Heterozygous deletion of Sox9 in mouse mimics the gonadal sex reversal phenotype associated with campomelic dysplasia in humans

Stefan Bagheri-Fam¹, Alexander N. Combes¹,²,³, Cheuk K Ling¹, and Dagmar Wilhelm¹, *

1. Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC 3010, Australia

2. Murdoch Children’s Research Institute, Melbourne, VIC 3052, Australia

3. Current address: Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia

*Author for correspondence:
Tel: +61 3 8344 9359
Email: dagmar.wilhelm@unimelb.edu.au
Abstract

Heterozygous mutations in the human SOX9 gene cause the skeletal malformation syndrome campomelic dysplasia which in 75% of 46,XY individuals is associated with male-to-female sex reversal. While studies in homozygous Sox9 knockout mouse models confirmed that SOX9 is critical for testis development, mice heterozygous for the Sox9-null allele were reported to develop normal testes. This led to the belief that the SOX9 dosage requirement for testis differentiation is different between humans, which often require both alleles, and mice, in which one allele is sufficient. However, in prior studies, gonadal phenotypes in heterozygous Sox9 XY mice were assessed only by either gross morphology, histological staining or analyzed on a mixed genetic background. In this study, we conditionally inactivated Sox9 in somatic cells of developing gonads using the Nr5a1-Cre mouse line on a pure C57BL/6 genetic background. Section and whole-mount immunofluorescence for testicular and ovarian markers showed that XY Sox9 heterozygous gonads developed as ovotestes. Quantitative droplet digital PCR confirmed a 50% reduction of Sox9 mRNA as well as partial sex reversal shown by an upregulation of ovarian genes. Our data show that haploinsufficiency of Sox9 can perturb testis development in mice, suggesting that mice may provide a more accurate model of human disorders/differences of sex development (DSD) than previously thought.
Introduction

Sex in mammals is determined chromosomally with XX individuals developing as females and XY individuals as males. The Y chromosome bears the sex determining gene Sry (1), which is necessary and sufficient for male development (2, 3). Expression of Sry in the bipotential genital ridges, the gonadal anlage, from 10.5 to 12.5 days post coitum (dpc) in mouse drives their differentiation into testes (4, 5). If Sry is not present, like in XX individuals, ovarian genes such as Foxl2, Wnt4 and Rspo1 are upregulated and ovaries will develop. Impairment of the testicular program can result in the formation of ovotestes, which in mice are characterized by testicular tissue in the center and ovarian tissue at the poles of the developing gonads (6, 7).

Sry is the founding member of the SRY-related HMG (high mobility group) box (SOX) family of transcription factors that are developmental regulators of many tissues. SRY’s main function is to upregulate the related, autosomal gene Sox9 (8, 9). Initially, Sox9 is expressed at low levels in both XX and XY genital ridges before being up-regulated and maintained in the supporting cell lineage in the testis, the Sertoli cells (10-13). SOX9 itself functions as a strong transcriptional activator, which induces the expression of a number of downstream targets, including the genes that encode desert hedgehog (Dhh, (14)), prostaglandin D synthase (Ptgds, (15, 16)), and anti-Müllerian hormone (Amh, (17, 18)), all of which are important for testis development and function.

In humans, heterozygous mutations in SOX9 cause the disorder campomelic dysplasia (CD, OMIM 114290), which is characterized by severe skeletal malformations and perinatal death (19-22). In addition to the skeletal defects, phenotypes such as absence of the olfactory bulbs as well as cardiac and renal abnormalities have been described (21), reflecting the expression of SOX9 in numerous tissues (23, 24). Furthermore, combining the information provided by
several studies (21, 25-27), only approximately 25% of affected XY individuals have a
normal male phenotype at birth, while the remaining 75% show defects in testis development
or complete XY sex reversal, i.e. these patients developed as females (Table S1),
demonstrating that SOX9 is necessary for testis and hence male development. On the other
hand, duplications of the chromosomal region upstream of, or that contain, SOX9 (17q23.1-
q24.3) cause XX sex reversal (28-32), implying that SOX9 is not only necessary but also
sufficient for testis development. This is phenocopied in mice with ectopic expression of a
Sox9 transgene in XX individuals resulting in testis development (33). However, in contrast to
humans, heterozygous deletion of Sox9 in mice has been believed to result in normal testis
development, and instead inactivation of both Sox9 alleles is needed to observe XY sex
reversal (34-37), suggesting a difference in SOX9 dosage requirements between human and
mouse. Nonetheless, these studies were limited by the use of mice on a mixed genetic
background and a lack of robust molecular markers for ovarian development. We
circumvented these problems by using the highly efficient Nr5a1-Cre mouse line to delete
Sox9 on a pure C57BL/6 genetic background, which has been shown to be more sensitive to
XY sex reversal compared to mixed backgrounds (6, 38-41), as well as an antibody that
avidly and specifically recognizes native mouse FOXL2 protein to mark ovarian tissue (42).
We show that, in contrast to the current model, heterozygous deletion of Sox9 in mice can
disturb testis differentiation, as evidenced by the formation of ovotestes.

Results

XY Nr5a1-Cre;Sox9flox/+ fetuses have ovotestes at 14.5 dpc

To generate mice with heterozygous and homozygous deletion of Sox9 in somatic cells of the
developing gonads on a pure C57BL/6 genetic background, we crossed the Nr5a1-Cre mouse
line (43) with the Sox9flox mouse line, harboring a conditional Sox9 null allele (44). This
Nr5a1-Cre line had been generated by bacterial artificial chromosome (BAC) transgenesis (43) and had been shown to efficiently delete genes in almost all gonadal somatic cells in both XX and XY fetal gonads by 11.5 dpc (43, 45, 46). These crosses generated Sox9^{flax/+} and Sox9^{flax/flax} (from here on referred to as controls), Cre/+;Sox9^{flax/+} (from here on referred to as Sox9-het), and Cre/+;Sox9^{flax/flax} (from here on referred to as Sox9-KO). Immunofluorescence (IF) analysis on sections of 14.5 dpc fetuses using antibodies to the granulosa cell marker FOXL2 (green, granulosa cells) and to the Sertoli cell marker AMH (purple, Sertoli cells) showed, as expected, extensive AMH and no FOXL2 expression in XY controls (Fig. 1A). In XX controls (Fig. 1D) as well as XY Sox9-KO (Fig. 1C), which have been described before to show complete male-to-female sex reversal (34, 45), we detected FOXL2 but no AMH. However, surprisingly, many FOXL2-positive cells were visible in XY Sox9-het gonads (Fig. 1B). These gonads presented as typical ovotestes with testicular tissue in the center and ovarian tissue at the poles (Fig. 1B, arrows). In addition, we also detected many FOXL2-positive cells in the center between AMH-positive testis cords in XY Sox9-het gonads (Fig. 1B, arrowheads), but only very few in XY control gonads (Fig. 1A).

