Supraglottic Airway Devices during Neonatal Resuscitation: An historical perspective, systematic review and meta-analysis of available clinical trials

Georg M. Schmölzer MD, PhD1,2, Manish Agarwal3, C. Omar F. Kamlin DrSciMed3,4,5, Peter G. Davis MD4,5

1 Department of Pediatrics, University of Alberta, Edmonton, Canada
2 Division of Neonatology, Department of Pediatrics, Medical University, Graz, Austria
3 Neonatal Services, The Royal Women’s Hospital, Melbourne, Australia
4 Critical Care Stream, Murdoch Children Research Institute, Melbourne, Australia
5 Department of Obstetrics & Gynaecology, The University of Melbourne, Australia

Corresponding author:
Georg M. Schmölzer, M.D., Ph.D.
Department of Newborn Medicine,
Royal Alexandra Hospital,
10240 Kingsway Avenue NW,
TSH 3V9, Edmonton, Alberta, Canada
Telephone +1 780 735 4670
Fax: +1 780 735 4072
Email: georg.schmoelzer@me.com
ResearcherID: E-7883-2010

No reprints requested

Keywords: INFANTS, NEWBORN, DELIVERY ROOM, NEONATAL RESUSCITATION, ENDOTRACHEAL INTUBATION, SUPRAGLOTTIC AIRWAY DEVICES, LARYNGEAL MASK AIRWAY, OROPHARYNGEAL AIRWAY

Conflict of interest: None

Author’s contribution:
Conception and design: GM Schmölzer, M Agarwal, COF Kamlin, PG Davis;
Collection and assembly of data: GM Schmölzer, M Agarwal;
Analysis and interpretation of the data: GM Schmölzer, M Agarwal, COF Kamlin, PG Davis;
Drafting of the article: GM Schmölzer, M Agarwal, COF Kamlin, PG Davis;
Critical revision of the article for important intellectual content: GM Schmölzer, M Agarwal, COF Kamlin, PG Davis;
Final approval of the article: GM Schmölzer, M Agarwal, COF Kamlin, PG Davis.

Authors’ affiliations
GMS is a supported by a Banting Postdoctoral Fellowship, Canadian Institute of Health Research and an Alberta Innovate – Health Solution Clinical Fellowship. PGD is supported by an Australian National Health and Medical Research Council Practitioner and Principal Research Fellowship, respectively. PGD holds an Australian National Health and Medical Research Council Program Grant No. 384100.

Word count: 3848 words
Abstract: 26w words
Abbreviations:

LM - Laryngeal mask
NICU - Neonatal intensive care unit
RCT - Randomized control trial
CPAP - Continuous positive airway pressure
OR - Odds ratio
CI - Confidence intervals
NNT - Number needed to treat
RR - Relative Risk
Abstract

Introduction
Various supraglottic airway devices are routinely used to maintain airway patency in children and adults. However, oropharyngeal airways or laryngeal masks (LM) are not routinely used during neonatal resuscitation.

Method
The aim of this article was to review the available literature about the use of supraglottic airway devices during neonatal resuscitation. We reviewed books, resuscitation manuals and articles from 1830 to the present using the search terms “Infant”, “Newborn”, “Delivery Room”, “Resuscitation”, “Airway management”, “Positive Pressure Respiration”, “Oropharyngeal Airway” and “Laryngeal Mask”.

Results
No study was identified using oropharyngeal airways during neonatal resuscitation. Four trials including 509 infants compared positive pressure ventilation with a LM, bag and mask or an endotracheal tube. Infants in the LM group were intubated less frequently compared to infants in the bag and mask ventilation group 4/275 vs. 28/234 (OR 0.13, 95% CI 0.05-0.34). Infants resuscitated with the LM had significantly less unsuccessful resuscitations 4/275 vs. 31/234 (OR 0.10, 95% CI 0.03-0.28). Two trials including 34 preterm infants compared surfactant administration via LM vs. endotracheal tube. LM surfactant administration was safe and no adverse events were reported.

Conclusion
The efficacy and safety of oropharyngeal airways during neonatal resuscitation remain unclear and randomized trials are required. The current evidence suggests that resuscitation with a LM is a feasible and safe alternative to mask ventilation in infants >34 weeks gestation and birth weight >2000g. However, further randomized control trials are needed to evaluate short- and long-term outcomes following use of laryngeal masks. In addition, surfactant administration via LM should be used only within clinical trials.
Introduction

Approximately 10% of newborn infants require some form of respiratory support in first minutes after birth\(^1\). The International Liaison Committee On Resuscitation (ILCOR) and various national guidelines recommend techniques and equipment for neonatal resuscitation\(^2\text{-}^5\). They all agree that mask ventilation is the cornerstone of respiratory support immediately after birth\(^2\text{-}^5\). However, several factors can reduce the effectiveness of mask ventilation, including poor face mask technique resulting in leak or airway obstruction, spontaneous movements of the baby, movements by or distraction of the resuscitator, and procedures such as changing the wraps or fitting a hat\(^6\text{-}^8\). Delivery room studies have shown that mask ventilation is difficult and mask leak and airway obstruction are common\(^6\text{-}^7\text{,}^9\text{-}^10\). Various airway maneuvers (e.g. neutral position, chin lift or jaw thrust) have been recommended to optimize mask ventilation and reduce airway obstruction\(^8\). Resuscitation guidelines suggest that ‘in floppy babies application of jaw thrust or the use of an appropriately sized oropharyngeal airway, which may be helpful in opening the airway’\(^4\). Although oropharyngeal airways are frequently used for airway patency in children and adults\(^11\text{-}^13\), none are routinely used during neonatal resuscitation.

