Osteochondral fragmentation of the palmarolateral/plantarolateral aspect of the distal phalanx in four horses: a novel location

K. A. Lloyd*, M. R. W. Smithb, R. C. Whittona, A. W. Stenta and C. M. Steela

aFaculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, Victoria, Australia and bNewmarket Equine Hospital, Newmarket, UK.

*Corresponding author email: kristenlloyd.vet@gmail.com

Keywords: horse; articular; distal interphalangeal joint; fragment

Running Head: Osteochondral fragmentation of the distal phalanx

Summary

Four horses presenting for lameness were diagnosed with unilateral osteochondral fragmentation (OCF) of the palmarolateral/plantarolateral aspect of the distal phalanx within the distal interphalangeal joint (DIPJ). Histologic evaluation of one case supported a diagnosis of osteochondritis dissecans (OCD), with patient age and history from two cases suggesting a traumatic origin. Lesion appearance on conventional radiography, computed tomography (CT), nuclear scintigraphy and magnetic resonance imaging (MRI) are described. Fragmentation was best identified on dorsal 65° proximal-palmaro/plantarodistal oblique (D65°PrPIO/D65°PrPDO) and dorsal 65° proximal-palmaro/plantarodistal lateral
oblique (D65°Pr45°L-PDiMO/D65°Pr45°L-PDiMO) radiographic projections of the foot, but articular pathology appeared more severe on cross-sectional imaging modalities. In all cases lameness was refractory to conservative management. Arthroscopic evaluation of the DIPJ was performed in three horses, although the lesion was inaccessible in two. In one horse access to the lesion was possible due to increased joint laxity, presumably due to concurrent soft tissue injury. One horse was euthanased after failed conservative management, one was pasture sound following palmar digital neurectomy 12 months after initial presentation, one returned to racing and one was lost to follow up. Osteochondral fragmentation at this location has not previously been described, treatment options are limited and the prognosis appears to be poor.

Introduction

Osteochondral fragmentation (OCF) in horses can result from acute traumatic injury, as a failure of the subchondral bone secondary to chronic loading and bone material fatigue (Tidswell et al. 2008), or in the case of osteochondrosis dissecans (OCD) due to failure of endochondral ossification (Stock et al. 2005; van Weeren 2012). The subsequent loss of congruity at the joint surface, intra-articular debris and resulting synovitis can cause lameness and lead to osteoarthritis, providing a rationale for attempting surgical removal soon after diagnosis (McIlwraith et al. 2012; Graham et al. 2020).

Diagnosis of OCF is commonly made from radiographic findings, although limitations exist, with Vanderperren et al. (2009) demonstrating that the number and location of OCF identified on radiographs was in agreement with arthroscopic findings in only 44% of cases. Kannegieter and Burbidge (1990) found better agreement between OCF identification in the equine carpus, but additional lesions were still identified in 18% of cases on arthroscopy that were not observed on pre-operative radiographs. Additional radiographic projections or the use of complementary imaging using ultrasonography, CT or MRI with superior bone and soft tissue contrast may therefore be required for accurate diagnosis prior to surgical assessment.

The purpose of this report is to describe the clinical findings, diagnosis, attempted treatment and outcome in four horses presenting with unilateral fore- or hindlimb lameness diagnosed with OCF in a previously unreported location at the lateral, palmaro- or plantaro-proximal aspect of the articular surface of the distal phalanx. Suspected aetiopathogeneses are
discussed, together with the histopathologic appearance of one horse’s lesion on post-mortem examination.

Case History and Presentation

Cases varied in age (range 2 to 20-years-old) and duration of lameness from acute in onset to approximately 6 months duration. All cases presented with DIPJ effusion and were positive to distal limb flexion. Diagnostic analgesia localised the lameness to the distal limb, and in some cases more specifically to the DIPJ. Patient signalment, use, history and clinical findings are provided in Table 1.

Diagnostic Imaging

A summary of pertinent diagnostic imaging findings on radiographic examination, CT, MRI and nuclear scintigraphy are provided in Table 2, with the region of interest for each being the distal limb below the level of the proximal interphalangeal joint. The OCF was best observed on D65°PrPDO or D65°Pr45°L-PDiMO (forelimb) and D65°PrPIO or D65°Pr45°L-PDiMO (hindlimb) radiographic projections (Figure 1). Additional information regarding imaging techniques including machine details and images obtained are provided in Supplementary Item 1.

