Detection of Iodomethane using Luminescent Lead Halide Perovskite Nanocrystals

Wenping Yin†,1,2, Hanchen Li†,1,2, Anthony S. R. Chesman1,3,4, Ben Tadgell1,5, Andrew D. Scully1,3, Mingchao Wang2, Wenchao Huang2, Christopher R. McNeill2, Wallace W. H. Wong1,5, Nikhil V. Medhekar2, Paul Mulvaney1,5, Jacek J. Jasieniak‡,*1,2

†Both authors contributed equally to this work

1Australian Research Council Centre of Excellence in Exciton Science, Australia
2Department of Materials Science and Engineering, Monash University, VIC, 3168 Clayton, Australia
3CSIRO Manufacturing, Clayton, VIC, 3168 Clayton, Australia
4Melbourne Centre for Nanofabrication, VIC, 3168 Clayton, Australia
5School of Chemistry, The University of Melbourne, VIC, 3010 Parkville, Australia

*E-mail: Jacek.Jasieniak@monash.edu
Abstract

The extensive use of iodomethane (CH₃I) as a pesticide has drawn serious concern due to its potential biological and atmospheric impact, yet there is currently no effective on-site monitoring method for determining iodomethane concentration. Here, we introduce a highly sensitive and selective photoluminescence (PL)-based CH₃I sensor, that relies on changes in the optical properties of cesium lead bromide (CsPbBr₃) inorganic perovskite nanocrystals arising from halide exchange. CH₃I alone does not react efficiently with CsPbBr₃. However, after the pre-exposure of CH₃I to oleylamine a rapid alkylation reaction occurs, forming alkyl ammonium iodide species that undergo facile halide exchange with the perovskite nanocrystals. The extent of the halide exchange is directly dependent on the CH₃I concentration, with the PL emission of the CsPbBr₃ nanocrystals exhibiting a concomitant linear redshift of more than 150 nm upon the addition of 100 ppbv to 10,000 ppbv of CH₃I, and with a fast response time of ca. 5 s. This is the most sensitive approach to the detection of CH₃I using a low-cost and portable approach reported to date, with the limit of detection (LOD) being 30 ± 10 ppbv, and according to simulations, could be improved even further. These PL changes are found to be independent of the intermediate morphology of the nanocrystals and operate effectively over a practical temperature range of 15-35 ℃. The selectivity of the reaction mechanism is governed by the dramatic difference in the rate of the alkylation between CH₃I and oleylamine compared with other organoiodine analogues. Furthermore, the facile transduction mechanism provides scope for the development of a portable and low-cost sensor system suitable for both visual and instrumental readout.
Introduction

The high reactivity of iodomethane (methyl iodide, CH₃I) confers both its potential utility and hazard in human applications. Since its approval for use as a pesticide by the United States Environmental Protection Agency in 2007 it has gained popularity as a fumigant for insect and fungus control¹,². However, there has also been strong academic scrutiny and public concern regarding its latent toxicity³,⁴ due to the possible mutagenic and carcinogenic effects arising from its high reactivity with biological nucleophiles after prolonged exposure⁵. Furthermore, CH₃I can release its constituent iodine atoms via photodecomposition, which can subsequently react with atmospheric ozone to produce the monoxide radical, IO, leading to ozone-depletion in the troposphere and stratosphere⁶,⁷. Because of the high reactivity of CH₃I and the difficulties of detection due to its odourless and colourless nature, a rapid, on-site method for monitoring CH₃I has remained elusive.

Traditionally, CH₃I detection relies on sophisticated instrumentation, such as gas chromatography coupled with mass spectroscopy (GC-MS) or flame ionization detector based methods (GC-FID)⁷-¹⁰. However, these techniques are restricted to the laboratory environment and require complex sample preparation. An alternative approach involves the use of more affordable and portable spectroscopic methods. For example, a limit of detection (LOD) for CH₃I of 5.3 ppt (10⁻¹⁵) was achieved using resonance fluorescence detection of atomic iodine (170–190 nm)⁶, although the utility of this system was greatly reduced by its low selectivity. To enhance selectivity, the strong methylating ability of CH₃I (iodide as a leaving group) compared with other iodine containing species has also been exploited. Organic and organometallic luminescent probes, such as cyclometallated iridium (III) complexes¹¹ and pyridine-based pi-conjugated oligomers/polymers²,⁵,¹²,¹³, change their optical properties in response to iodomethane. However, the reactions proceed over minutes to hours, leading to
lower sensitivity (>100 ppb) and long measurement times. It is, therefore, critical to develop a reliable method for more rapid, selective, and sensitive detection of CH$_3$I.