Archie Brain, a British anesthetist, described the laryngeal mask (LM) as an alternative to endotracheal intubation in 1981\(^14\). The LM consists of an airway tube connected distally to a soft elliptical mask with an inflatable rim to fit over the laryngeal inlet whereas the proximal end connects to the positive pressure ventilation device\(^14\). A LM provides an alternative in difficult airway scenario where either mask ventilation is ineffective or intubation impossible\(^15\). Currently LMs are routinely used by paramedics, emergency rooms and operating theaters for adult and pediatric anesthesia\(^12\text{-}^{16\text{,}17}\). In newborn infants, the evidence is mainly derived from case series and observational studies\(^18\text{-}^19\), suggesting that a LM can provide an effective rescue airway during resuscitation if both mask ventilation and endotracheal intubation have been unsuccessful. Current neonatal resuscitation guidelines recommend use of LM in newborn infants > 34 weeks gestation or > 2000 gram birth weight when face mask ventilation or tracheal intubation is unsuccessful or not feasible\(^2\text{-}^4\). In addition, use of LMs have been reported during neonatal transport\(^20\text{-}^{22}\), provision of prolonged mechanical ventilation in particular for infants with upper airway abnormalities\(^23\text{-}^{27}\), and administration of intratracheal medications\(^28\text{-}^{32}\). Although, LMs are recommended
by various neonatal resuscitation guidelines2-4, if mask ventilation or endotracheal intubation have been unsuccessful, they are not routinely used during neonatal resuscitation.

The aim of this article was to review the available literature on the use of oropharyngeal airways and laryngeal mask airway during neonatal resuscitation.

Methods

Search strategy for historical perspective and systematic review of available literature

We reviewed books, resuscitation manuals and articles from 1830 to the present with the search terms “Infant”, “Newborn”, “Delivery Room”, “Resuscitation”, “Airway management”, “Positive Pressure Respiration”, “Oropharyngeal Airway” and “Laryngeal Mask”. We used the standard methods of the Cochrane Neonatal Review Group for inclusion, review, and quantitative methods.

Data sources and search strategy for meta-analysis

We searched Medline (1980 - May 2012) and Embase (1980 - May 2012) using the following MeSH database search terms: “Infant”, “Newborn”, “Airway Management”, “Resuscitation”, “Positive Pressure Respiration” and “Oropharyngeal airways” “Laryngeal Mask”. The search was limited to human RCTs with no language restrictions (Table 2). We also searched clinicaltrials.gov for completed (Table 3) and ongoing trials (Table 4) using similar search terms, reviewed abstracts from the Pediatric Academic Society annual meetings (2000–2010), and performed a manual search of references in narrative and systematic reviews on laryngeal masks. The full search strategies for PubMed and EMBASE are detailed in Appendix 1.

Study selection

Two authors (GMS, COFK) independently screened titles and abstracts for potential eligibility and full texts to confirm eligibility (Table 2). When discrepancies arose, a third party was consulted. Data were extracted using a standardized data collection form to record study design and methodological characteristics, patient characteristics, interventions, outcomes, and missing outcome data (Table 3).
Data synthesis and analysis

The analyses were performed using Review Manager 5.0. Dichotomous data were expressed as odds ratio (OR) with 95% confidence intervals (CI). For all analyses, we used a fixed-effect model. The number needed to treat (NNT) was derived from the Relative Risk (RR) in meta-analyses where the 95% CI (or the RR) did not include zero. Heterogeneity was explored using a chi-square test, and the quantity of heterogeneity was measured using the i^2 statistic.

Results

No published RCT investigating oropharyngeal airways was identified. However, one trial is currently evaluating the use of an oropharyngeal airway in preterm infants receiving mask ventilation \(^\text{33}\) (Table 4). Four RCTs comparing LM vs. mask ventilation or endotracheal intubation were found. Several RCTs investigating surfactant administration via LM have been identified \(^\text{34-37}\) (Table 4).

Oropharyngeal airways

Sir Fredrick Hewitt recognized that upper airway obstruction was a common problem during general anesthesia \(^\text{38}\). In 1907 he presented the first known artificial oral ‘air-way’ (Table 1) \(^\text{38-40}\). Following Hewitt, Lumbard \(^\text{41}\) and Waters \(^\text{42}\) also developed oropharyngeal airways (Table 1). In 1933 Arthur Guedel presented a black rubber modification of the metal Water’s airway “the Guedel Oropharyngeal airway” (Figure 1) \(^\text{43}\). The Guedel airway was designed to hold the tongue away from the back of the pharynx, thus providing a clear channel for respired gases \(^\text{44}\). Oropharyngeal airways may be used to open the airway in floppy newborn infants, or if mask ventilation is ineffective \(^\text{4,45-48}\). In addition, various surveys evaluating neonatal resuscitation practice reported that Guedel airways are part of the neonatal resuscitation equipment \(^\text{5,49}\). Guedel airways for preterm and term infants come in traditional sizes of 000, 00, and 0 (Figure 1). However, several studies compared the design of available Guedel airways and reported obvious shape and length differences, despite being labeled the same size \(^\text{50-52}\). The use of oropharyngeal airways during neonatal resuscitation has not been systematically studied. No study addressing the use of an oropharyngeal airway during neonatal resuscitation was identified. Currently, one RCT is
comparing an oropharyngeal airway for prevention of airway obstruction during positive pressure ventilation in preterm infants < 34 weeks gestation during neonatal resuscitation33.