IF analysis of XY control, XY Sox9-het, XY Sox9-KO, and XX fetuses for the Sertoli cell marker SOX9 (Fig. 1E-H, green fluorescence) together with the germ cell marker DDX4 confirmed the development of ovotestes in XY Sox9-het gonads (Fig. 1E-H, purple fluorescence). XY Sox9-het gonads demonstrated the distribution of germ cells within cords in the testicular areas (Fig. 1F, arrowheads), comparable to their location in XY control gonads (Fig. 1E), and scattered within ovarian areas (Fig. 1F, arrows), similar to germ cells in XY Sox9-KO (Fig. 1G) and XX control gonads (Fig. 1H). To investigate the fate of germ cells in XY control, XY Sox9-het and XX control gonads, we performed section IF for the meiosis marker SYCP3 (Fig. S1A-D, purple fluorescence) together with the Sertoli cell marker SOX9 (Fig. S1A-D, green fluorescence). Germ cells in an ovary enter meiosis in an
anterior-posterior wave from around 13.5 dpc, which is marked by the up-regulation of
SYCP3, while germ cells in a testis will enter mitotic arrest (47-50). As expected, no SYCP3-
positive cells were detected in XY control (Fig. S1A) in contrast to XX control gonads, in
which many of the germ cells had up-regulated SYCP3, especially in the anterior half of the
gonad (Fig. S1D). In XY Sox9-het gonads, a few SYCP3-positive germ cells at the anterior
(Fig. S1B, arrowheads) or posterior (Fig. S1C, arrowheads) pole were detected, indicating
that germ cells differentiated according to their somatic environment in Sox9-het ovotestes.

XY Nr5a1-Cre;Sox9^{flx/+} gonads appear partially sex reversed at 11.5 dpc

Having shown that XY Sox9-het gonads develop as ovotestes by 14.5 dpc, we next asked at
what stage ovotesticular structures are established. IF analysis of XY and XX control and XY
Sox9-het mouse fetuses from 11.5 to 13.5 dpc for FOXL2 (green, granulosa cells) and SOX9
(purple, Sertoli cells) (Fig. 2A-I) showed that at 11.5 dpc SOX9 expression was detectable in
both XY control and Sox9-het gonads (Fig. 2A,B). However, in Sox9-het gonads the number
of SOX9-positive cells was reduced at the anterior pole (Fig. 2B). In addition, FOXL2-
positive cells were detected in XX control, as well as in XY control and Sox9-het gonads (Fig.
2A-C). However, XY Sox9-het gonads, like XX control gonads, appeared to show a higher
number of FOXL2-positive cells with stronger expression when compared to XY control
gonads, especially at the anterior pole (Fig. 2B,C arrows). The lower number of SOX9-
positive and higher number of FOXL2-positive cells in XY Sox9-het gonads suggested that
they might represent ovotestes as early as 11.5dpc (Fig. 2B). At 12.5 and 13.5 dpc, SOX9-
positive cells have assembled into testis cords in XY control (Fig. 2D,G) and, to a lesser
degree, in XY Sox9-het gonads (Fig. 2E,H). In contrast, while there were clear ovarian parts
at the anterior and posterior pole of XY Sox9-het gonads, as shown by FOXL2 expression
(Fig. 2E,H, arrows), in XY control, only a few FOXL2-positive cells were detected in
between testis cords (Fig. 2D,G). In XX controls, FOXL2 was expressed throughout the
gonad in the medullary region (Fig. 2F,1), as expected. Taken together, these data showed
that ovotestes in XY Sox9-het gonads are established very early in gonad development.

Whole mount immunofluorescence is more suitable to analyze partial sex reversal

Interestingly, the IF investigation on sagittal sections of 14.5 dpc XY Sox9-het gonads
revealed that in some cases, depending on the position of the section analyzed, the partial sex
reversal was more or less obvious (Fig. 3A-D). Generally, lateral sections revealed ovarian
tissue at the anterior (Fig. 3A, arrow) and medial sections at the posterior pole (Fig. 3C,
arrow), whereas sections through the center appeared as “normal” testes (Fig. 3B). Moreover,
analysis of corresponding lateral or medial sections of 14.5 dpc XY Sox9-het gonads from six
fetuses revealed variable sex reversal phenotypes, ranging from the presence of only a few
FOXL2-positive cells between testis cords to obvious ovarian tissue at the poles (Fig. 3E-G).
The latter data suggest that either sex reversal was variable, or that the gonadal areas with the
highest degree of sex reversal might have been missed during sectioning.