Surgical Treatment and Outcome

Attempts at surgical removal of the OCF via arthroscopy of the DIPJ in three cases, in addition to adjunct treatment and case outcomes are summarised in Table 3. The OCF in two cases were deemed surgically inaccessible and their outcome was poor. In case three, lesion access was possible given an increase in joint laxity suspected to be due to concurrent soft tissue injury such as joint capsular disruption, although this was not definitively diagnosed. The OCF was left in situ despite arthroscopic access given its extensive attachment to the distal sesamoidean impar ligament (Figure 4). This horse subsequently had a successfully racing career. The owners of one case declined surgical treatment and elected humane euthanasia.

Post Mortem and Histopathology

Post-mortem examination was performed in one horse (case two). The distal phalanx was decalcified and representative cross-sections of the lesion were obtained for histopathology. Cartilage clefts dissected between the articular cartilage and subchondral bone in the affected region, with an occasional fissure extending to the articular surface (Figure 5). The surrounding cartilage was fragmented and degenerate with hypertrophy and nesting of the remaining chondrocytes. The surface cartilage displayed mild fibrillation but
was otherwise unremarkable. Based on the characteristic histological features, a diagnosis of OCD of the palmar aspect of the distal phalanx was made.

Discussion

This report describes four cases of OCF of the palmaro- or plantaro-lateral aspect of the distal phalanx causing lameness in the horse. The OCF was visualised radiographically, albeit not on routine projections indicating such lesions have the potential to be overlooked. Furthermore, it was difficult to differentiate the source of the fragmentation given the superimposition of the distal and middle phalanges, and the distal sesamoid bone. CT was performed in all cases and revealed a greater extent of bone pathology. For example, in case one a second OCF was identified on the adjacent distal sesamoid bone that had not been appreciated by conventional radiography. In the case that had subsequent MRI, additional soft tissue injury in the form of distal sesamoidean impar and lateral collateral ligament desmitis was also observed. Evaluation of horses presenting with lameness localised to the foot, or more specifically the DIPJ using diagnostic local anaesthesia should include both D65°PrPDiO or D65°PrPIDiO and D65°Pr45°L-PDiMO or D65°Pr45°L-PIDiMO radiographic projections, and when fragmentation of the palmar articular margin is suspected, include complimentary CT and/or MRI if available with an understanding that concurrent soft tissue injury may be present.

Histologic examination of one case was consistent with an underlying pathogenesis involving OCD, yet the signalment and imaging findings from two other cases suggested a traumatic aetiopathogenesis. Whether these lesions are primarily traumatic in origin or related to OCD, with or without a concurrent traumatic component, is unknown. The signlament of these cases does not favour either aetiology. It would be unlikely a lesion of developmental origin in this location would remain clinically quiescent for twenty years (case four), yet the younger age of cases one and two with lameness noted at the onset of training coupled with supporting histopathology suggest OCD. Also, the acute onset of lameness in case three with the extensive nature of the fragmentation (plantar articular margin of the distal phalanx, entire lateral margin of the distal sesamoid bone) suggest a traumatic aetiology. Traumatic OCF could be secondary to avulsion or compressive load, as would theoretically occur when a horse kicks out a wall or solid structure. This could potentially result in impact of the plantar rim of the distal phalanx against the distal articular surface of the middle phalanx. There is insufficient evidence in the existing literature coupled with the cases presented here to
support a singular aetiology, and further investigation with additional histopathology is required.

Of the three horses for which surgical treatment was attempted, lesions were not accessible arthroscopically in two. Arthroscopic evaluation of the palmar pouch of the DIPJ is recognised to be restricted to the proximal rim of the distal sesamoid bone and condyles of the middle phalanx, and the adjacent soft tissue structures (McIlwraith et al. 2015). Although not reported in the literature, OCF of the palmar/plantar aspect of the distal phalanx has been recognised previously (A. Nixon, personal communication 2017) and removal via a palmar arthroscopic approach has similarly been attempted with little success. It is suspected that the successful placement of the arthroscopic canula in a two-year-old Thoroughbred was due to concurrent unidentified soft tissue damage such as capsular disruption allowing for greater distraction of the distal sesamoid bone and middle phalanx (Figure 4), although MRI was not performed to confirm soft tissue involvement. In a different case, a collateral sesamoidean ligament desmotomy facilitated placing the arthroscope and instrument between the middle phalanx and distal sesamoid bone, but debridement of the lesion remained impossible. One author (M.R.W.S.) has additionally used a solar approach with a trephine to successfully access a lesion on the distal phalanx adjacent to the abaxial margin of the deep digital flexor tendon, but the open navicular bursa and DIPJ deterred the author from using this approach again. Case one underwent a biaxial palmar digital neurectomy of the affected limb, and while this surgical option may provide a paddock sound animal it would preclude the horse from competition and may result in complications including recurrence of lameness, neuroma formation, and rarely rupture of the deep digital flexor tendon and laminitis (Jackman et al. 1993; Matthews et al. 2003).