\textbf{Laryngeal Mask airway}

\textit{Available Laryngeal Airway Masks}

In 2004, Trevisanuto et al. reported that although 35\% of Italian anesthesiologists and 23\% of pediatricians have experience with LMs53 for airway management in newborn infants. Anesthesiologists were more enthusiastic about the LM than pediatricians. The education level, competence and utilization rates of LM during neonatal resuscitation was similar in both groups53. Gandini et al. assessed the knowledge about LMs in 80 health care providers in Australia and reported similar results54. Thirty-one percent had not heard of the LM, 57\% did not know the LM could be used for neonatal resuscitation and 88\% thought it was a disposable device54. Laryngeal mask size and infants birth weight are the main limitation for LM use in newborn infants. A size 1 LM is recommended for all infants < 5 kg. Observational and randomized studies have demonstrated that a size 1 LM can be used in term and preterm infants >34 weeks or > 2000g. However, currently data for the use of LMs for preterm infants are lacking although, successful resuscitation of premature infants with birth weights as low as 800 g have been reported55,56.

Currently, there are various LMs available e.g. i) LMA ClassicTM, LMA ProSealTM and LMA SupremeTM (LMA North America Inc., San Diego, CA, USA), ii) i-gelTM supraglottic airway (Intersurgical, Liverpool, NY, USA) or iii) Air-QTM Disposable Laryngeal Mask Airway (Mercury Medical, Clearwater, FL, USA).

The LMA SupremeTM, i-gelTM and Air-QTM are disposable single use LMs compared to reusable and therefore more expensive LMA ClassicTM, LMA ProSealTM. The i-gelTM supraglottic airway has a non-inflating soft-gel cuff compared to inflatable cuffs with all other LMs. A non-inflating soft-gel cuff potentially might reduce reported soft tissue trauma57-59. There is the potential for gastric distension, although this has never been reported in newborn infants12,25,60-62. The LMA ProSealTM and LMA SupremeTM have a gastric vent for air removal from the stomach in cases where gastric distension compromised positive pressure ventilation. Although, various studies compare laryngeal masks from LMA North America Inc., randomized control trials comparing the performance of each LM are warranted.
Mannequin studies

The skills needed to successfully insert any LM (Figure 3) can be acquired using neonatal mannequins\(^54,55,63,64\). After a 15 minute educational session using a mannequin Gandini et al.\(^54\) found that the mean time to successfully insert a LM was five seconds.\(^54\) Micaglio et al.\(^63\) compared time from insertion to the first inflation of an artificial lung for the LMA Classic\(^\text{TM}\) and the LMA ProSeal\(^\text{TM}\). The success rates of the first attempt were significantly higher with the LMA ProSeal\(^\text{TM}\) compared to the LMA Classic\(^\text{TM}\) (97% vs. 92%)\(^63\). However, there was no difference in the mean insertion time, 10 seconds for the LMA Classic\(^\text{TM}\) and 11 seconds for the LMA ProSeal\(^\text{TM}\). Trevisanuto et al. compared LMA Supreme\(^\text{TM}\), Classic\(^\text{TM}\), and Proseal\(^\text{TM}\) in a mannequin study to assess time to establish adequate ventilation, and ease of insertion\(^55\). The success rate to insert a LM with the first attempt was comparable among the three devices. The mean time to establish effective ventilation was significantly lower with the Supreme LMA\(^\text{TM}\) (12 seconds) compared to the LMA ProSeal\(^\text{TM}\) (19 seconds), however it was similar compared to the LMA Classic\(^\text{TM}\) (15 seconds)\(^55\). Micaglio et al. compared delivered peak inflation pressures between the classic and LMA ProSeal\(^\text{TM}\)\(^64\). Both LMs delivered similar pressures with a set peak inflation pressure of 10-20 cm H\(_2\)O\(^64\). However, the LMA Classic\(^\text{TM}\) was unable to deliver peak pressures higher than 24 cm H\(_2\)O even though the set pressures were 30, 35 or 40cm H\(_2\)O\(^64\). The LMA Proseal\(^\text{TM}\) was able to deliver all of the set pressures\(^64\). This study suggested that the LMA Proseal\(^\text{TM}\) provides a better laryngeal seal during positive pressure ventilation. However, the study was performed in a mannequin, which has distinctive differences compared to newborn infants\(^65\). Proficiency in endotracheal intubation cannot be achieved with mannequin practice alone\(^66-69\). However, mannequin studies suggest that proficiency in LM insertion techniques can be achieved with a 15-minute educational session\(^54,55,63,64\). Clinical trials are urgently needed as this device has the potential to change resuscitation practices around the world and may lead to LMs becoming the primary resuscitation device in near term and term infants.