Given that section IF did not always reveal the full extent of the sex reversal, we next
performed whole mount IF to obtain a more complete picture. Whole mount IF on isolated
gonads and underlying mesonephroi from XY control (n=8 fetuses; 11 gonads), XX control
(n=6 fetuses; 8 gonads) and XY Sox9-het (n=14 fetuses; 21 gonads) mouse fetuses from 12.5
to 14.5 dpc was carried out for AMH (Sertoli cells, purple fluorescence) and FOXL2
(granulosa cells, green fluorescence) (Fig. 4 and movies S1-6). Though variable, an
ovotesticular phenotype with testicular tissue in the center and ovarian tissue at the gonadal
poles was observed in all XY Sox9-het gonads investigated, whereas no ovotestes were
observed in any of the 11 XY control gonads. Maximum intensity Z-projection showed at
12.5 dpc (Fig. 4A-C), 13.5 dpc (Fig. 4D-F), and 14.5 dpc (Fig. 4G-I) expression of AMH
within testis cords in XY control (Fig. 4A,D,G) and in the center region of XY Sox9-het
ovotestes (Fig. 4B,E,H), but not at the poles of XY Sox9-het ovotestes and in XX control
gonads (Fig. 4C,F,I). AMH expression was considerably weaker in XY Sox9-het ovotestes
(Fig. 4B,E) at 12.5 dpc and 13.5 dpc when compared to XY control gonads (Fig. 4A,D).
FOXL2 was expressed in the medullary region of XX control gonads (Fig. 4C,F,I), as well as
at the poles of XY Sox9-het gonads (Fig. 4B,E,H). In addition, confirming our results from
the section IF, FOXL2 expression was also detected in cells in between testis cords at 13.5
and 14.5 dpc in the center of not only XY Sox9-het (Fig. 4E,H, arrowheads) but also, at lower
numbers, in XY control gonads (Fig. 4D,G, arrowheads). We quantified the sex reversal
phenotype at all stages by measuring the length of the testicular area as determined by the
presence of testis cord (testicular length, Fig. 4J) and expressing it as a percentage of total
gonad length (Fig. 4J,K). On average, the area occupied by testis cords varied between
individual samples but was significantly reduced at all stages compared to XY controls (Fig.
4K). In addition, we quantified the length of the ovarian tissue determined by the presence of
FOXL2-positive cells relative to overall gonad length at all stages (Fig. S2A,B) as well as the
number of FOXL2-positive cells in XY control and Sox9-het gonads at 14.5 dpc (Fig. S2C).
On average, ovarian tissue was greater than a quarter of gonad length across all stages in XY
Sox9-het gonads, and the number of FOXL2-positive cells was increased significantly by 4.5-
fold in XY Sox9-het gonads relative to XY controls (Fig. S2). Taken together, these data
show that all XY Sox9-het fetal mice developed ovotestes, however the extent of the ovarian
tissue varies between individual samples. We also showed that FOXL2-positive cells were not
only restricted to the poles but also present in high numbers in between testis cords. Finally,
these experiments suggested that whole mount IF might be more suitable than section IF to
analyze partial sex reversal.

50% of Sox9 mRNA levels are not sufficient for normal testis development
Having shown that XY Sox9-het gonads on a C57BL/6 background develop as ovotestes, we
next aimed to determine the expression levels of marker genes for testis and ovary
development in these gonads compared to XY and XX controls. Droplet digital RT-PCR
(ddRT-PCR) of isolated gonads from XY control (n=5), XY Sox9-het (n=9), XY Sox9-KO
(n=4) and XX control (n=3) mouse fetuses at 13.5 dpc was performed for Sox9 (Fig. 5A),
Amh (Fig. 5B), Foxl2 (Fig. 5C) and Wnt4 (Fig. 5D). This analysis demonstrated that Sox9
mRNA expression in XY Sox9-het gonads was reduced to 48.6% (Fig. 5A) compared to XY
controls, while Amh mRNA was reduced to 49.6% (Fig. 5B). This reduction is likely to be
cau sed mainly by a reduction in expression per cell and, to a lesser extent, by the small
reduction in the number of Sox9- and Amh-positive cells as shown by the quantification of the
whole-mount IF data (Fig. 4K). In addition, the expression of the two ovarian marker genes
Foxl2 and Wnt4 were slightly, but statistically significantly, increased in XY Sox9-het
compared to XY control gonads (Fig. 5C,D).

Testes appear normal in adult XY Nr5a1-Cre;Sox9flav/+

Next, we asked the question, what happens to ovotestes in XY Sox9-het mice at later stages.
To this end, we first performed section (Fig. 6A-C) and whole mount IF analyses of XY
control and Sox9-het (Fig. S3A,B,D,E,G,H and movies S7 and S8) and XX control (Fig.
S2A-I) mouse gonads at 18.5 dpc for AMH and FOXL2. As expected, AMH was expressed
in Sertoli cells within testis cords in XY controls and XY Sox9-het gonads (Fig. 6A,B and
Fig. S3C,F,I, purple fluorescence), but not in XX controls, which instead expressed FOXL2
(Fig. 6C and Fig. S3G-I, green fluorescence). Similar to earlier stages, FOXL2-positive cells
were also detected in XY Sox9-het gonads both at the poles (arrows in Fig. 6B and Fig. S3D)
and within the rete testis (RT) region (arrowheads in Fig. 6B and Fig. S3E). However, the
FOXL2-positive cells at the poles no longer formed a distinct ovarian-like area; they were
now intermixed with AMH-positive testis cords, which appeared disorganized (arrows in Fig.
6B and Fig. S3D). Surprisingly, even in some of the XY control gonads, we could still detect a few FOXL2-positive cells in between testis cords in the rete testis area (Fig. 6B, arrowhead). In addition, FOXL2 was detected in the mesenchyme surrounding the Wolffian duct (movies S3-S8). It should be noted that many lateral or medial sections of XY Sox9-het mouse gonads did not show any FOXL2-positive cells (Fig. S3H and movie S8).

Finally, we analyzed gonads from XY control and XY Sox9-het mice at 3 months of age. We determined the wet weight of testes and seminal vesicles, as well as the body weight (Fig. S3), and calculated relative testes and seminal vesicles weight per gram body weight (Fig. 6D,E). There were no significant differences between XY control and XY Sox9-het mice in any of the measured weights (Fig. 6D,E; Fig. S4). Similarly, histological analysis using PAS staining of paraffin sections from XY control and Sox9-het gonads (Fig. 6F,G), as well as section IF for SOX9 and FOXL2 did not reveal any differences between XY control and XY Sox9-het gonads at 3 months of age when analyzing areas in the center of the testes (Fig. 6H,I). SOX9 was expressed in Sertoli cells within seminiferous tubules in gonads of both control and Sox9-het XY mice, without any FOXL2-positive cells detectable (Fig. 6H,I). In contrast, sections through the rete testes area revealed that even at 3 months of age FOXL2-positive cells were detected in one out of three XY Sox9-het gonads analyzed (Fig. 6J), but in none of the XY controls (n=3) investigated (data not shown). In summary, these results showed that the ovotesticular phenotype in XY Sox9-het mice is of transient nature and cannot be detected in adult gonads.

