Reply to Gan-Or and colleagues and Manole and colleagues

Katherine L. Helbig, MS1*, Ulrike B. S. Hedrich, PhD2, Ingrid E. Scheffer, MBBS, PhD,3,4,5, Ingo Helbig, MD6,7, Holger Lerche, MD2, Johannes R. Lemke, MD8

1Division of Clinical Genomics, Ambry Genetics, Aliso Viejo, CA, USA
2Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
3Department of Medicine, Epilepsy Research Centre, Austin Health, University of Melbourne, Heidelberg, Victoria, Australia
4Florey Institute of Neurosciences and Mental Health, Melbourne, Victoria, Australia
5Department of Paediatrics, University of Melbourne, Royal Children’s Hospital, Parkville, Victoria, Australia
6Division of Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
7Department of Neuropediatrics, University Medical Center Schleswig-Holstein, Christian-Albrechts-University, Kiel, Germany
8Institute of Human Genetics, University of Leipzig Hospitals and Clinics, Leipzig, Germany

*Corresponding author

Corresponding author: Katherine L. Helbig
Corresponding author’s address: Ambry Genetics
Division of Clinical Genomics
15 Argonaut
Aliso Viejo CA 92656
Corresponding author’s phone and fax: Tel +1 (949) 900-5544
Fax +1 (949) 900-5501
Corresponding author’s e-mail address: khelbig@ambrygen.com

Word count: 564

This is the author manuscript accepted for publication and has undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version record. Please cite this article as doi:10.1002/ana.24856.

This article is protected by copyright. All rights reserved.
We thank Dr. Gan-Or and colleagues and Ms. Manole and colleagues for their letters and comments about the frequency and the emerging spectrum of \textit{KCNA2} phenotypes. Gan-Or and colleagues suggest that the phenotype of the patients presented in our study represents a spectrum of the same disorder rather than a novel \textit{KCNA2} phenotype. Manole and colleagues identify the recurrent \textit{de novo} c.881G>A (p.R294H) mutation in \textit{KCNA2}, which we previously reported in two unrelated families with hereditary spastic paraplegia (HSP),1 in a further patient with spastic paraplegia and mild ataxia.

Gan-Or and colleagues did not identify pathogenic \textit{KCNA2} variants in 158 HSP patients. This finding confirms our assessment that \textit{KCNA2} is a rare cause of HSP and likely accounts for less than 1% of cases. HSP is genetically heterogeneous. Although \textit{SPAST} mutations account for a large percentage of cases, mutations in other HSP-causing genes are much rarer.2 Some reported HSP genes have been identified only in individual patients or families. We only identified a single family with the \textit{KCNA2} R294H mutation in the GENESIS/GEM.app cohort and none in our confirmation cohort of 103 unrelated patients with HSP.

We would like to emphasize the distinctiveness of \textit{KCNA2}-related HSP, further supported by the findings by Manole and colleagues. Our findings are based both on the lack of clinical overlap with \textit{KCNA2}-encephalopathy and the unique electrophysiological features of the recurrent R294H mutation associated with HSP. Including our study and the report by Manole and colleagues, in total six affected individuals from three families carrying the R294H mutation presented with classic features of HSP, including progressive spasticity in the lower limbs. None of the individuals had seizures. All individuals with HSP carrying the R294H mutation presented with a phenotype distinct from \textit{KCNA2}-encephalopathy, which includes early-onset refractory seizures, severe intellectual disability, and in some cases non-progressive spastic quadriplegia.3, 4 This distinct phenotype is further supported by the
electrophysiological findings with the unique features of the HSP-related R294H mutation. Substitution of histidine for the outermost arginine of the voltage sensor in the Shaker potassium channel, equivalent to the KCNA2 R294H mutation, creates a proton current through the so-called gating pore. This would clearly differentiate the underlying mechanism from previously reported KCNA2 mutations, as discussed in our paper. Our functional analysis, which has now been confirmed by Manole and colleagues in an independent experiment, identified a loss-of-function with a dominant-negative effect, but to a lesser extent than for previously reported mutations.

Following the discovery of a genetic disease, it is usual to see the phenotypic spectrum expand. In the epilepsies, this is well illustrated by SCN1A which is associated with the severe encephalopathy of Dravet syndrome and the mild disorder of GEFS+, reflecting a similarly broad epilepsy spectrum to KCNA2. Perhaps a closer corollary to KCNA2 is SLC2A1 causing glucose transporter 1 deficiency, as both genes are associated with severe and mild epilepsies, movement disorders, and in rare cases, HSP.

The phenotypic spectrum of KCNA2 diseases is rapidly expanding. Corbett and colleagues recently reported a large family with episodic ataxia and self-limited infantile seizures evolving to mild generalized or focal epilepsies in the setting of normal intellect, a phenotype quite distinct from KCNA2-encephalopathy. This family carried an in-frame deletion of two amino acids in KCNA2, with a dominant-negative effect. These data, along with our data and those from Manole and colleagues, suggest that at least some pathogenic KCNA2 variants have mutation-specific presentations.

AUTHOR CONTRIBUTIONS

All authors contributed equally to drafting this reply.
POTENTIAL CONFLICTS OF INTEREST

K.L.H. is employed by Ambry Genetics; *KCNA2* sequencing in the setting of gene panel testing and whole exome sequencing is among its commercially available tests.

REFERENCES