Laryngeal mask during neonatal resuscitation

Observational studies

Laryngeal masks have been recommended as rescue airway if mask ventilation or endotracheal intubation is unsuccessful or not feasible\(^4\). The available evidence in newborn
infants comes from case series, cohort studies and four RCTs (Table 2). Paterson et al. reported the first prospective study evaluating LM for newborn infants ≥ 2.5 kg and gestation ≥35 weeks. They demonstrated that the LM could be successfully inserted with first attempt on all 21 newborn infants and 20 of these infants were successfully resuscitated without any complications. Trevisanuto et al. compared 95 newborn infants > 34 weeks gestation receiving respiratory support via LM with a historical control group. 94/95 newborn infants were successfully resuscitated using LM. The need for tracheal intubation was almost halved using LM (67% to 34%). Gandini et al. retrospectively analyzed LM use in 104 newborn infants requiring positive pressure ventilation during neonatal resuscitation. They reported that the LM was successfully inserted in first attempt in all 104 newborn infants and 103/104 newborn infants were successfully resuscitated. Zanardo et al. reported that resuscitation of late preterm infants (34-37 weeks gestation) using a LM was associated with lower NICU admissions rates and shorter length of stay compared to mask-ventilation or endotracheal intubation. In addition, newborn infants resuscitated with LM had higher Apgar scores, required less respiratory support and NICU admission compared to newborn infants receiving endotracheal intubation.

Meta-analysis of randomized trials

We identified four RCTs (Table 2) which included a total of 534 infants comparing LM with endotracheal tube or facemask ventilation. Two RCTS compared LM versus mask ventilation. Singh et al. randomized 50 infants > 35 weeks gestation to either LM or mask ventilation in the delivery room. Both devices had similar success rates, rates of endotracheal intubation, and Apgar scores. Zhu et al. randomized 369 newborn infants (>34 weeks or >2000 grams) to receive respiratory support either with LM or bag and mask immediately after birth. Laryngeal masks were successfully inserted with the first attempt in 98.5% with a mean (SD) insertion time of 7.8 (2.2) seconds. LM group had significant higher successful resuscitation rates, less endotracheal intubations, and shorter total ventilation times. Esmail et al. compared LM versus endotracheal intubation during neonatal resuscitation in 40 newborn infants. No significant differences between insertion time, failure rate with 1st attempt, resuscitation outcomes or traumatic airway events were reported. Feroze et al. compared LM versus endotracheal tube or facemask ventilation in
75 infants >1500g birth weight75 and reported no difference in insertion time. However, the
time for effective resuscitation was doubled in the bag and mask group compared to the LM
group75. Three RCTS reported the number of intubations when either LM or bag and mask
ventilation failed to provide adequate ventilation. Fewer infants in the LM group required
intubation compared to the mask ventilation group 4/275 vs. 28/234 (OR 0.13, 95% CI 0.05-
0.34, NNT 10 to prevent one intubation) (Figure 2). Two RCTs (Figure 2) contributed a small
number of infants and the majority of data come from the RCT by Zhu et al. Therefore, these
results should be interpreted with caution. The operators in three trials were anesthetists
which are more likely familiar with LM insertion58,74,75. Feroze et al. reported a very short
intubation time of only 9 seconds75. The study by Zhu et al. was quasi-randomized and their
publication did not provide a CONSORT-chart, a consent process or blinding61. All infants in
Zhu et al. study were resuscitated with 100% oxygen61. In addition, 26 infants in the mask
group were intubated after only 66 sec of mask ventilation, which potentially was rushed61.
Overall, RCTs have shown that initial respiratory support with a LM is feasible and safe.
However, there is not enough evidence to recommend LM instead of mask ventilation for
initial respiratory support in the delivery room and large randomized trials are warranted
before the technique is widely applied.

Surfactant administration

Available evidence comes from 17 newborn infants described in case reports and 34 infants
included in RCTs28,30,76-78. Brimacombe et al. described surfactant administration via LM in
one term and one preterm infant of 30 weeks gestation30,76. Both infants showed
improvement after surfactant administration. Brimacombe et al. suctioned the nasogastric
tube which yielded 1.7 ml of surfactant suggesting that 3.3 ml had entered the lungs28,30.
Trevisanuto et al. reported the feasibility and practicality of administering surfactant via
LMA in 12 preterm infants with a median gestational age of 31 weeks19,76. In eight preterm
infants, a significant increase in the mean arterial to alveolar oxygen tension ratio was
observed. However, in four no improvement was observed, suggesting a large portion of
surfactant did not reach the lungs of these infants. Micaglio et al. used a nasogastric tube to
administer surfactant in three preterm infants28,31,32. Two RCTs reported surfactant
administration via a LM77,78. Stewart et al. compared surfactant administration via LM (n=8)
vs. continuous positive airway pressure (CPAP) + oxygen and no surfactant (n=5) in preterm

11
infants >1200g birth weight within 72 hours of age. Infants who received surfactant via a LM had lower oxygen requirements. However, the trial was terminated due to low enrolment (Table 3). Santana-Rivas et al. compared surfactant administration via endotracheal intubation (n=10) vs. LM (n=9) in preterm infants between 29 and 37 weeks. After surfactant administration infants were returned to nasal CPAP if possible. Failure of nasal CPAP after surfactant administration was 90% in the intubation groups compared to 22% in the LM group (p=0.003). Neither RCT reported any adverse events during surfactant administration via a LM. In comparison, surfactant administration via an endotracheal tube has been associated with a series of adverse events. Although, pilot data are promising, the current available evidence suggests that surfactant administration via laryngeal mask should be limited to clinical trials (Table 3).