The luminescence characteristics of cuboid lead halide perovskite nanocrystals (PNCs) are known to be highly dependent on the nature of the halide anion in the crystal lattice$^{14}$. Consequently, perovskites are potential spectroscopic probes for the iodide component of CH$_3$I. Cuboid PNCs have the chemical formula ABX$_3$, where A is a monovalent inorganic or organic cation such as cesium (Cs$^+$), methylammonium (MA$^+$) or formamidinium (FA$^+$), B is a divalent metal ion (usually Pb$^{2+}$ or Sn$^{2+}$), and X is a halide anion, typically chloride (Cl$^-$), bromide (Br$^-$), or iodide (I$^-$). The optoelectronic properties of PNCs are comparable, or even superior, to conventional group II-VI or III-V semiconductor quantum dots. In addition, they are cheaper and easier to synthesize and do not require a shell layer to passivate their surfaces owing to their remarkable defect tolerance$^{15}$. In a landmark study in 2014, Schmidt et al. reported the synthesis of MAPbBr$_3$ PNCs demonstrating a PL quantum efficiency (PLQE) of approximately 20%$^{16}$. Subsequently, synthetic improvements and an expansion of the compositional range to include various combinations of Cs$^+$, FA$^+$ and modified X$^-$, yielded PNCs with vastly improved PLQEs approaching 100%$^{17}$. An exciting property of PNCs is that their highly ionic nature allows their optoelectronic properties to be readily engineered post-synthesis through facile and rapid ion-exchange$^{18}$. Through such exchange processes, tunable emission wavelengths throughout the entire visible spectrum (390–780 nm) with near-unity PLQE can be achieved$^{17}$. While this tunability is typically exploited for optoelectronic applications, here we utilise the ability of such PNCs to undergo rapid halide exchange as a signal transduction method to detect CH$_3$I.

For this purpose, we focus on using highly photoluminescent inorganic cesium lead bromide (CsPbBr$_3$) PNC dispersions that are designed to efficiently interact with CH$_3$I. This is facilitated through the PNCs’ native surface ligand, oleylamine (OLA), which acts as a
sacrificial nucleophile in a reaction with CH\textsubscript{3}I that releases the iodide. Subsequent halide exchange of the bromide in the PNCs with iodide results in a rapid change in the optical properties. This mechanism allows for the detection of CH\textsubscript{3}I across a broad concentration range (30 ± 10 ppbv to 20,000 ppbv), with a response time of ca. 5 s. Moreover, the large differences in the rate of nucleophilic substitution reaction between various organoiiodines and OLA provides for a high degree of selectivity of the PNC-based indicator for CH\textsubscript{3}I. First principles density functional theory (DFT) calculations further confirm that stronger chemical interactions of the resulting oleylammomium iodide compared to CH\textsubscript{3}I with the PNC surface, also facilitates the high sensitivity of the indicator from a thermodynamic viewpoint.

Results and Discussion

The underlying premise of utilising CsPbBr\textsubscript{3} PNCs for the detection of CH\textsubscript{3}I is based on the ability of PNCs to undergo halide exchange, which dramatically alters their spectroscopic characteristics\textsuperscript{14}. However, the direct exposure of CsPbBr\textsubscript{3} PNCs in toluene to CH\textsubscript{3}I solutions did not cause any discernible change in PL properties over modest timescales (Error! Reference source not found.a, Fig. S1a). This demonstrates that efficient halide exchange in perovskites only occurs between ionic halide species and not with covalently-bound iodine species\textsuperscript{19}. To activate the sensor, we exploited the well-known methylation reaction between organoiiodines (R\textsubscript{3}C:I) and appropriate nucleophiles (Nu:) to generate [R\textsubscript{3}C:Nu]\textsuperscript{+} and free iodide (I:\textsuperscript{−})\textsuperscript{20}. In this work, OLA was a convenient choice as the nucleophile given its use in the synthesis of the CsPbBr\textsubscript{3} PNCs:

\[
R_3C:I + C_{18}H_{35}N: H_2 \rightarrow [R_3C: NH_2C_{18}H_{35}]^+ + I:^- \quad \text{(eq.1)}
\]
An $S_N2$ reaction between CH$_3$I and an excess of OLA initially yields N-methyl oleylammonium iodide (eq.1), while further reaction with additional OLA yields N-methyl oleylamine and an oleylammonium iodide salt, as illustrated in Error! Reference source not found.\textsuperscript{b20, 21}. A subsequent methylation reaction with CH$_3$I is also possible, resulting in the formation of N,N-dimethyl oleylamine and additional oleylammonium iodide. Evidence supporting this reaction mechanism was obtained for a model OLA analogue, dodecylamine, using NMR and GC-MS measurements (Fig. S2, S3, see Supporting Information for additional details).