Although apparently uncommon, OCF of the palmaro- or plantaro-proximal aspect of the distal phalanx should be considered in horses with lameness localised to the foot or DIPJ. In the cases presented here, lesions were best identified on dorsal 65° proximal palmar/plantarodistal lareral or medial oblique radiographic projections. CT was superior to conventional radiography in providing details of lesion location and extent of fragmentation, and MRI provided information about concurrent soft tissue injury. A definitive cause could not be determined as signalment, patient presentation and histopathological findings suggested both a primary traumatic aetiology and OCD may be possible. Although one horse had a successful racing career following arthroscopic debridement, given the surgical inaccessibility in most cases and osteoarthritic change within the DIPJ identified on imaging, we conclude the prognosis for future soundness in these cases is poor.
Authors' declarations of interest
No conflicts of interest have been declared.

Ethical animal research
Owner consent was obtained for all aspects of case management; institutional animal ethics approval was not required.

Source of funding
No funding was received.

Antimicrobial Stewardship Policy
Authors declare no off label antimicrobial use.

Acknowledgements
The authors would like to thank Kane Wilson for his assistance with image acquisition and processing.

Authorship
All authors contributed to case diagnosis, treatment and management. The report was drafted by K. Lloyd and revised by the other authors. The final document was approved by all authors prior to submission.

Manufacturer’s addresses
1Aspen Australia, St Leonards, New South Wales, Australia.
2Randlab Australia Pty. Ltd, Chipping Norton, New South Wales, Australia.

Tables
<table>
<thead>
<tr>
<th>Case</th>
<th>Signalment</th>
<th>Use</th>
<th>History</th>
<th>Clinical Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5-year-old Warmblood gelding</td>
<td>Show-jumping</td>
<td>RF lameness of 6 months duration resolved with intra-articular local anaesthesia of the DIPJ by referring veterinarian; medicating DIPJ with TA ([Kenacort] 10mg i.a) improved but did not resolve lameness prior to referral.</td>
<td>Moderate RF lameness (AAEP grade 3/5), moderate DIPJ effusion, positive distal limb flexion. Palmar digital nerve combined with dorsal branch perineural anaesthesia eliminated lameness.</td>
</tr>
<tr>
<td>2</td>
<td>3-year-old Warmblood gelding</td>
<td>Unbroken</td>
<td>LF lameness of several months duration observed while being broken to saddle</td>
<td>Moderate LF lameness (AAEP grade 2/5), moderate DIPJ effusion, positive distal limb flexion. Palmar digital nerve combined with dorsal branch perineural anaesthesia eliminated lameness.</td>
</tr>
<tr>
<td>3</td>
<td>2-year-old Thoroughbred colt</td>
<td>Racing</td>
<td>Acute onset of LH lameness during training, referred for nuclear scintigraphy</td>
<td>Moderate LH lameness (AAEP grade 3/5), moderate effusion of DIPJ. Horse was referred for nuclear scintigraphy.</td>
</tr>
<tr>
<td>4</td>
<td>20-year-old Arab X Welsh mare</td>
<td>Pleasure</td>
<td>Chronic RH lameness of more than 6 months duration</td>
<td>Moderate RH lameness (AAEP grade 3/5). Negative response to plantar digital analgesia, yet intra-articular DIPJ analgesia provided good improvement.</td>
</tr>
</tbody>
</table>