Epinephrine administration

There is little evidence evaluating the safety and efficacy of administering epinephrine to newborn infants through a LM. Epinephrine administration, via LM, has been studied in animal models and during adult cardio-pulmonary resuscitation. Chen et al. compared administration of epinephrine via intravenous, endotracheal, injection in the upper end of the LM and via a catheter through the LM, in a non-arrest adult porcine model. No difference in peak plasma epinephrine levels, mean arterial blood pressure and heart rate were found between endotracheal and injection via a catheter through the LM. Although the lowest peak plasma epinephrine level was reported when epinephrine was injected in the upper end of the LM, mean arterial blood pressure and heart rate were similar to endotracheal epinephrine administration. Liao et al. randomized 30 piglets to receive different epinephrine doses through either endotracheal tube or LM via a catheter. Piglets in the endotracheal tube group received 50-microgram/kg epinephrine and piglets in the LM groups were divided to receive either two, four or six-fold dose of epinephrine compared to the endotracheal tube dose. After epinephrine administration, piglets in the endotracheal tube group and the six fold LM group had elevated arterial pressures one min after administration. Piglets in the two and four fold group did not show any increase in hemodynamic parameters. This may suggest need for higher dose via LM. One case report described an immediate response of an 800g newborn infant to the...
administration of epinephrine through a laryngeal mask. The current available evidence does not allow any recommendations for epinephrine administration.

Neonatal transport

Five cases of LM use during neonatal transport have been reported\(^{20-22,27,84}\). Fraser et al. reported inter-hospital transfer of two infants with type 3 laryngotracheo-oesophageal clefts\(^{22}\). Trevisanuto et al. described two infants with congenital airway malformations during inter-hospital transport\(^{20,26}\). Brimacombe et al. described a newborn infant with sudden apneic episodes during helicopter transport\(^{21}\). The median (IQR) gestational age and birth weight of these five infants was 36 (35-40) weeks and 2800 (2610-2900) grams, respectively. All five infants required rescue airway management with LM as both bag and mask ventilation or endotracheal intubation either failed or were not feasible\(^{20-22,27,84}\). All infants were successfully managed with a size 1 LM and none received any sedatives or anesthetic drugs prior to LM insertion\(^{20-22,27,84}\). These five cases demonstrate the potential use of LM during neonatal transport. In particular during air transport endotracheal intubation is almost impossible due to vibrations, limited space and access to the infants head; hence neonatal air transport services might consider LM as part of their equipment. However, RCTs are needed to compare endotracheal intubation versus LM during neonatal transports.

Long-term mechanical ventilation

Laryngeal masks have been primarily used for short-term airway support in newborns. Their safety during long-term ventilatory support has not been established. Several case reports have described LM to provide mechanical ventilation up to 6 days without apparent complications\(^{23,25,27,61,85-88}\). In addition, Fraser et al. reported one case of Type 3 laryngotracheo-oesophageal cleft in a 35 weeks preterm infant who received high frequency oscillation over 10 hours via a laryngeal mask airway suffering from acute respiratory failure\(^{26,61}\). Although, these case reports demonstrate that a LM can be used for long-term ventilation, a small animal model of prolonged LM use raises significant concerns\(^{84}\). Ferrets ventilated with a laryngeal mask developed significant lingual edema and cyanosis after 6 to 16 hours resulting in airway obstruction\(^{84}\). Histologic examination showed venous and capillary congestion. The investigators found that it was difficult to suction the airway.
effectively through the LM, and tenacious secretions contributed to respiratory compromise. Although, case reports have demonstrated that LMs can be used for prolonged ventilation, randomized studies are required to determine long-term effects of laryngeal mask placement.

“Can't ventilate, can't intubate” situation

Although several delivery room studies reported complication with mask ventilation and endotracheal intubation, the incidence of “can’t intubate, can’t ventilate” situation has not been reported in newborn infants. In comparison it has been estimated 0.01-2 per 10,000 adult cases. However, the majority of newborn infants can adequately ventilated and oxygenated using a mask when found unexpectedly difficult to intubate.

Brimacombe et al. reported a “can’t intubate, can’t ventilate scenario” in an 800g preterm infant in a rural hospital where mask ventilation and intubation was impossible. Intubation failed to achieve increase in heart rate and adequate ventilation was only possible with a size 1 LM without inflating the cuff. Fortunately, this is a very rare scenario in the daily neonatal practice. However, neonatologists should be aware of the potential of a “can’t intubate, can’t ventilate” situation and be familiar with alternative techniques to achieve a patent airway (e.g. laryngeal mask placement, airway manoeuvres, bronchoscopic intubation, or video-laryngoscope).