The use of OLA in the synthesis of PNCs in the present work results in the concomitant formation of its quarternized ammonium form when an acid is also present in the reaction medium, such as oleic acid\textsuperscript{22}. The OLA and/or oleylammonium salts subsequently passivate the surface of the nanocrystals\textsuperscript{23}. The addition of excess OLA into the PNC dispersions did not cause any changes in their PL emission wavelength (Error! Reference source not found.a, S1b).

In contrast, when a toluene solution of CH$_3$I and OLA (CH$_3$I : OLA = 1 : 3 molar ratio) was added to a dispersion of the PNCs, significant changes in the optical properties of the PNCs were observed (Fig. 1b-d). The red-shift in the UV-visible absorption and PL emission spectra upon CH$_3$I addition is the result of a decrease in the optical bandgap of the cuboid nanocrystals, which is direct evidence for the exchange of bromide with iodide in the lattice of the CsPbBr$_3$ PNCs\textsuperscript{24}. Notably, the dramatic redshift in PL is linearly correlated with the CH$_3$I concentration in the range 100 ppbv to 10,000 ppbv (Fig. 1). Reference source not found.d), and is sufficiently large to provide a practical visual response according to the CIE chart shown in Fig. 1. Reference source not found.e. Further inspection of the absorption spectra for samples with CH$_3$I concentrations above 3,000 ppbv show an increased absorption at shorter wavelengths, which suggests the possible concurrent formation of 2D Ruddlesden-Popper perovskite (2DRP) nanosheets\textsuperscript{25}. The generalized chemical formula for 2DRP nanosheets is given by L$_2$[ABX$_3$]$_{n-1}$BX$_4$, where L represents a
monovalent organic cation that is usually larger than A⁺ and the value of n is the number of metal halide layers. The UV-visible absorption energy profile (Fig. 1) and other results discussed below are consistent with the 2DRP nanosheets with n = 1 and n = 2²⁶.

Fig. 1 | Reaction mechanisms and spectroscopic response of CsPbBr₃ perovskite nanocrystals (PNCs) to CH₃I. a, Oleylamine (OLA, 0.96 mM) or CH₃I (20,000 ppbv solution) were introduced separately into PNC dispersions in toluene. The emission images under 365 nm UV light were recorded after 100 mins, showing no change in emission. b, OLA pre-treated CH₃I solutions (CH₃I concentration: 20,000 ppbv) was added to a PNC dispersion in toluene, with the emission colour under 365 nm UV light before and 20 s after addition. The hypothesised reaction mechanism, where CH₃I induces the methylation of OLA by an S_N2 mechanism and stops at dimethyl analogue formation. c, UV-visible
absorption spectra of PNCs exposed to varying amounts of CH$_3$I. d, Emission spectra of CsPbBr$_3$ PNCs as a function of the amount of added CH$_3$I. (Insert: redshift of PNCs PL emission as a function of CH$_3$I concentration. Linear fitting of results from 100 ppbv to 10,000 ppbv shown as a red line with $R^2 = 0.997$). e, CIE chart converted from the PL spectra of PNCs exposed to varying amounts of CH$_3$I. (Note: Spectra in c, d, were recorded 20 s after CH$_3$I addition at room temperature to ensure the reaction was complete).

To correlate these spectroscopic changes with the underlying structural transformations in the PNCs, transmission electron microscopy (TEM) and X-ray scattering measurements were conducted. TEM images of the as-synthesized PNCs reveal a well-defined cuboid morphology, with an average size of 11 nm (Fig. 2a, S4). For CH$_3$I concentrations up to 3,000 ppbv, high-resolution TEM (HRTEM) diffraction patterns indicate the progressive expansion of the (100) lattice spacing in the cuboid CsPbBr$_3$ PNCs from 5.9 Å to 6.4 Å due to iodide substitution (Fig. 2a-c). While the cuboid geometry is retained at low CH$_3$I concentrations, clear evidence for the dissolution of the cuboid phase of the PNCs and the concurrent formation of 2DRP nanosheets is seen at higher CH$_3$I concentrations. Laterally-stacked 2DRP assemblies are observed upon addition of 3,000 ppbv CH$_3$I (Fig. 2c), with the interlayer spacing of 10.0 Å correlating well with that of nanosheets. X-ray diffraction (XRD) measurements confirm that nanocuboids exist in the perovskite phase (Fig. 2e), although discrimination between the cubic and orthorhombic structures requires a more detailed structural analysis. A progressive shift of the nanocuboid XRD peaks toward lower 2θ values occurs with increasing concentrations of CH$_3$I, in accordance with the expected lattice expansion within the iodide-rich PNCs. Moreover, consistent with HRTEM, the XRD results also indicate the formation of 2DRP at CH$_3$I concentrations of 3,000 ppbv and higher. The partial transformation from 3D perovskites into 2DRP nanosheets is further supported by comparing the 2D grazing incidence
wide-angle X-ray scattering (GIWAXS) measurements of the samples containing 1,000 and 6,000 ppbv CH$_3$I (Fig. 2f, g)$^{30,31}$.