Discussion

SOX9 is a transcription factor that is important in the development of many different organs and tissues (19, 22, 34, 51-58), especially skeletal development and testis determination (34-36, 51, 59). It has been believed that humans and mice fundamentally differ in their SOX9
dosage requirements during testis differentiation. In humans, loss-of-function of one allele is
sufficient to cause partial to complete sex reversal (19, 21, 22, 60), while sex reversal in Sox9
mouse models was only observed with inactivation of both alleles (34-36). In contrast to this
view, we show here for the first time that heterozygous deletion of Sox9 in fetal mouse
gonads can lead to partial sex reversal demonstrated by the development of ovotestes. What
explains the discrepancy between previously published data and the data shown here? We
believe that there are several possible reasons, and likely it is a combination of these, that lead
to these inconsistencies. These are: different combinations of Cre deleter and Sox9-flox mice,
the genetic background, and techniques available and used for the analysis, all of which are
elaborated in more detail below.

Different combinations of Cre deleter and Sox9-flox mice and the genetic background of
mice could cause differences in testicular phenotypes

Heterozygous mutations of SOX9 in humans cause campomelic dysplasia (CMPD, OMIM
114290), a syndrome with severe skeletal malformations which is associated with partial to
complete sex reversal in about 75% of all XY patients (19, 21, 22). Analysis of a
corresponding mouse model with a heterozygous deletion of Sox9 indicated that these mice
phenocopied the skeletal, but not the associated testicular defects of CMPD patients (35). The
subsequent generation and analysis of homozygous Sox9 knockout mice turned out to be a
major challenge. Firstly, Sox9 heterozygous mice die soon after birth (35). Secondly, the
generation of homozygous Sox9 knockout mice using germline-specific Cre lines resulted in
embryonic lethality at around 11.5 dpc, just before testis differentiation (51), preventing the
analysis of a possible testicular phenotype in vivo. Eventually, the use of tissue-specific Cre
deleter mouse lines allowed the investigation of the role of SOX9 in testis determination and
differentiation, showing that its loss leads to complete XY sex reversal (34, 36), which was
confirmed in our study.
Over the years, several different conditional Sox9 knockout mouse models have been generated with no reports of defects in testis development in XY Sox9 heterozygous gonads (34, 36-38, 46). These included two different Sox9-floxed mouse lines and several different Cre deleter lines (details see Table S2). In this study, we crossed for the first time Sox9^{gim2Gir} (44) with the efficient Nrsa1:Cre mouse line (Tg(Nrsa1-cre)2Klp, (43)). In addition, most of the previous Sox9 constitutive or conditional mouse models were on a mixed genetic background, such as 129SvEv/C57BL/6 and 129SvEv/Swiss (35, 36, 38, 46). In contrast, our mouse model was on a pure C57BL/6 background and it is known that C57BL/6 are sensitized to XY sex reversal due to a stronger ovarian program (39). Taken together, the unique Cre/Sox9-flox combination on a pure C57BL/6 background is likely to be more prone to XY sex reversal than previous Cre /Sox9-flox combinations.

Our data show that like in humans, one copy of the Sox9 gene is not sufficient for the normal development of fetal testes in mice on a C57BL/6 genetic background. Consistent with the deletion of one Sox9 gene copy, Sox9 mRNA levels in XY Sox9-het gonads were reduced to approximately half of that in XY control testes. However, it can be assumed that the Sox9 expression threshold required for normal testis development in mice varies between different genetic backgrounds. For example, in a study by Gonen and colleagues (37), who analyzed mouse knockout models with variable reduced Sox9 expression levels, this threshold was determined to be between 23% and 45%, lower than in our mouse model. Unfortunately, a direct comparison with our mouse model is not possible at this stage since no information about the genetic backgrounds of the mouse strains used was reported (37). It would be interesting to measure and compare absolute Sox9 mRNA expression levels in both XY control and XY Sox9-het gonads from different laboratories to shed more light into the Sox9
expression thresholds required for mouse testis determination on different genetic
backgrounds.

* A testicular phenotype might have been missed due to the availability and use of techniques *

In our mouse model the observed ovotestes consisted of testicular tissue in the center and
ovarian tissue at the poles of the gonads, which is typically found in partially sex-reversed
mice during early gonadal development (6). To detect the testicular and ovarian tissue we
used antibodies that avidly and specifically recognize native SOX9, AMH and FOXL2
respectively. In contrast, many of the previous *Sox9* heterozygous mouse models were
analyzed only by histological H&E staining and/or morphological appearance of the gonads
(35, 36, 38), or *Sox9*-het gonads were not examined (34, 44, 46), making it possible that an
ovotestes phenotype was missed in these studies. This is especially likely given that the extent
of the sex reversal was variable in our model, and that even when using robust molecular
markers, the degree of sex reversal observed depended on the plane of the section investigated
(Fig. 3). One possibility to obtain a more complete picture of the sex reversal phenotype in
Sox9-het gonads is to perform whole-mount instead of section IF, as demonstrated here.

* Is our mouse model comparable to the testicular phenotype of human CMPD patients? *

CMPD (OMIM 114290) in humans is caused by heterozygous mutations of *SOX9*. Combining
the data from several studies (21, 25-27), approximately 64% of XY CMPD
patients show complete XY sex reversal (*Table S1*), a severe phenotype which was not
observed in our *Sox9*-het mice. Given that the genetic background plays a role in the
sensitivity to sex reversal in mice, it is reasonable to assume that genetic diversity in humans
might play a similar role. To assess this, information about possible modifier genes would be
needed. Modifier genes and non-coding regions on autosomes and the X chromosome that can
sensitize or protect individuals from sex reversal have been described in mice (61-64),
however no information is available for humans. One good candidate modifier gene in humans is SOX8, which, like SOX9, encodes a protein of the SOXE group of transcription factors (65, 66). In mice, Sox9 and Sox8 cooperate during testis differentiation (36). Recently, three patients with 46,XY gonadal dysgenesis have been identified, two with chromosomal rearrangements around the SOX8 locus and one harboring a deleterious missense mutation with SOX8 (67), suggesting that SOX8 might also be involved in human sex determination.

