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Summary

Machine learning (ML) is increasingly recognized as a useful tool in healthcare applications, 

including epilepsy. One of the most important applications of ML in epilepsy is seizure detection 

and prediction, using wearable devices (WD). However, not all, currently available algorithms 

implemented in WD are using ML. In this review, we summarize the state of the art of using WD 

and ML in epilepsy, and we outline future development in these domains. There is published 

evidence for reliable detection of epileptic seizures using implanted EEG electrodes and wearable, 

non-EEG devices. Application of ML using the data recorded with WD from a large number of 

patients could change radically the way we diagnose and manage patients with epilepsy.

Keywords: epilepsy, machine learning, seizure detection, seizure prediction, wearable devices

Key point box:

 Automated analysis of scalp EEG can detect seizures with a sensitivity of 75-90%

 Using intracranial EEG and deep learning, seizures can be predicted with a sensitivity of 

79%

 Non-invasive wearable devices can detect generalized tonic-clonic seizures with a 

sensitivity of 90-96% 

1. Wearable devices

WD are becoming widely used, and their impact is significant in education, communication, 

navigation and entertainment. This trend has already reached healthcare applications, including 

epilepsy: WD have been developed for seizure detection and prediction. There are thousands of WD 

on the market that measure health parameters and biosignals1. Market research reports have 

predicted an exponential growth in this field2,3, and it is likely that this will extend to applications in 

the field of epilepsy too. In this section, we discuss why there is need for seizure detection and 

prediction using WD, highlight the critical aspects in clinical validation studies of WD, summarize 
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the current evidence for the accuracy of WD and describe how the recorded data could be used to 

broaden the clinical yield of the WD, in epilepsy.

1.1 Why do we need WD in epilepsy?

There is a well-documented need for seizure detection and prediction, using WD4-8. The 

unpredictable nature of seizure occurrence is distressing and disabling for patients and caregivers, 

and affects their quality of life, leading to social isolation. Automated seizure-alarms, calling for 

help are especially important for generalized tonic-clonic seizures (GTCS) including focal-to-

bilateral-tonic-clonic seizures, since these seizure-types are associated with highest morbidity and 

mortality. Each year, 25% of the patients with GTCS experience serious accidental injury related to 

the seizure9. GTCS during the preceding year was associated with a 27-fold increased risk of 

Sudden Unexpected Death in Epilepsy (SUDEP), and the combination of not sharing a bedroom 

and having at least one GTCS per year had a 67-fold increased risk of SUDEP10. Studies in the 

epilepsy monitoring units demonstrate that patients and caregivers typically underreport their 

seizures11. Seizure diaries derived from seizures reported by patients and caregivers are unreliable, 

yet they constitute the input for therapeutic decisions in clinical practice and for the outcomes in 

drug trials. An objective quantification of seizure burden could potentially improve clinical decision 

making and the quality of the drug trials. A reliable seizure detection system could trigger 

antiseizure therapy, so that the patients are exposed to this on-demand, and not throughout the 

whole interictal period. 

1.2. Design of clinical validation studies of seizure detection using WD

Due to the obvious need for seizure detection devices, and spurred by advances in electronics and 

signal analysis, development of seizure detection devices has been the goal of many groups, and has 

led to more than three thousand papers on this topic12. However, in spite of the rapid technological 

development, the clinical evidence for the diagnostic accuracy of these WD is disappointingly 

scarce, and this limits their integration into formal medical decision processes and reimbursement 

by healthcare providers. Most of the published clinical validation studies have a poor design with 

numerous potential biases12. To help estimate the robustness of the evidence behind WD for seizure 

detection, standards have been proposed13. Depending on how studies address four key features that 

are important for seizure detection devices (subjects, recordings, data analysis, alarms and reference 

standard), studies are classified  into five phases (0-4), similar to drug trials, where phase-3 studies 

provide compelling evidence (equivalent to randomised controlled trials for therapeutic intervention 

studies) and phase-4 studies provide in-field assessment of usability.
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1.3. EEG-based seizure detection

There is robust evidence published showing that seizures can be detected using scalp EEG, with a 

sensitivity between 75% and 90%, and false alarm rates (FAR) between 0.1 and 5 per hour14. 