---

**Fig. 2** | Changes to morphology and crystal structure of CsPbBr$_3$ PNCs exposed to varying amounts of CH$_3$I. **a**, TEM images of pristine PNCs, showing a cuboid shape. **b**, **c**, TEM images of PNCs after reaction with 1,000 ppbv and 3,000 ppbv solutions of CH$_3$I. **d**, TEM images of PNCs on addition of 6,000 ppbv CH$_3$I showing almost complete loss of the cuboid PNCs, with the remaining phase comprising 2DRP nanosheets. **e**, XRD patterns of PNCs exposed to various CH$_3$I amounts, which showed standard CsPbBr$_3$ cuboid signal at both 15.2° (100) and 30.6° (200) for the pristine sample. **f**, GIWAXS images for PNCs corresponding to 1,000 ppbv and 6,000 ppbv CH$_3$I, respectively. **g**, 1D GIWAXS profile extracted from 2D scattering patterns.

The structural transformation of the CsPbBr$_3$ PNCs involves a complex halide exchange process. It has been suggested that this occurs through a reaction-limited exchange
at the surface of the PNCs, with subsequent fast ionic diffusion occurring within the nanocrystal lattice\(^{32}\). The spectroscopic properties of the PNCs reflect this complexity. The changes in the PL emission colour occur gradually and over multiple stages of halide exchange as a function of CH\(_3\)I concentration (Fig. 3, S5). These stages can be categorised first according to their relative PL intensity changes (Fig. 3a), with a slight enhancement of the emission (stage A) followed by a rapid decrease (stage B) and then a gradual transition towards nearly complete quenching (stage C) being observed. Further inspection of the temporal changes in the UV-visible absorption and PL emission within these stages reveals vastly different dynamics. UV-visible absorption properties are retained in stage A (Fig. S5a, b), whereas the PL emission exhibits a slight redshift and enhanced intensity (ca.10\%) after an induction period of a few seconds (Fig. 3b). This behaviour is indicative of a surface-trap filling effect\(^{33, 34}\). During stage B the UV-visible absorption spectrum of the PNCs remains unchanged (Fig. S5c, d), while the PL emission initially vanishes and then partly recovers at a red-shifted wavelength (Fig. 3c). Finally in stage C the cuboid PNCs undergo rapid dissolution and re-nucleation as 2DRP nanosheets (Fig. S5e, f), thus resulting in a largely suppressed PL emission (Fig. 3d). For completeness, to understand the role of excess OLA across these stages, control experiments were conducted using equivalent OLA additions but without any CH\(_3\)I (Fig. 3a); only a slight PL emission intensity enhancement, with no change in the peak position (see Fig. S1), was observed at the higher OLA concentrations. This demonstrates that the spectroscopic changes across the three identified stages are directly related to the alkyl ammonium iodide species generated in solution and not to the residual OLA. A schematic depiction of the structural transformation across these stages is presented in Fig. 3b-d.
Fig. 3 | Integrated steady-state photoluminescence and millisecond time-dependent emission spectra. a, Integrated steady-state PL intensity difference displayed as a function of CH$_3$I concentration, which explored three different stages, stage A (CH$_3$I $\leq$ 100 ppbv), stage B (100 ppbv < CH$_3$I $\leq$ 3000 ppbv) and stage C (CH$_3$I > 3000 ppbv). b, c, d, Time-dependent emission spectra of CsPbBr$_3$ PNCs at CH$_3$I concentration of 100 ppbv, 1,000 ppbv, and 6,000 ppbv, respectively. The PNC emission images under 365 nm UV light at 5 and 20 sec, and the schemes of structural transformation are shown in the lower panels of b, c, d. It is found that the OLA-reacted CH$_3$I in Stage A (CH$_3$I $\leq$ 100 ppbv) acts as a
trap passivant, while at higher CH$_3$I concentrations it causes the PNCs to undergo i) surface
disruption/PNCs decomposition, ii) iodide migration and iii) surface passivation processes in Stage B
and C. (Note: PL emission signals stabilized after 20 s.)