Safety of Laryngeal mask airways

A survey of almost 12,000 patients ranging from infant to adults reported critical incidents related to LM management in only 18 (0.15%) cases. Complications have also been described during and after the use of LM in infants and older children. Bronchoscopic studies have noted that the mask is often improperly seated and partially obstructs the laryngeal opening. Few complications have been reported in newborn infants include vomiting, regurgitation, soft tissue trauma, laryngospasm, breath holding, vomiting, stridor, and desaturation after LM removal. However, no episodes of airway trauma, obstruction, or laryngospasm were reported in the neonatal case series and retrospective cohorts of Paterson, Gandini, Trevisanuto, and Zanardo. LM can be correctly positioned with the 1st attempt and insertion techniques are quickly learnt by unskilled operators. Case series reported that LM insertion is less
invasive and faster compared to endotracheal intubation. Esmail et al. found a higher 1st attempt failure rate in the LM group compared with those managed with an endotracheal tube. However, the operators in this RCT were anaesthesiologists who had a much higher intubation success rate. These findings contrasted with those of Zhu et al. who found better 1st attempt success with LM when used by paediatricians. Disadvantages of LMs include: i) time to start ventilation compared to bag and mask ventilation, ii) potential of gastric distension and gastric aspiration, although never reported in newborn infants, iii) laryngospasm, iv) development of complete or partial airway obstruction, v) perfect positioning of LM was observed in only 44% of all cases, vi) soft tissue injury in the uvula, oropharynx, epiglottis, impossibility to suction airway. Gaps in the knowledge

No study has investigated the additional use of a Guedel airway during mask ventilation to reduce airway obstruction or mask leak. It is possible that lifting the tongue as expected action of a Guedel airway might reduce airway obstruction during mask ventilation. Although there is increasing evidence that a LM has a role in neonatal airway management, further RCTs are needed. Of particular interest are long-term outcomes as cohort studies reported shorter duration of ventilatory support for infants admitted to the NICU. Randomized studies comparing i) available LMs versus bag and mask or endotracheal ventilation, ii) surfactant and epinephrine administration via LM versus endotracheal tube or nasogastric tube, iii) chest compression, during LM vs. bag and mask or endotracheal tube ventilation is required. In addition, studies addressing the potential use of LM in very small preterm infants and their effect on long-term outcomes are warranted. Furthermore, studies addressing the most efficient insertion technique to teach all medical professionals involved in neonatal resuscitation are necessary.

Conclusion

Efficacy and safety of oropharyngeal airways during neonatal resuscitation remain unclear and randomized trials are needed. The current evidence suggests that resuscitation with a LM is a feasible and safe alternative to mask ventilation in infants >34 weeks gestation and
birth weight >2000g. However further randomized control trials are needed to demonstrate clinical short- and long-term benefits of laryngeal masks.
Appendix #1: Search strategies for meta-analysis (online supplement)

Search strategy for PubMed: last performed on 02/07/2012

Limits activated: “Publication date from 1980/01/01 to 2012/05/12”, “Humans”, “Clinical Trial”, “Infant: birth-23 months”

1. MeSH descriptor Infant explode all trees (Result: 36,866)
2. MeSH descriptor Newborn explode all trees (Result: 17,541)
3. MeSH descriptor Airway management explode all trees (Result: 1,504)
4. MeSH descriptor Resuscitation explode all trees (Result: 1,074)
5. MeSH descriptor Positive Pressure Respiration explode all trees (Result: 378)
6. MeSH descriptor Laryngeal Mask explode all trees (Result: 116)
7. ((#1) AND #2) AND #3 (Result: 1,103)
8. (#7) AND #4 (Results: 689)
9. (#7) AND #5 (Results: 304)
10. (#7) AND #6 (Results: 20)
11. (#7) AND #4) AND #6 (Results: 7)

Search Strategy for Embase: last performed on 02/07/2012

Limits activated: “Human”, “1980 -Current”, and “infant <to one year>”

1. Infant (Result: 91,122)
2. Newborn (Result: 91,122)
3. Airway management (Result: 133)
4. Resuscitation (Result: 739)
5. Positive Pressure Respiration (Result: 353)
6. Laryngeal Mask (Result: 139)
7. ((#1) AND #2) AND #3 (Result: 133)
8. (#7) AND #4 (Results: 17)
9. (#7) AND #5 (Results: 7)
10. (#7) AND #6 (Results: 32)
11. (#7) AND #4) AND #6 (Results: 7)
References

34. Kattwinkel J. Randomized Controlled Trial of Surfactant Administration by Laryngeal Mask Airway (LMA). clinicaltrials.gov.

35. Pinheiro JMB. Randomized Controlled Trial of Surfactant Delivery Via Laryngeal Mask Airway (LMA) Versus Endotracheal Intubation. clinicaltrials.gov.

36. Roberts KD. Laryngeal Mask Airway (LMA) for Surfactant Administration in Neonates. clinicaltrials.gov.

37. Silva YP. Efficacy Evaluation of Surfactant Administration Via Laryngeal Mask Airway. clinicaltrials.gov.

43. Guedel AE. A nontraumatic pharyngeal airway. JAMA. 1933;100:1862.

629 73. Zanardo V, Weiner G, Micaglio M, Doglioni N, Buzzacchero R, Trevisanuto D.