Another variable that differs between human and mouse is the timescale in which the gonads develop. In mice, the genital ridges are first visible at around 10.5 dpc, Sry is expressed from 10.5 to 12.5 dpc (4, 13, 68) and testis cord are formed over a 24-hour period from 11.5 to 12.5 dpc (69-71), hence the main steps of testis determination happen within 48 hours. In contrast, human genital ridges develop during the 4th week of gestation (72, 73), SRY is expressed from around the 6th week (74), and testis cords form in weeks 7 to 8 (74, 75), altogether spanning four weeks in contrast to two days in mice. In mouse, it is known that SRY has to function within a tight time window to up-regulate Sox9 expression and ensure testis differentiation (76). A similar time window might exist for SOX9 in humans. It is possible that the extended timing of gonadal development in humans may worsen defects caused by sub-optimal expression of SOX9, a hypothesis that is difficult to test at present.

Stem cell models have enabled the study of differences in the timing of motor neuron differentiation in human and mouse (77). In contrast, stem cell models of gonadal development are in their infancy (78), but may ultimately provide a platform to investigate the relationship between developmental timing and gene dosage in sex determination.

Given the genetic diversity, it is not surprising that complete XY sex reversal associated with SOX9 haploinsufficiency is not fully penetrant in humans. About 25% of XY CMPD patients present with a normal male phenotype, leaving approximately 75% of XY patients with
partial or complete sex reversal (Table S1) (21, 25-27). Our novel mouse model shows that
XY Sox9-het mice on a C57BL/6 background develop ovotestes, suggesting that humans and
mice might be more similar with respect to their SOX9 dosage requirements during testis
determination than initially thought. The Sox9-heterozygous mice on a C57BL/6 background
could thus be regarded as a model for the testicular defects in CMPD patients. In XY Sox9-het
mice, fetal gonads initially develop as partially sex reversed ovotestes, with ovarian tissue
adjacent to testicular tissue. Histological analyses of fetal gonads from 46,XY CMPD patients
with ambiguous or female genitalia have been rarely performed, but the few studies which
described these showed that these gonads were also sex reversed and presented as normal
ovaries (Table S3) (19, 60, 79). Thus, apart from the milder sex reversal phenotype in Sox9-
het mice, when compared to this specific group of CMPD patients, the gonadal phenotypes
appear to be similar in humans and mice during fetal life.

Gonads from 46,XY CMPD patients with ambiguous or female genitalia that have been
investigated after birth typically presented as dysgenic ovaries with very few primordial
follicles or as streak gonads (Table S3) (19, 25, 27, 60, 80-82). In our mouse model,
ovotestes in XY Sox9-het mice persisted until shortly before birth, but the ovarian regions
were intermixed with AMH-positive testis cords. By three months of age, XY Sox9-het
ovotestes had almost completely resolved and were indistinguishable from control testes. It is
possible that this mimics the situation in 46,XY CMPD male patients with normally
descended testes. The underlying mechanism of this is unclear but could be due to elimination
of the ovarian parts by apoptosis as it had been described in a different mouse model (83).

In summary, we demonstrate that, like in humans, haploinsufficiency of Sox9 in mice can
result in gonadal sex reversal during fetal life. Our Sox9-het mice represent a valuable mouse
model not only for 46,XY CMPD patients with normal male, ambiguous or female external
genitalia, but also for human sex reversal in general and gene dosage effects during gonadal
sex determination.

386**Materials and Methods**

387**Mouse strains**

388Sox\(^{\text{flox/flox}}\) mice (Sox9\(^{\text{tm2Gsr}}\), (44)) on a C57BL/6 background (> 10 backcrosses) were crossed
389with the Nr5a1-Cre (Tg(Nr5a1-cre)2Klp) mouse line (43)) to obtain Cre\(^{+/+}\);Sox9\(^{\text{flox/+}}\) mice for
390analysis. To confirm complete XY sex reversal in Sox9-null mice, Cre\(^{+/+}\);Sox9\(^{\text{flox/+}}\) were
391backcrossed to Sox9\(^{\text{flox/flox}}\) mice to obtain Cre\(^{+/+}\);Sox9\(^{\text{flox/flox}}\) mice. Fetuses were collected from
timed matings with noon of the day on which the mating plug was observed designated as 0.5
days post coitum (dpc). For more accurate staging at 11.5 dpc and 12.5 dpc, the tail somite
(ts) stage of the fetus was determined by counting the number of somites posterior to the hind
limb (68) with 11.5 dpc corresponding to approximately 18 ts and 12.5 dpc to 30 ts.
396Genotyping analysis for Cre (84), the Sox9 locus (44) and the genetic sex (85) was performed
397using genomic DNA isolated from tail tissue.

399Protocols and use of animals were approved by the Anatomy & Neuroscience Animal Ethics
400Committee of the University of Melbourne (approval #1614080). All experiments were
401performed in accordance with relevant guidelines and regulations.

403**Section immunofluorescence**

404Mouse fetuses between 11.5 dpc and 14.5dpc or whole testes from 18.5 dpc and 3-month-old
405mice were fixed in 4% PFA in PBS at 4°C overnight, embedded in paraaffin, sectioned at 5μm,
406and immunofluorescence performed as described previously (13). Primary antibodies used
407for this study were anti-SOX9 sheep polyclonal (1:100; (7)), anti-SOX9 rabbit polyclonal
(1:300, (13)), anti-DDX4 goat polyclonal (1:200; AF2030, R&D systems), anti-AMH goat polyclonal (1:200; sc6886, Santa Cruz), anti-AMH mouse monoclonal (1:50; MCA2246, BIO-RAD), anti-SYCP3 mouse monoclonal (1:100; ab97672, Abcam), and anti-FOXL2 rabbit polyclonal (1:300; (42)). Secondary antibodies used were donkey anti-rabbit Alexa 488, donkey anti-rabbit Alexa 568, donkey anti-goat Alexa 488, donkey anti-goat Alexa 546, donkey anti-mouse Alexa 488, and donkey anti-sheep Alexa 647 obtained from Invitrogen and used at 1:300. Images were taken with a Zeiss LSM800 confocal microscope at the Biological Optical Microscopy Platform (BOMP) at the Department of Anatomy and Neuroscience, The University of Melbourne. For section immunofluorescence, 2-4 XY control, 4-6 XY Sox9-het, 3 XY Sox9 KO, and 2-3 XX control fetuses were used.