To further correlate the ensuing structural and spectroscopic properties, the radiative
relaxation dynamics of the PNCs were studied using time-resolved photoluminescence (TRPL)
measurements. The PL excitation spectra in Fig. S6a suggest that, in both stage B and stage C,
energy transfer occurs from small n-value 2DRP nanosheets to nanocubes, consistent with
previous reports$^{35, 36}$. The absence of PL from the 2DRP phases suggests that this energy
transfer results in efficient quenching of PL from the 2DRP phases, and for this reason the PL
from the nanocubes only is considered here. Analysis of the TRPL decay curves using an
empirical bi-exponential function yields average PL lifetimes that show a gradual increase with
increasing CH$_3$I concentrations (Error! Reference source not found.). This is consistent with
the fact that iodide- based cuboid PNCs exhibit longer radiative lifetimes than their bromide
analogues (Error! Reference source not found.a)$^{37, 38}$. An accelerated slow decay in stage A
suggests a reduction in the number of shallow states due to trap filling$^{39, 40}$. Meanwhile, the
progressive increase in the lifetime of this component and its overall magnitude across stages
B and C are indicative of more defective cuboid PNCs being generated (Error! Reference
source not found.b, c). This confirms that the structural transformation across these stages
yielding lower quality cuboid PNCs.

The chemical and structural transformations across these three stages are evidently
dependent on the interaction between the oleylammonium iodide species in solution and the
PNC nanocrystals. To explore this dependence, the changes in the PL redshift as a function of
the PNC concentration are plotted in Error! Reference source not found.d. The results can be
readily described by a semi-empirical formalism that considers the concentration of PNCs
(denoted as [PNC]) as a fitting parameter (see SI-Discussion). Collectively, the results show
that tuning the [PNC] provides a facile way to modulate the sensitivity window for CH₃I detection, with lower concentrations yielding higher sensitivity factors. Given that the practical range for [PNC] is ~1 nM to ~1 mM, the achievable linear sensitivity window for detection of CH₃I, through [PNC] modifications alone, is ~10 ppbv to ~10,000 ppmv.

To gauge the practical limit of the thermal response window for this sensor system, the PL emission characteristics were measured between 5 °C and 45 °C for 1,000 and 6,000 ppbv CH₃I concentrations as representative samples (Error! Reference source not found.e-g, S8). It was found that the response time is slightly longer at lower temperatures for the lower CH₃I concentration sample, whereas temperature had little effect on response time at the higher CH₃I concentration. Apart from slight differences in initial reaction dynamics, after a 20 seconds stabilization period the PL redshifts are consistent to within ± 3.4% at temperatures between 15 °C and 35 °C (Error! Reference source not found.g). This provides a practical temperature range for the reliable operation of a sensor platform based on this approach.
Fig. 4 | Radiative relaxation dynamics as measured by time-resolved photoluminescence (TRPL) measurements, and reliability studies under different CsPbBr$_3$ concentrations or temperatures.

a, Quantitative values of slow, fast, and average PL decay as calculated from the bi-exponential fitting of the time-resolved PL decays of CsPbBr$_3$ PNCs before and after addition of various concentrations of CH$_3$I, and corresponding PL redshifts. b, The radiative dynamic processes in ideal PNCs without vacancies, where the photon is absorbed and quickly converted to prompt PL (“fast decay”). c, The radiative dynamic processes in PNCs with vacancy defects, which generate shallow states inside the
conduction and valance bands. The delayed PL signal is generated due to part of the excited electrons traveling between shallow states, namely trapping/de-trapping, appears as a “slow decay” component. 

The simulated PL redshifts (lines) of PNCs as a function of CH₃I concentration, with the coloured symbols corresponding to experimental data. e, f, Time-dependent PL emission spectra of the sensor system at 15, 25, and 35 °C at a CH₃I concentration of 1,000 ppbv and 6,000 ppbv, respectively. g, Relative PL redshift at 15, 25, and 35 °C after adding CH₃I at a concentration of 1,000 or 6,000 ppbv, with average fluctuations ≤ 3.5% and ≤ 3.4%, respectively, after 20 s at 15, 25, and 35 °C.

The selectivity of the PNC-oleylamine for CH₃I system was measured using a range of organoiodine compounds including iodomethane, iodoethane, iodopentane, iodohexane, iodotoluene, methyammonium iodide (MAI), formamidinium iodide (FAI), n-butylammonium iodide (n-BAI) and tetrabutylammonium iodide (TBAI) after pre-treating with OLA (see Error! Reference source not found.a, b). Negligible changes to the PL emission peak wavelength were observed for all tested organoiodines, apart from CH₃I. This demonstrates the high degree of selectivity of this indicator system for CH₃I, which can be understood by considering the dramatic differences in reaction rates of different organoiodines towards nucleophilic substitution. For a typical SN₂ reaction involving iodoalkanes, the reaction rate ($R$), given by $R = k[\text{Nu}]R_3\text{C}I$, is dependent on the rate constant ($k$), the concentrations of the nucleophile (i.e. OLA in our case) and the specific organoiodine compound. Among the organoiodine derivatives studied here, CH₃I has a $k$ value that is more than 30 times larger than the others (Fig. S10)²⁰, ²¹. This facilitates much faster overall dynamics, which leads to inherent selectivity for CH₃I in the CsPbBr₃ PNC system (Fig. S11). Furthermore, this finding validates the need to generate halide salts to induce the rapid transformation of the PNCs into anion exchange analogues.