102. Dunn PM, Dr James Blundell (1790-1878) and neonatal resuscitation. Arch Dis Child; 1989;64:494-5

Table 1: Timeline of oropharyngeal airway devices (online supplement)

<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>1834</td>
<td>J. Blundell describes digital intubation for the treatment of Asphyxia Neonatorum<sup>101</sup></td>
</tr>
<tr>
<td>1895</td>
<td>A. Kirstein invented the modern Laryngoscope<sup>99</sup></td>
</tr>
<tr>
<td>1908</td>
<td>F.W. Hewitt describes a straight rubber tube, known to be the first artificial oral ‘air-way’<sup>43</sup></td>
</tr>
<tr>
<td>1915</td>
<td>J.E. Lumbard describes his controller of the tongue and palate during general anesthesia<sup>46</sup></td>
</tr>
<tr>
<td>1922</td>
<td>F.W. Hewitt modified his airway into a curved rubber tube<sup>49</sup> (Figure 1)</td>
</tr>
<tr>
<td>1928</td>
<td>P.J. Flagg described his technique of introducing a metal tube into the trachea using a small electrically lighted laryngoscope<sup>100</sup></td>
</tr>
<tr>
<td>1930</td>
<td>R.M. Waters metal oropharyngeal airway, which had a straight bite-block section, an anatomically curved pharyngeal section, and an oval flange at the proximal end to prevent over insertion<sup>47</sup></td>
</tr>
<tr>
<td>1933</td>
<td>A.E. Guedel describes the first oropharyngeal airway made of rubber with a small metal inlet as bite block<sup>48</sup> (Figure 1)</td>
</tr>
<tr>
<td>1935</td>
<td>J.B. Blaikley and G.F. Gibberd suggest to use a rubber catheter instead of the rigid tube for endotracheal intubation<sup>102</sup></td>
</tr>
<tr>
<td>1950</td>
<td>R.A. Berman designed the first reusable oropharyngeal airway made of plastic<sup>103</sup></td>
</tr>
<tr>
<td>1981</td>
<td>A. Brain designed the Laryngeal mask airway<sup>14</sup></td>
</tr>
<tr>
<td>1988</td>
<td>Laryngeal mask airway becomes commercial available<sup>209</sup></td>
</tr>
<tr>
<td>1990</td>
<td>N.M. Denny described the 1<sup>st</sup> neonatal resuscitation using a LMA<sup>105</sup></td>
</tr>
<tr>
<td>1999</td>
<td>Only case reported were laryngeal mask was used for epinephrine administration during cardio-pulmonary resuscitation<sup>59</sup></td>
</tr>
<tr>
<td>2004</td>
<td>1<sup>st</sup> surfactant administration via laryngeal mask airway in newborn infant<sup>49</sup></td>
</tr>
<tr>
<td>2002, 2005, 2008, 2011</td>
<td>RCTs comparing LMA versus mask ventilation or endotracheal intubation<sup>72-75</sup> (Table 3)</td>
</tr>
<tr>
<td>2008, 2011</td>
<td>RCTs comparing LMA versus endotracheal tube for surfactant administration<sup>76,77</sup></td>
</tr>
<tr>
<td>2012-ongoing</td>
<td>Oropharyngeal airway to reduce severe airway reduction<sup>15</sup> (Table 4)</td>
</tr>
<tr>
<td>2012-ongoing</td>
<td>3 RCTs comparing LMA versus endotracheal tube for surfactant administration<sup>16-18</sup> (Table 4)</td>
</tr>
</tbody>
</table>
Table 2: PRISMA flow chart

- **Records identified through PubMed searching** (n = 20)
- **Additional records identified through other sources (Embase)** (n = 7)

Records after duplicates removed (n = 27)

- **Records excluded (n = 18)**
 - Case reports: 10
 - Cohort studies: 4
 - Narrative reviews: 2
 - Surveys: 2

Records screened (n = 27)

- **Full-text articles assessed for eligibility (n = 10)**

Full-text articles excluded, with reasons (n = 6)
- Case reports: 4
- Case series: 2

Studies included in qualitative synthesis (n = 4)

Studies included in quantitative synthesis (meta-analysis) (n = 4)
Table 3: Risk of bias assessment of randomized control trial using LMA versus mask ventilation or endotracheal intubation

<table>
<thead>
<tr>
<th>Study</th>
<th>Study population</th>
<th>Comparison</th>
<th>Main outcomes</th>
<th>Sequence generation</th>
<th>Allocation concealment</th>
<th>Blinding of participants, personnel and outcomes</th>
<th>Incomplete outcome data (attrition and exclusions)</th>
<th>Selective outcome reporting</th>
<th>Source of funding bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>Esmail et al.</td>
<td>GA >35 wks or BW >2500g</td>
<td>LMA (n=20) vs. ETT (n=20)</td>
<td>Apgar scores; Time until heart rate >100/min; LMA and ETT insertion times; rate of successful insertion with 1st attempt; total number of attempts required; duration of PPV;</td>
<td>Uncertain</td>
<td>Uncertain</td>
<td>Uncertain</td>
<td>Uncertain</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Singh et al.</td>
<td>GA >35 wks or BW >1500g</td>
<td>LMA (n=25) vs. bag and mask (n=25)</td>
<td>Apgar scores; LMA insertion time; rate of successful insertion with 1st attempt; total number of attempts required; success of ventilation, time required for improvement in color; duration of PPV</td>
<td>Uncertain</td>
<td>Uncertain</td>
<td>Uncertain</td>
<td>Uncertain</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Feroze et al.</td>
<td>BW >1500g; APGAR Score <4/10 at birth; Newborns born via C/S</td>
<td>ETT (n=25) vs. BMV (n=25) vs. LMA (n=25)</td>
<td>Apgar scores; LMA and ETT insertion time; rate of successful insertion with 1st attempt; total number of attempts required; success of ventilation, time required for improvement in color;</td>
<td>Uncertain</td>
<td>Uncertain</td>
<td>Uncertain</td>
<td>Uncertain</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Zhu et al.</td>
<td>GA >34 wks or BW >2000g</td>
<td>LMA (n=205) vs. bag and mask (n=164)</td>
<td>Apgar scores; LMA insertion time; rate of successful insertion with 1st attempt; total number of attempts required; response time; need for tracheal intubation</td>
<td>High</td>
<td>High</td>
<td>Uncertain</td>
<td>Uncertain</td>
<td>Low</td>
<td>Low</td>
</tr>
</tbody>
</table>