Table 1: Signalment and details of four horses presenting for unilateral limb lameness of various durations with clinical findings [RF = right forelimb; DIPJ = distal interphalangeal joint; TA = triamcinolone acetate; AAEP = American Association of Equine Practitioners, [Stashak 2002]; LF = left forelimb; LH = left hindlimb, RH = right hindlimb]
<table>
<thead>
<tr>
<th>Case</th>
<th>Radiography</th>
<th>Computed Tomography</th>
<th>Further Diagnostics</th>
<th>Interpretation and Diagnosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>OCF identified at the palmarolateral aspect of the articular surface of the distal phalanx, adjacent to the axial border of the lateral palmar process (Figure 1).</td>
<td>OCF identified with surrounding hyperattenuation in the distal phalanx (w: 6 mm, l: 5 mm, h: 10 mm). A second OCF with mild displacement associated with the lateral angle of the distal sesamoid bone was also observed (w: 7 mm, l: 3 mm, h: 4 mm). Mild periarticular osteophyte formation at the dorsoproximolateral margin and enthesophyte formation at the lateral extremity of the distal sesamoid bone.</td>
<td>Nil.</td>
<td>Moderate OCF of the palmarolateral distal phalanx with associated OA of the DIPJ.</td>
</tr>
<tr>
<td>2</td>
<td>OCF palmarolateral aspect of the articular surface of the distal phalanx, axial to the lateral palmar process. Subchondral</td>
<td>Large, irregularly margined, shallow bone defect (w: 13 mm, l: 6 mm) at the palmarolateral aspect of the distal phalanx, with a</td>
<td>MRI: OCF palmarolateral aspect of the articular surface of the distal phalanx axial to the lateral palmar process, with a hyperintense line</td>
<td>Moderate-marked OCF of the palmarolateral distal phalanx, with associated OA of the DIPJ.</td>
</tr>
<tr>
<td>ovoid lucency with increased radiopacity distal to the fragment.</td>
<td>surrounding area of moderate hyperattenuation (Figure 2). Within the defect extending palmarly, there were multiple areas of OCF. Fragments had smooth margins and were minimally displaced.</td>
<td>extending distally towards the solar surface on T1W (Figure 3). The adjacent distal phalanx T2W and T1W hypointense, with ill-defined STIR hyperintensities. Lateral collateral and distal sesamoidean impar ligament T2W and STIR hyperintensities, with marked insertional enthesiophytes at dorsal border of middle phalanx. Moderate DIPJ distension with proliferative synovium.</td>
<td>Concurrent lateral collateral sesamoidean desmopathy and insertional enthesophyte formation presumed to be secondary to chronic altered weight bearing through the podotrochlear apparatus.</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>OCF plantarolateral aspect of the articular surface of the distal phalanx, with adjacent fragmentation lateral margin of the distal sesamoid bone. Irregular new bone formation on the dorsal surface of the middle phalanx in the region of the capsular reflection of the DIPJ.</td>
<td>OCF plantarolateral aspect of the articular surface of the distal phalanx and fragmentation entire lateral margin of the distal sesamoid bone (w: 14 mm, h: 6 mm, l: 4 mm) with displaced fragments within the proximal plantar pouch of the DIPJ.</td>
<td>Nuclear Scintigraphy [performed as initial diagnostic]: IRU DIPJ, centred on the lateral body of the distal phalanx and adjacent distal sesamoid bone, with IRU on the dorsal surface of the middle phalanx. Moderate OCF of the plantarolateral aspect of the distal phalanx and lateral margin of the distal sesamoid bone, with associated OA of the DIPJ.</td>
<td></td>
</tr>
</tbody>
</table>
Table 2: Diagnostic imaging findings, interpretation and working diagnosis for four horses presenting with unilateral limb lameness localised to the foot with perineural analgesia [OCF = osteochondral fragmentation; OA = Osteoarthritis; DIPJ = distal interphalangeal joint; MRI = magnetic resonance imaging; IRU = increased radiopharmaceutical uptake; w = width; l = length; h = height; mm = millimetres]

<table>
<thead>
<tr>
<th>Case</th>
<th>Surgical (Arthroscopic) and Adjunct Treatment</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Routine palmar arthroscopic approach to DIPJ under GA. Moderate amount of proliferative synovium observed, articular surface of the distal sesamoid bone and middle phalanx had no abnormalities. Only the most lateral palmar border of the distal phalanx visualised with joint manipulation (including use of intra-articular elevator), which did not allow access to the fragmentation. Lesion deemed surgically inaccessible via this approach. Remedial farriery with an aluminium shoe with 12 degrees of heel elevation was fitted in attempt to shift the break-over cranially. A partial improvement in lameness occurred over the following weeks and the DIPJ was medicated with sodium hyaluronate ([Equinate] 20mg i.a.)</td>
<td>Biaxial palmar digital neurectomy performed following ongoing lameness and client dissatisfaction. Reported to be pasture sound approximately 12 months later.</td>
</tr>
<tr>
<td>2</td>
<td>No attempt at treatment performed.</td>
<td>Humanely euthanised.</td>
</tr>
</tbody>
</table>
Table 3: Surgical descriptions, adjunctive treatment and case outcome for four horses presenting with unilateral limb lameness localised to the distal limb and diagnosed with osteochondral fragmentation of the palmar/plantarolateral aspect of the distal phalanx [DIPJ = distal interphalangeal joint; GA = general anaesthesia; AAEP = American Association Equine Practitioners, [Stashak 2002]; RH = right hindlimb; OA = osteoarthritis]