Importantly, the chemical nature of the alkyl ammonium halide salt also impacts the extent of the exchange process. This is evident from the substantially smaller spectral changes
observed for the various ammonium iodide salts compared to those for an equivalent concentration of CH$_3$I reacted with OLA. When the PL peak changes are compared to the ratio of total iodide added vs the parent bromide concentration (as determined from the [PNC]), a universal curve is found for the individual iodide species. This confirms that (i) the transformation mechanism in these systems is primarily dependent on the ratio of added iodide/parent bromide; (ii) the different iodide sources have varied PL change characteristics; and (iii) the OLA-activated CH$_3$I provides the greatest sensitivity across the tested iodine sources evaluated in the present work.

To provide further thermodynamic insights into these transformation trends, we explored the interactions energies between CH$_3$I, OLAI and MAI with the PNC surface using first-principles density functional theory (DFT) calculations (Table S2 & Error! Reference source not found.c, d). The predicted positive surface interaction energy ($\Delta E_{SI}$) between CH$_3$I and PNCs reveals a thermodynamically unfavourable chemical interaction. On the other hand, taking MAI and OLAI as representatives, the large negative surface interaction energies demonstrate that these alkyl ammonium salts favourably interact with the PNC surface. We have further investigated these potential chemical reaction pathways (Table S2 & Fig. S13). The reaction enthalpy of pure I/Br exchange ($\Delta E_{re3}$) is much lower than that of just Cs substitution by alkyl ammonium ($\Delta E_{rel}$) for both MAI and OLAI, indicating that halide exchange could happen spontaneously prior to other processes on the native surface of CsPbBr$_3$. Nonetheless, this advantage diminishes when 25% pre-existing surface passivation with OLA is taken into account. It can be seen that OLA$^+$ substitution becomes the rate limiting step for halide migration in passivated PNCs (Fig. S13), which is also consistent with the previous optical discussion in Fig. 3. On the whole, the larger negative reaction energies of OLA$^+$ compared to the shorter alkyl ammoniums, such as MA$^+$ ($\Delta E_{rel}$ and $\Delta E_{re2}$, see Table S2),
contribute to more efficient surface disruption, in turn enabling more extensive halide migration within the PNCs.

**Fig. 5** | Selectivity and sensitivity studies of the CsPbBr$_3$ nanocrystals indicator. **a**, Change in the photoluminescence peak energy of the PNCs as a function of the total introduced halide species (CH$_3$I or another other exchange halide species) relative to the starting bromide concentration within the PNC sensor solution. The energy variation response to treated CH$_3$I is independent on the original concentration of PNCs ([PNC]=3, 6, 9.32, 15, 21, 27 nM). However, the response is distinctly different to that of other iodide containing analogues (e.g. iodopentane, iodoethane, iodohexane, iodotoluene, methyammonium iodide (MAI), formamidinium iodide (FAI), n-butylammonium iodide (n-BAI) and tetrabutylammonium iodide (TBAI)). The dotted grey trendline is derived from literature values of the energy difference at various ratios of CsPbI$_3$ : CsPbBr$_3$.$^{24}$ **b**, PL redshifts of PNCs with OLA-treated equimolar organoiodine
analytes in IPA at various concentrations. Iodoethane, iodopentane, iodohexane, and
iodotoluene impart no change to the emission colour of CsPbBr₃ PNCs due to the lack of iodide
formation. Meanwhile, other alkyl ammonium iodide salts, reacted less efficiently than OLA-
treated CH₃I. c, d, Schematic representation and histogram of the surface interaction energies
of OLAI, MAI or CH₃I onto the native CsPbBr₃ surface. The atomistic representations are
obtained after a complete relaxation of the slab models with CsBr-terminated surface using
first principles density functional theory (DFT) methods.