Whole-mount immunofluorescence

Whole testes between 12.5 dpc and 18.5 dpc were fixed in 4% PFA for 15 min before blocking for 2 h (for 18.5 dpc 5 h) in PBS with 0.1% Triton x-100 (PBTX) and 10% heat inactivated horse serum (Invitrogen). Samples were incubated with dilutions of the primary antibodies anti-AMH goat polyclonal (1:200; sc6886, Santa Cruz) and anti-FOXL2 rabbit polyclonal (1:300; (42)) at 4°C for two days before washing three times overnight (for 18.5 dpc 2 days) in PBTX. Samples were then incubated with the secondary antibodies donkey anti-rabbit Alexa 488 and donkey anti-goat Alexa 546 obtained from Invitrogen at 1:300 dilution for two days at 4°C before a minimum of three washes in PBTX over night (for 18.5 dpc 2 days). Samples were dehydrated in a methanol series (25%, 50%, 75%, 100%, 100%, for 15 min each) and then cleared in a 2:1 solution of Benzyl benzoate: Benzyl alcohol (Sigma). Samples were mounted in 3.5 cm glass bottom culture dishes (Mattek). All samples were imaged on a Zeiss LSM 510 META inverted confocal microscope, and optical sections were collected in 3μm steps.
The Zeiss CZI image files were viewed and analysed using Fiji, an open source image processing package based on ImageJ (86). 3D reconstructions of the gonads were created using the function '3D projection' with projection method 'brightest point'. Standard settings were used, but with rotation angle increment '1' instead of '10' and with the option ‘Interpolate’. The 3D projections are provided as movies with 24 frames per second (fps). Z-stack images were created using the function 'Z projection' with projection type 'Max intensity'. Z-series of confocal images are displayed at 4 fps (12.5dpc, 13.5dpc), 6 fps (18.5 dpc), and 8 fps (14.5 dpc).

Quantification of gonad length, testicular and ovarian area lengths was performed in image analysis software Imaris (BitPlane). The ‘Measurement Points’ function was used to guide placement of marker points, ensuring that these markers intersect with fluorescent signal within the dataset and provide accurate point-to-point measurements within the three dimensional datasets. Markers were placed at both ends of the gonad, and at either end of the region occupied by testis cords, or FOXL2-positive cells at the gonad poles to measure gonad length, testicular and ovarian tissue length respectively. Testicular and ovarian tissue length measurements were expressed as a percent of total length for each gonad and compared between genotypes. Quantification of FOXL2-positive cells was also performed in Imaris using a trimmed ‘Surface’ render of the 488 channel to mask and isolate FOXL2 signal within the gonad (but not mesonephros) into a new channel. The masked FOXL2 channel was subject to background subtraction (threshold 20) and median filtering (3x3x1). A spot detection algorithm (‘Spots’) was then run to quantify discrete points of FOXL2+ signal. Spot results were compared to the masked and original FOXL2 channel to ensure that this measure did not grossly over or under-represent the number of FOXL2-positive cells visible in each 3D dataset. The resulting data was analysed for statistically significant differences between
XY control and XY Sox9-het groups using a two-tailed, unpaired t-test with confidence intervals set at 95%.

Periodic acid-Schiff (PAS) staining

Paraffin sections (5μm) were dewaxed in xylene and re-hydrated to water. Sections were oxidized with 1% periodic acid for 5 minutes and washed with distilled water for 1 min. Slides were then placed in Schiff’s reagent at room temperature for 10 min and washed thoroughly in running tap water for 10 min. Sections were counterstained in hematoxylin for 30 seconds before being washed in running water for 30 sec and dipped in Scott’s tap water for 30 sec. After washing in running tap water, sections were dehydrated, cleared in two changes of xylene for 5 minutes each, and mounted with DPX Mounting Media. Images were taken with the light microscope Axioskop 2 (Zeiss).

Quantitative droplet digital RT-PCR (ddRT-PCR)

ddRT-PCR was performed as described previously (87). Gonad-only samples (mesonephroi removed) at 13.5 dpc were used, which were snap-frozen in liquid nitrogen immediately after dissection. RNA was isolated using the RNeasy Micro Kit (QIAGEN). 200 ng of input RNA was subjected to cDNA synthesis with SuperScript III First-Strand Synthesis System for RT-PCR (Invitrogen) as per manufacturer’s instructions. cDNA samples were diluted with RNAse-free water 1:10 to 1:1000 for expression analysis. ddPCR was performed using a BioRad QX100 system. Analysis of the ddPCR data was performed with QuantaSoft analysis software (BioRad). ddRT-PCR data were normalized to the expression levels of Tbp (88).

RT-ddPCR analyses were performed on XY control (n=5 fetuses), XY Sox9-het (n=9 fetuses), XY Sox9 KO (n=4 fetuses), and XX control (n=3 fetuses) gonads. For each gene, data sets were analyzed for statistically significant differences between XY control and XY Sox9-het
expression levels using a two-tailed, unpaired t-test with confidence intervals set at 95%.

Predesigned qPCR assays were used (Integrated DNA technologies (IDT)).

Funding

This work was supported by research grants from the Australian Research Council [DP150101448, DP170100045 to D.W.; DE150100652 to A.N.C.] and National Health and Medical Research Council of Australia [APP1156567 to A.N.C.].

Acknowledgements

Processing and sectioning were performed at the Melbourne Histology Platform, University of Melbourne, and confocal microscopy was performed at the Biological Optical Microscopy Platform at the Department of Anatomy and Neuroscience, University of Melbourne and at the Murdoch Children's Research Institute.

Conflict of Interest Statement

The authors declare that they have no competing interests.
References

32 Kim, G.J., Sock, E., Buchberger, A., Just, W., Denzer, F., Hoepffner, W., German, J., Cole, T., Mann, J., Seguin, J.H. et al. (2015) Copy number variation of two separate

Mutations involving the SRY-related gene SOX8 are associated with a spectrum of human reproductive anomalies. *Hum Mol Genet*, 27, 1228-1240.

