.0</td>
<td>1.0 (12.5)</td>
<td>0.0</td>
</tr>
<tr>
<td>South Asian</td>
<td>40.0 (8.2)</td>
<td>0.0</td>
<td>1.0 (12.5)</td>
<td>0.0</td>
</tr>
<tr>
<td>East Asian</td>
<td>41.0 (8.4)</td>
<td>1 (33.3)</td>
<td>1.0 (12.5)</td>
<td>2.0 (11.8)</td>
</tr>
<tr>
<td>Mixed</td>
<td>23.0 (4.7)</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Medical History, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chronic hypertension</td>
<td>17 (3.5)</td>
<td>1 (33.3)</td>
<td>3 (37.5) *</td>
<td>0.0</td>
</tr>
<tr>
<td>Diabetes Mellitus, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type 1</td>
<td>14 (2.9)</td>
<td>1 (33.3)</td>
<td>1 (12.5)</td>
<td>3 (17.6) *</td>
</tr>
<tr>
<td>Type 2</td>
<td>8 (1.6)</td>
<td>0.0</td>
<td>1 (12.5)</td>
<td>0.0</td>
</tr>
<tr>
<td>Gestational Diabetes</td>
<td>22 (4.5)</td>
<td>0.0</td>
<td>2 (25.0)</td>
<td>0.0</td>
</tr>
<tr>
<td>SLE</td>
<td>2 (0.4)</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>APS</td>
<td>3 (0.6)</td>
<td>0.0</td>
<td>0.0</td>
<td>1 (5.9)</td>
</tr>
<tr>
<td>Cigarette smokers, n (%)</td>
<td>33 (6.8)</td>
<td>0.0</td>
<td>1 (12.5)</td>
<td>2 (11.8)</td>
</tr>
<tr>
<td>Family history of PE, n (%)</td>
<td>33 (6.8)</td>
<td>0.0</td>
<td>0.0</td>
<td>1 (5.9)</td>
</tr>
<tr>
<td>Parity, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nulliparous</td>
<td>206 (42.3)</td>
<td>1 (33.3)</td>
<td>1 (12.5)</td>
<td>11 (64.7)</td>
</tr>
<tr>
<td>Parous with no previous PE</td>
<td>248 (50.9)</td>
<td>2 (66.6)</td>
<td>4 (50.0)</td>
<td>4 (23.5)</td>
</tr>
<tr>
<td>Parous with previous PE</td>
<td>33 (6.8)</td>
<td>0.0</td>
<td>3 (37.5) *</td>
<td>2 (11.8)</td>
</tr>
<tr>
<td>Infant Characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Birthweight (g) *</td>
<td>3351.0 (3028.0-3690.0)</td>
<td>1193.0 (1088.0-1244.0) *</td>
<td>2114.0 (1244.0-3161.5)*</td>
<td>3420.0 (3192.0-3680.0)</td>
</tr>
<tr>
<td>Data entered into FMF algorithm</td>
<td>AUC</td>
<td>Cut-Off 1/50</td>
<td>Cut-Off 1/100</td>
<td>FPR 5%</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>------</td>
<td>------------------</td>
<td>----------------</td>
<td>--------</td>
</tr>
<tr>
<td>Maternal factors</td>
<td>0.847</td>
<td>DR (%)</td>
<td>FPR (%)</td>
<td>DR (%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>75.0</td>
<td>14.3</td>
<td>87.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>75.0</td>
<td>75.0</td>
<td>75.0</td>
</tr>
<tr>
<td>Maternal factors with:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UtAPI + DELFIA® Xpress PIGF MoM</td>
<td>0.987</td>
<td>100</td>
<td>10.1</td>
<td>100</td>
</tr>
<tr>
<td>UtAPI + cobas® e 411 PIGF MoM</td>
<td>0.988</td>
<td>100</td>
<td>10.3</td>
<td>100</td>
</tr>
<tr>
<td>UtAPI + KRYPTOR PIGF MoM</td>
<td>0.988</td>
<td>100</td>