**Conclusion**

Metal halide perovskite nanocrystals have previously been used as optical sensors due
to their attractive selectivity towards metal ions, such as copper and mercury⁴¹, ⁴². In this work
we have extended their versatility to the detection of widely used organohalides by developing
a spectroscopic sensor suitable for the highly sensitive and selective detection of CH₃I based
on distinct changes in the PL of CsPbBr₃ PNCs. The transduction mechanism involves an initial
methylation reaction between the CH₃I and an aliphatic amine, yielding an iodide-containing
ammonium salt. The liberated iodide anion undergoes lattice exchange with bromide anion,
which in turn leads to structural reconfiguration of the PNCs. The ensuing changes in the PL
properties provide a linear spectroscopic response and enable quantitative detection of CH₃I
between 100 ppbv to 10,000 ppbv, with a limit of detection of 30 ± 10 ppbv and a response
time of 5 s at room temperature. Furthermore, the significant differences in the methylation
rate of aliphatic amines by CH₃I compared with other organoiodine enables excellent
selectivity to be achieved. This study highlights the potential applications of metal halide
perovskites in other fields beyond conventional optoelectronics. In particular the nanoscale
chemistry of the lead halide based perovskites opens up a unique pathway towards their
application as rapid, selective and sensitive chemical detectors.
Acknowledgements

This research was supported financially by the Australia Research Council funded Centre of Excellence in Exciton Science (Grant No. CE170100026). The authors acknowledge the technical contributions of Australian Defence Science and Technology Group (DSTG), particularly the assistance and advice of Dr. Genevieve H. Dennison. W. H. acknowledges an ACAP fellowship supported by the Australian Government through the Australian Renewable Energy Agency (ARENA). The authors acknowledge use of the facilities and the assistance of Dr. Jisheng Ma and Mr. James Griffith at the Monash X-ray Platform. M. W. and N. M. gratefully acknowledge the support from the Australian Research Council (DP166103661) and thank Monash Computing Cluster, National Computing Infrastructure and Pawsey Supercomputing Facility for the use of computational facilities. Authors also acknowledge use of the facilities at Monash Centre for Electron Microscopy (MCEM). In addition, this work was performed in part at the SAXS/WAXS beamline at the Australian Synchrotron, part of ANSTO.

Author contributions

W. Y. and J. J. J. conceived and designed the experiments, under the technical support from P. M., and W. W. H. W., W. Y., H. L. and B. T. performed the experiments. W. Y., H. L, and J. J. analysed and constructed the results. W. H. and C. R. M. performed the GIWAXS measurement. A. D. S. performed the time-resolved photoluminescence experiments. A. S. R. C. helped with the GC-MS and NMR measurements and analysis. M. W. and N. M. performed first principles DFT calculations. W. Y., A. S. R. C., and J. J. J. mainly worked on the manuscript, with all the authors contributing to the drafting and correction.

Competing Interests
The authors declare no competing interests.

**Additional information**

Supplementary information available for this paper includes the synthesis of CsPbI₃; GC-MS; ¹H-NMR; TRPL fitting table; time-dependent absorption spectra, size distribution and temperature-dependent PL/UV-visible absorption of CsPbBr₃ under various CH₃I concentrations; selectivity/efficiency optical analysis; and the additional detection of various bromide sources by CsPbI₃ PNCs.

**Methods:**

**Materials and chemicals.** Lead(II) bromide (PbBr₂, 99.999% trace metals basis), cesium carbonate (Cs₂CO₃, 99.995% trace metals basis), oleylamine (OLA, technical grade, 70%), diisooctylphosphinic acid (DPA, technical grade, 90%), 1-octadecene (ODE, technical grade, 90%), iodomethane (CH₃I, 99.5%, copper as stabilizer), iodoethane (CH₃CH₂I, 99%, copper as stabilizer), iodopentane (CH₃(CH₂)₃CH₂I, 98%, copper as stabilizer), 1-iodohexane (98%), 2-iodotoluene (98%), n-butylammonium iodide (n-BAI, 98%), and tetrabutylammonium iodide (TBAI, ≥99.0%) were from Sigma-Aldrich. Toluene (99.5%) and isopropanol (IPA, 99.5%) were from Merck. Methylammonium iodide (MAI, 99%), and formamidinium iodide (FAI, 99%) were from Dyenamo. All chemicals were used without further purification.

**Preparation of Cs-DPA.** Cs₂CO₃ (100 mg, 0.31 mmol) was added to a 25 ml 2-neck flask containing ODE (5 ml) and DPA (0.5 ml), and heated at 120 °C under vacuum (ca. 2 mbar) for 30 min to remove residual water. The temperature was then raised to 150 °C under N₂, with the temperature maintained until the complete dissolution of Cs₂CO₃. The solution was stored under N₂ at room temperature, and heated to 120 °C prior to injection in subsequent reactions.

**Synthesis of CsPbBr₃ PNCs.** PbBr₂ (69 mg, 0.188 mmol) was added to ODE (5 ml) in a 50 ml 3-neck flask, with OLA (0.5 ml) and DPA (0.5 ml) then added to the suspension. The
solution was then heated to 120 °C under vacuum (ca. 2 mbar) with stirring for 30 min in order to remove residual water and dissolve the PbBr$_2$. Upon complete dissolution of the PbBr$_2$, the solution was placed under an N$_2$ atmosphere and the temperature was raised to 160 °C. The pre-heated Cs-DPA solution (0.4 ml) was then injected into the reaction solution, and after 5 s the solution was cooled in an ice bath.