78 Science (New York, N.Y., 369.

Figure legends

Figure 1. Markers of gonadal differentiation in control, XY Sox9-het and XY Sox9 KO gonads at 14.5 dpc. (A-D) Double immunofluorescence on sagittal sections of paraffin-embedded 14.5 dpc XY control, XY Sox9-het, XY Sox9-KO and XX control gonads for FOXL2 (green, granulosa cells) and AMH (purple, Sertoli cells). Arrows point to FOXL2-positive cells at the poles of the XY Sox9-het gonad. Arrowheads indicate FOXL2-positive cells in the center of Sox9-het and XY control gonads. (E-H) Double immunofluorescence (IF) on sagittal sections of paraffin-embedded 14.5 dpc XY control, XY Sox9-het, XY Sox9-KO and XX control gonads for SOX9 (green, Sertoli cells) and DDX4 (purple, germ cells). Arrows point to scattered germ cells at the poles of the XY Sox9-het gonad. Arrowheads indicate germ cells inside testis cords in Sox9-het and XY control gonads. All images of fetal gonad sections are oriented so that the anterior pole is at the top and the mesonephros is on the left of the gonad. Scale bar, 100 μm.

Figure 2. Expression analysis of FOXL2 and SOX9 in control and XY Sox9-het gonads between 11.5 dpc and 13.5 dpc. (A-I) Double immunofluorescence analysis on sagittal sections from 11.5 dpc (A-C), 12.5 dpc (D-F) and 13.5 dpc (G-I) XY control, Sox9-het, and XX control gonads for FOXL2 (green, granulosa cells) and SOX9 (purple, Sertoli cells). In all images of fetal gonad sections the anterior pole is at the top and the mesonephros is on the left of the gonad. Arrows point to FOXL2-positive cells at the poles of Sox9-het and XX control gonad sections. Scale bar, 100 μm.

Figure 3. Analysis of sex reversal in XY Sox9-het gonads by immunofluorescence on sagittal sections at 14.5 dpc. (A-C) Double immunofluorescence analysis on sagittal sections from a single 14.5 dpc XY Sox9-het gonad (right gonad) for FOXL2 (green, granulosa cells)
and AMH (purple, Sertoli cells). The dotted lines in (D) indicate the position of the sections analyzed in (A-C). Lateral and medial refers to the position within the fetus. Lateral section 1 and medial section 3 revealed sex reversal at the anterior and posterior poles, respectively, while the center region 2 showed a normal testicular phenotype. (E-G) Double IF analysis on corresponding lateral sections from three independent 14.5 dpc XY Sox9-het gonads (right gonads) for FOXL2 and AMH showed a variable sex reversal phenotype. Scale bar, 100 μm.

Figure 4. Analysis of sex reversal in XY Sox9-het gonads by whole mount immunofluorescence between 12.5 dpc and 14.5 dpc. (A-I) Double whole mount immunofluorescence analysis of 12.5 dpc, 13.5 dpc and 14.5 dpc XY control, XY Sox9-het and XX control gonads for AMH (purple, Sertoli cells) and FOXL2 (green, granulosa cells). The images represent maximum intensity projection (Z-stacks) of the Z-series using Fiji. Arrowheads point to FOXL2-positive cells between testis cords in XY control and XY Sox9-het gonads. Scale bar, 100 μm. (J) Schematic representation of gonad and testicular area length measurements. (K) Quantification of the percentage of testicular area length relative to overall gonad length of XY control (solid bars) and Sox9-het (dashed bars) at 12.5, 13.5, and 14.5 dpc (unpaired two-tailed t-test; mean ± standard error of the mean).

Figure 5. Expression analysis of testicular and ovarian markers in 13.5 dpc control, XY Sox9-het and XY Sox9-KO gonads by droplet digital RT-PCR. (A-D) mRNA expression levels of Sox9 (A), Amh (B), FoxI2 (C) and Wnt4 (D) in 13.5 dpc XY control (n=5 fetuses), XY Sox9-het (n=9 fetuses), XY Sox9 KO (n=4 fetuses), and XX control (n=3 fetuses) gonads. Expression levels are shown relative to the expression levels of Tbp. XY samples are shown in blue, XX in pink. *P < 0.05, ***P < 0.0001 (unpaired student t-test between XY control and XY Sox9-het gonads). Mean ± standard error of the mean (SEM).
Figure 6. Ovotestes in XY Sox9-het gonads resolve into testes. (A-C) Double immunofluorescence analysis on sections from 18.5 dpc XY control, XY Sox9-het, and XX control gonads for FOXL2 (green, granulosa cells) and AMH (purple, Sertoli cells). The arrow in (B) points to the ovarian region populated with testis cords at the anterior pole of the XY Sox9-het gonad. Arrowheads in (A,B) indicate FOXL2-positive cells within the rete testis region in XY control and XY Sox9-het gonads. (D,E) Testis and seminal vesicle weight relative to body weight in 3 months old XY control (n=3) and XY Sox9-het (n=4) mice. (F,G) Histological analysis using Periodic acid Schiff staining of paraffin sections from XY control and Sox9-het gonads at 3 months of age. (H-J) Double immunofluorescence analysis on sections from 3 months old XY control (H) and XY Sox9-het (I and J) gonads for FOXL2 (green, granulosa cells) and SOX9 (purple, Sertoli cells). Images in (H) and (I) show areas from the center of the gonads, while the image in (J) shows an area around the rete testis. ns, not significant (unpaired student t-test; mean ± standard error of the mean (SEM); RT, rete testis. Scale bars, 100 μm.

Figure S1. Analysis of germ cell development in 14.5 dpc XY Sox9-het gonads. (A-D) Double immunofluorescence analysis on sagittal sections from 14.5 dpc XY control (A), XY Sox9-het (B and C), and XX control (D) gonads for SOX9 (green, Sertoli cells) and SYCP3 (purple, germ cell meiosis). Arrowheads in (B) and (C) point to germ cells that enter meiosis at the poles of XY Sox9-het gonads. Scale bar, 100 μm.

Figure S2. Quantification of ovarian tissue. (A) Schematic representation of gonad and ovarian tissue length measurements. (B) Quantification of the percentage of ovarian area length relative to overall gonad length of XY control (solid bars) and Sox9-het (dashed bars) at 12.5, 13.5, and 14.5 dpc (unpaired two-tailed t-test; mean ± standard error of the mean). (C) Quantification of FOXL2-positive cells in XY control (n=3) and Sox9-het (n=7) gonads at
14.5 dpc using whole-mount immunofluorescence analysis (unpaired student t-test; Mean ± standard error of the mean).