<td>9.9</td>
<td>100</td>
</tr>
<tr>
<td>UtAPI + cobas® e 411 sFlt-1 MoM</td>
<td>0.974</td>
<td>100</td>
<td>15.7</td>
<td>100</td>
</tr>
<tr>
<td>UtAPI + KRYPTOR sFlt-1 MoM</td>
<td>0.974</td>
<td>100</td>
<td>15.7</td>
<td>100</td>
</tr>
<tr>
<td>UtAPI + cobas® e 411 PIGF MoM + cobas® e 411 sFlt-1 MoM</td>
<td>0.988</td>
<td>100</td>
<td>9.9</td>
<td>100</td>
</tr>
<tr>
<td>UtAPI + KRYPTOR PIGF MoM + KRYPTOR sFlt-1 MoM</td>
<td>0.988</td>
<td>100</td>
<td>10.1</td>
<td>100</td>
</tr>
<tr>
<td>MAP + UtAPI + DELFIA® Xpress PIGF MoM</td>
<td>0.984</td>
<td>100</td>
<td>8.1</td>
<td>100</td>
</tr>
<tr>
<td>MAP + UtAPI + cobas® e 411 PIGF MoM</td>
<td>0.984</td>
<td>100</td>
<td>7.9</td>
<td>100</td>
</tr>
<tr>
<td>MAP + UtAPI + KRYPTOR PIGF MoM</td>
<td>0.983</td>
<td>100</td>
<td>7.9</td>
<td>100</td>
</tr>
<tr>
<td>MAP + UtAPI + cobas® e 411 sFlt-1 MoM</td>
<td>0.972</td>
<td>87.5</td>
<td>10.9</td>
<td>100</td>
</tr>
<tr>
<td>MAP + UtAPI + KRYPTOR sFlt-1 MoM</td>
<td>0.974</td>
<td>87.5</td>
<td>10.9</td>
<td>100</td>
</tr>
<tr>
<td>MAP + UtAPI + KRYPTOR PIGF MoM + cobas® e 411 sFlt-1 MoM</td>
<td>0.985</td>
<td>100</td>
<td>8.1</td>
<td>100</td>
</tr>
<tr>
<td>MAP + UtAPI + KRYPTOR sFlt-1 MoM</td>
<td>0.983</td>
<td>100</td>
<td>7.7</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 2. Detection rates (DR) and False-positive rates (FPR) for preterm pre-eclampsia using different combinations of biophysical and biochemical markers with maternal factors. MAP = mean arterial pressure. UtAPI = mean uterine artery pulsatility index. AUC = area under the receiver operating characteristics curve.
Figure 1. Patients who developed preeclampsia from those included for analysis.

* 7 excluded due to aneuploidy or major fetal anomaly
 81 excluded due to incomplete data
512 patients included for analysis
25 (4.9%) developed preeclampsia
17 (3.3%) cases term PE*
8 (1.6%) cases preterm PE^
3 (0.6%) cases early onset PE^

* Term PE = ≥37 weeks
^ Preterm PE = <37 weeks
* Early onset PE = <34 weeks
Figure 2. ROC curves using the FMF algorithm for prediction of pre-eclampsia using combined values for maternal history, MAP, UtAPI MoM and PI GF MoM for Delfia, Cobas and Kryptor platforms.
Figure 3. ROC curves using the FMF algorithm for prediction of pre-eclampsia using combined values for maternal history, MAP, UtAPI MoM, PI GF MoM and sFlt-1 MoM for Cobas and Kryptor platforms.
Minerva Access is the Institutional Repository of The University of Melbourne

Author/s:
Black, C; Rolnik, DL; Al-Amin, A; Kane, SC; Stolarek, C; White, A; Da Silva Costa, F; Brennecke, S

Title:
Prediction of preterm pre-eclampsia at midpregnancy using a multivariable screening algorithm

Date:
2020-10-01

Citation:

Persistent Link:
http://hdl.handle.net/11343/273324