**Isolation and Purification of CsPbBr$_3$ PNCs.** The crude reaction solution was mixed with IPA (crude solution:IPA = 1:3 v/v), resulting in the precipitation of most of the PNCs. After centrifugation at 10,000 rpm for 5 min, the supernatant was discarded and the precipitated PNCs were redispersed in toluene to give a solution that was colloidally stable over an extended period.

**Preparation of PNC Sensor and Analyte Solutions.** The perovskite NC sensor solution was prepared by diluting the washed perovskite dispersion with toluene to 3 ml. The concentration of PNCs was adjusted and maintained at about 9.32±0.15 nM, which was calculated by the absorption and the relative molar extinction coefficient as determined in the study of Maes et al.$^{43}$ A stock solution of CH$_3$I was prepared by adding CH$_3$I (10 µL, ~ 30.9 µM) toluene or IPA (1 ml), followed by the addition of OLA (ca. 90 µM). This solution was then diluted 120-fold and a portion was added to the sensor solution to add a known concentration of CH$_3$I. Other analyte solutions were prepared using a similar method.

**Characterization.** Samples for powder X-ray diffraction (XRD) were prepared by drop-casting a PNC dispersion onto a glass substrate, which was then dried without heating in an ambient environment. XRD patterns were collected by a Bruker D8 Advance diffractometer equipped with a Cu-Kα radiation source operated at 40 kV and 40 mA, and equipped with a high-speed line-position sensitive Lynxeye XE detector. Transmission electron microscopy (TEM) images of each sample on ultra-thin carbon grids were collected using a Tecnai G$^2$ T20 TWIN (FEI Company) microscope equipped with a LaB$_6$ electron emitter. The steady-state
absorption and emission spectra were recorded with a commercial spectrometer (StellarNet) equipped with a CCD camera (Silver-Nova-TEC-X2), using a halogen lamp (SL1) or 390 nm excitation source (SL1-LED), respectively. The relative time-course experiment spectra were collected using the same system. Time-resolved photoluminescence (TRPL) spectra were measured using an FLS 980 spectrometer (Edinburgh Instruments) with a 405 nm pulsed diode laser for excitation with a 500 kHz frequency (average power up to 6.25 µW) and the maximal emission wavelength of each sample used for detection. The 2-Dimensional grazing incidence wide-angle X-ray scattering (GIWAXS) was measured at the SAXS/WAXS beamline at Australian Synchrotron\textsuperscript{44,45}. The energy of the incident X-ray beam was fixed at 15 keV. The 2D scattering patterns were acquired using a Dectris Pilatus 1M detector with an exposure time of 1 s and an incident angle of 0.2°. GC-mass spectra were obtained with a Thermo Scientific TSQ 8000 TRACE 1310 GC mass spectrometer using electron ionization in the positive ion mode with ionization energy of 70 eV. Gas chromatography was performed on a SGE SOLGEL-1MS column (30 m × 0.25 mm ID, 0.25 µm film thickness), with a temperature program of 50 °C for 2 min, then heating at 25 °C/min to 300 °C where the temperature was held for 8 minutes with a split injection, split ratio of 10, an injector temperature of 300 °C and the transfer line was set to 300 °C. High-purity helium was used as carrier gas with a flow rate of 1 ml/min. \textsuperscript{1}H-NMR measurements were performed on a Bruker Bio Spin Av400H with a 9.4 T magnet and a 5 mm inverse 1H-X BBI autotuning broadband probe at a \textsuperscript{1}H frequency of 400.13 MHz in toluene-\textit{d8}.

**Computational Methods.** First principles, density functional theory (DFT) calculations were carried out using the Vienna Ab Initio Simulation Package (VASP)\textsuperscript{46}. The projector augmented wave (PAW)\textsuperscript{47} pseudopotentials were utilized to describe core and valence electrons, and the generalized gradient approximation based on the Perdew-Burke-Ernzerhof (GGA-PBE)\textsuperscript{48} form was selected to describe electron exchange and correlation. Grimme’s energy correction
method was employed to correctly account for the dispersion interactions\textsuperscript{49}. Various chemical reactions at the CsBr-terminated neutral surface of CsPbBr\textsubscript{3} nanocrystals were investigated using a slab model consisting of a 2×2 surface unit cell and 8 layers of the CsPbBr\textsubscript{3} crystal. For calculating the reaction enthalpies, all models were fully relaxed to account for the lattice expansion due to Cs substitution and I/Br exchange. In all cases, plane wave kinetic energy cut-off was set to 450 eV.

References