<table>
<thead>
<tr>
<th>Case</th>
<th>Surgical Description</th>
<th>Adjunctive Treatment</th>
<th>Case Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Routine palmar arthroscopic approach to DIPJ under GA. Fragmentation of the plantarolateral distal sesamoid bone involving the adjacent collateral sesamoidean ligament successfully removed, osseous and ligamentous lesions debrided. Loose fragmentation within the proximal plantar pouch removed. Arthroscope able to be inserted between the distal sesamoid bone and plantar middle phalanx to view the plantar articular margin of the distal phalanx. Principal fragment substantially attached to the distal sesamoidean impar ligament, left in situ, with only detached adjacent cartilage removed. Horse recovered in a distal limb cast uneventfully.</td>
<td>The horse successfully returned to racing, completed 23 races for two wins and nine places post-operatively.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Routine palmar arthroscopic approach to DIPJ under GA. Haemosiderin staining of the synovium and tearing of the joint capsule observed, debrided. Increased mobility between the distal sesamoid bone and middle phalanx, but insufficient to pass the arthroscope cannula between the two surfaces to allow access to the plantar articular margin of distal phalanx and area of fragmentation. Desmotomy of the collateral sesamoidean ligament of the distal sesamoid bone performed arthroscopically, also failed to create sufficient manoeuvrability to grant access. Lesion deemed surgically inaccessible via this approach and the horse was recovered in a distal limb cast uneventfully.</td>
<td>Four months following surgery the horse had improved to AAEP grade 1/5 RH lame, attempted to return to work. Severity of lameness increased and the horse developed progressive OA of the DIPJ, resulting in euthanasia 12 months post-operatively.</td>
<td></td>
</tr>
</tbody>
</table>

This article is protected by copyright. All rights reserved.
Figures

Figure 1: Dorsal 65° proximal-palmarodistal oblique (LEFT) and dorsal 65° proximal 45° lateral-palmarodistal medial oblique (RIGHT) radiographic projections of a 5-year-old Warmblood gelding (case one) with right forelimb lameness localised to the foot. An osteochondral fragment at the palmarolateral aspect of the articular surface of the distal phalanx, axial to the lateral palmar process of the distal phalanx is present (arrows).

Figure 2: 3-D volume reconstructions of the distal phalanx (and distal sesamoid bone) of LEFT: a 5-year-old Warmblood gelding (case one) with a discrete osteochondral fragment at the palmarolateral aspect of the articular surface of the distal phalanx, axial to the lateral palmar process of the right forelimb and RIGHT: a 3-year-old Warmblood gelding (case two) with a large area of osteochondral fragmentation at the palmarolateral aspect of the articular surface of the distal phalanx, axial to the lateral palmar process of the left forelimb. Lateral is to the left.

Figure 3: Transverse (LEFT), dorsal (MIDDLE) and sagittal (RIGHT) T1W MRI images from a 3-year-old Warmblood gelding (case two) with osteochondral fragmentation at the palmarolateral aspect of the articular surface of the distal phalanx. Note the hypointense bone surrounding the defect (LEFT) and hyperintense line extending from the defect distally towards the solar margin (RIGHT, arrow). Lateral (or dorsal) is to the left.

Figure 4: Arthroscopic image from a standard portal in the plantar pouch of the distal interphalangeal joint, advanced distally between the distal sesamoid bone and middle phalanx from a 2-year-old Thoroughbred colt (case three) that presented with an acute onset of left hindlimb lameness subsequently diagnosed with osteochondral fragmentation of the plantarolateral aspect of the distal phalanx [P2, middle phalanx; N, distal sesamoid bone].

Figure 5: Articular surface of the distal phalanx from a 3-year-old Warmblood gelding (case two) with osteochondral fragmentation at the palmarolateral aspect of the distal phalanx displaying a vertical cleft through the articular cartilage with degeneration and fragmentation in the deep zone cartilage (arrows) undermining the more superficial tissue. HE, Bar = 300µm.

Supplementary Items

Supplementary Item 1: Imaging modalities, regions of interest, techniques and machine details used in the assessment of four horses presenting with unilateral limb lameness [RF = right fore; LF = left fore; LH = left hind; RH = right hind; 3D = three-dimensional; HL = hindlimb].

This article is protected by copyright. All rights reserved
References

Author/s:
Lloyd, KA; Smith, MRW; Whitton, RC; Stent, AW; Steel, CM

Title:
Osteochondral fragmentation of the palmarolateral/plantarolateral aspect of the distal phalanx in four horses: A novel location

Date:
2021-03-04

Citation:

Persistent Link:
http://hdl.handle.net/11343/298306