Figure S3. Analysis of sex reversal in XY Sox9-het gonads by whole mount immunofluorescence at 18.5 dpc. (A-I) Double whole mount immunofluorescence analysis of 18.5 dpc XY control, XY Sox9-het and XX control gonads for AMH (purple, Sertoli cells) and FOXL2 (green, granulosa cells). The three images per genotype represent corresponding optical sections from different regions of the gonads. The arrow in (B) indicates the ovarian region in the XY Sox9-het gonad. Arrowheads point to FOXL2-positive cells within the rete testis region of XY control (D) and XY Sox9-het (E) gonads. RT, rete testis. Scale bar, 100 μm.

Figure S3. Testis, seminal vesicle and body weight of 3 months old XY control and XY Sox9-het mice. (A) Testis weight, (B) seminal vesicle weight, (C) ratio of testis and seminal vesicle weight, and (D) body weight of 3 months old XY control (n=3) and XY Sox9-het (n=4) mice. ns, not significant (unpaired student t-test; Mean ± standard error of the mean (SEM)).

Movie S1. 3D projection of a 12.5 dpc XY control gonad. Double immunofluorescence for AMH (purple, Sertoli cells) and FOXL2 (green, granulosa cells).

Movie S2. 3D projection of a 12.5 dpc XY Sox9-het gonad. Double immunofluorescence for AMH (purple, Sertoli cells) and FOXL2 (green, granulosa cells).
Movie S3. 3D projection of a 13.5 dpc XY control gonad. Double immunofluorescence for AMH (purple, Sertoli cells) and FOXL2 (green, granulosa cells).

Movie S4. 3D projection of a 13.5 dpc XY Sox9-het gonad. Double immunofluorescence for AMH (purple, Sertoli cells) and FOXL2 (green, granulosa cells).

Movie S5. 3D projection of a 14.5 dpc XY control gonad. Double immunofluorescence for AMH (purple, Sertoli cells) and FOXL2 (green, granulosa cells).

Movie S6. 3D projection of a 14.5 dpc XY Sox9-het gonad. Double immunofluorescence for AMH (purple, Sertoli cells) and FOXL2 (green, granulosa cells).

Movie S7. 3D projection of an 18.5 dpc XY control gonad. Double immunofluorescence for AMH (purple, Sertoli cells) and FOXL2 (green, granulosa cells).

Movie S8. 3D projection of an 18.5 dpc XY Sox9-het gonad. Double immunofluorescence for AMH (purple, Sertoli cells) and FOXL2 (green, granulosa cells).

Abbreviations

Dpc - days post coitum; Sox9-het - Cre/+; Sox9^{fl^{ox}+}; Sox9-KO - Cre/+; Sox9^{fl^{ox}fl^{ox}}
Figure 1

<table>
<thead>
<tr>
<th></th>
<th>XY control</th>
<th>XY Sox9 het</th>
<th>XY Sox9 KO</th>
<th>XX control</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.5 dpc, FOXL2 / AMH</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- **A**: XY control, 14.5 dpc, FOXL2 / AMH
- **B**: XY Sox9 het, 14.5 dpc, FOXL2 / AMH
- **C**: XY Sox9 KO, 14.5 dpc, FOXL2 / AMH
- **D**: XX control, 14.5 dpc, FOXL2 / AMH

Annotations:
- Arrows indicate specific features in the images.
Figure 2

<table>
<thead>
<tr>
<th>XY control</th>
<th>XY Sox9 het</th>
<th>XX control</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>D</td>
<td>E</td>
<td>F</td>
</tr>
<tr>
<td>G</td>
<td>H</td>
<td>I</td>
</tr>
</tbody>
</table>

- 11.5 dpc, FOXL2 / SOX9
- 12.5 dpc, FOXL2 / SOX9
- 13.5 dpc, FOXL2 / SOX9

Arrow indicates the area of interest.
<table>
<thead>
<tr>
<th>Time</th>
<th>XY control</th>
<th>XY Sox9 het</th>
<th>XX control</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.5 dpc</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.5 dpc</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.5 dpc</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 5

A. **Sox9**

B. **Amh**

C. **Foxl2**

D. **Wnt4**
Figure 6

<table>
<thead>
<tr>
<th>XY control</th>
<th>XY Sox9 het</th>
<th>XX control</th>
</tr>
</thead>
</table>

A. 18.5 dpc, FOXL2/AMH

B. RT

C. XY control

D. Testis/body weight

E. Seminal vesicles/body weight

F. 3 months, PAS

G. XY control

H. XY Sox9 het

I. XY Sox9 het

J. RT

Bar scale

Table:

<table>
<thead>
<tr>
<th></th>
<th>XY Co</th>
<th>XY Sox9-het</th>
</tr>
</thead>
<tbody>
<tr>
<td>Testis/body weight</td>
<td>0.003</td>
<td>0.003</td>
</tr>
<tr>
<td>Seminal vesicles/body weight</td>
<td>0.004</td>
<td>0.003</td>
</tr>
</tbody>
</table>

ns
<table>
<thead>
<tr>
<th></th>
<th>XY control</th>
<th>XY Sox9 het 1</th>
<th>XY Sox9 het 2</th>
<th>XX control</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.5 dpc</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>XY Sox9 het 1</td>
<td>XY Sox9 het 2</td>
<td>XX control</td>
<td></td>
</tr>
<tr>
<td></td>
<td>XY control</td>
<td>XY Sox9 het</td>
<td>XX control</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>------------</td>
<td>-------------</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

18.5 dpc, FOXL2 / AMH

Figure 4
Figure S2

A. Testis weight [mg]

B. Seminal vesicles weight [mg]

C. Testis/seminal vesicles weight

D. Body weight [g]
Heterozygous deletion of Sox9 in mouse mimics the gonadal sex reversal phenotype associated with campomelic dysplasia in humans

Bagheri-Fam, S.; Combes, A. N.; Ling, C. K.; Wilhelm, D.

http://hdl.handle.net/11343/267779