GA - gestational age, BW - birth weight, wks - weeks, g - gram, LMA - laryngeal airway mask, ETT - endotracheal tube, BMV - Bag and Mask Ventilation, C/S caesarian section
Table 4: Trials identified at clinicaltrials.gov

<table>
<thead>
<tr>
<th>Study</th>
<th>Study population</th>
<th>Comparison</th>
<th>Primary outcome</th>
<th>Estimated enrollment</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oropharyngeal airway</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oropharyngeal airway for prevention of airway obstruction during positive pressure ventilation in preterm infants < 34 weeks gestation during neonatal resuscitation²³</td>
<td>GA <34 wks requiring mask ventilation in the delivery room</td>
<td>Mask ventilation with or without a Guedel Tube.</td>
<td>Reduction in severe airway obstruction</td>
<td>132</td>
<td>Recruiting</td>
</tr>
<tr>
<td>Laryngeal mask airway</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Randomized Controlled Trial of Surfactant Delivery Via Laryngeal Mask Airway (LMA) Versus Endotracheal Intubation³⁵</td>
<td>GA >29 & >37 weeks with an postnatal age of 4-48 hours</td>
<td>Surfactant administration via LMA vs. ETT (after premedication for pain)</td>
<td>Rate of failure of surfactant therapy</td>
<td>78</td>
<td>Recruiting</td>
</tr>
<tr>
<td>Efficacy Evaluation of Surfactant Administration Via Laryngeal Mask Airway³⁷</td>
<td>BW >1000g and GA >28 & <35 wks with an postnatal age of <8 hours</td>
<td>Surfactant administration via LMA vs. ETT</td>
<td>Fraction of inspired oxygen</td>
<td>60</td>
<td>Not yet recruiting</td>
</tr>
<tr>
<td>Laryngeal Mask Airway (LMA) for Surfactant Administration in Neonates³⁶</td>
<td>GA at time of enrollment > 28 & <36 wks with an postnatal age of <38 hours</td>
<td>Infants on nCPAP who receive surfactant via a LMA vs. infants who are maintained on nCPAP and do not receive surfactant.</td>
<td>Need for intubation and mechanical ventilation in the first seven days of life</td>
<td>144</td>
<td>Recruiting</td>
</tr>
<tr>
<td>Randomized Controlled Trial of Surfactant Administration by Laryngeal Mask Airway (LMA)³⁴</td>
<td>BW >1200g with chronologic age of <72 hours</td>
<td>Infants with RDS who have not yet reached criteria for intubation, will be randomized to receive surfactant by LMA or to continue receiving standard therapy of nCPAP and supplemental oxygen</td>
<td>Rate of failure of surfactant therapy (total of 26 infants were enrolled)</td>
<td>380</td>
<td>Terminated</td>
</tr>
</tbody>
</table>

GA - gestational age, BW - birth weight, wks - weeks, g - gram, LMA - laryngeal airway mask, ETT - endotracheal tube, nCPAP - Nasal continuous positive airway pressure, RDS - respiratory distress syndrome
Figure 1

A

B
Figure 2

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Experimental</th>
<th>Control</th>
<th>Odds Ratio M-H, Fixed, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Esmail 2002</td>
<td>0/20</td>
<td>0/20</td>
<td>Not estimable</td>
</tr>
<tr>
<td>Feroze 2008</td>
<td>1/25</td>
<td>0/25</td>
<td>3.12 [0.12, 80.39]</td>
</tr>
<tr>
<td>Singh 2005</td>
<td>1/25</td>
<td>2/25</td>
<td>0.48 [0.04, 5.65]</td>
</tr>
<tr>
<td>Zhu 2011</td>
<td>2/205</td>
<td>26/164</td>
<td>0.05 [0.01, 0.22]</td>
</tr>
</tbody>
</table>

Total (95% CI):
- Events: 275/234
- Total: 100.0%
- Odds Ratio: 0.13 [0.05, 0.34]

- **Total events:** 4/28
- **Heterogeneity:** Chi² = 6.29, df = 2 (P = 0.04); I² = 68%
- **Test for overall effect:** Z = 4.12 (P < 0.0001)
Minerva Access is the Institutional Repository of The University of Melbourne

Author/s:
Schmoelzer, GM; Agarwal, M; Kamlin, COF; Davis, PG

Title:
Supraglottic airway devices during neonatal resuscitation: An historical perspective, systematic review and meta-analysis of available clinical trials

Date:
2013-06-01

Citation:

Persistent Link:
http://hdl.handle.net/11343/43989