Although such applications can be useful for data segmentation in long-term video-EEG 

monitoring, their application for ultra-long-term monitoring in ambulatory, outpatient setting is 

limited by their technical feasibility. In addition, patients want to avoid stigma and do not want to 

wear devices that cannot be concealed15. EEG electrodes can be hidden, using auricular devices 

(similar to hearing aids). However, performance of EEG-based seizure detection decreases when 

only few electrodes and reduced spatial sampling is used14, and convincing evidence for the 

accuracy of these devices is still lacking. An alternative approach is using WD with subcutaneous 

EEG electrodes. This minimally invasive approach showed promising results in a study where 

signals were visually evaluated by experts16. However, the utility of these signals for automated 

detection still needs to be systematically investigated. Although patients are reluctant to have 

intracranial electrodes implanted merely for seizure detection, they may accept this invasive 

approach when the seizure detection triggers a therapeutic action, such as the closed-loop system of 

the responsive neurostimulation device17. By using a high-frequency stimulation that stops seizures 

at their onset, promising results have been achieved: median percentage of seizure reduction was 

between 44% and 71%, increasing over time 17.

1.4. Seizure detection using non-EEG WD

At present, all seizure detection WD with satisfactory level of performance, validated in phase-3 

studies are using non-EEG modalities12, and algorithms based on biomarkers derived from 

exploratory studies18,19, rather than ML. Although major progress has been made in the field of 

EEG-based seizure detection and prediction using ML, there is much need for improvement in the 

field of non-EEG WD. Currently, their applicability is restricted to GTCS12. Although detection of 

this seizure type is the most important one for prevention of the morbidity (injuries) and mortality 

(SUDEP) associated with seizures, detection of other seizure types would be desirable for objective 

seizure quantification.

In a phase-3 study, a bracelet accelerometer WD detected GTCS with a sensitivity of 90% (95%CI: 

76-97%), with false alarm rate of 0.2/day and a mean latency of 55 seconds19.  A WD recording 

surface electromyography (EMG) from the biceps muscle had a sensitivity of 94% (95% CI: 86-

100%), false alarm rate of, 0.7/day (0.01/night) and a median detection latency of 9 seconds, in a 

phase-3 clinical validation study20.  A multimodal WD, designed for nocturnal surveillance, based 
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on accelerometry and heart-rate (photoplethysmography) in a bracelet placed on the upper arm, 

detected major motor seizures with a median sensitivity per patient of 86% (for GTCS: 96%), and a 

false alarm rate of 0.03/night, in a phase-3 validation study21.

Currently there is no convincing evidence for the reliability of non-EEG based WD for detecting 

non-convulsive seizure types. An ECG-based algorithm implemented into a vagal nerve stimulation 

(VNS) device, detected seizures with a sensitivity of 59%, and a very high false alarm rate 

7.15/hour22. Although this is suitable when the objective is triggering VNS, it is not feasible for 

triggering alarms or for objective seizure quantification. A promising approach was based on heart-

rate variability, calculated from signals recorded with an ECG WD23. This approach worked only in 

patients with marked ictal autonomic changes (approximatively half of the recruited patients), yet in 

this subgroup, it achieved a detection sensitivity of 90% (95% CI: 77‐97%) for non-convulsive 

seizures, with a false alarm rate of 1.0 /day (0.11/night), in a phase-2 validation study23. Further, 

phase-3 studies are needed for elucidating the reliability of WD for detecting non-convulsive 

seizure types.

1.5. Further applications of WD in epilepsy

False alarms constitute a challenge for using WD for objective seizure quantification, even for 

devices targeting GTCS, where sensitivities over 90% have been achieved. A possible way of 

addressing this could be the visual assessment by experts of the recorded signals during the detected 

epochs. For surface EMG signals, this method yielded a specificity of 100%24. However, this 

requires specific expertise, not widely available. Therefore, further improvement of the performance 

using ML is needed.

Another possible application of WD detecting GTCS is differential diagnostics. Although 

distinguishing GTCS from convulsive PNES is not difficult for an epilepsy expert, they are not 

available in the emergency rooms. In the recently published ESETT trial, 10% of the enrolled 

patients, considered to have convulsive status epilepticus in an in-hospital setting, turned out to 

have psychogenic nonepileptic seizures (PNES)25. Algorithms can distinguish between GTCS and 

convulsive PNES with an accuracy of 95%25.

Besides detecting GTCS, the biosignals recorded by WD could contribute to their characterisation 

and risk-assessment. Algorithms based on surface EMG were able to identify GTCS with long 

postictal generalised EEG suppression (PGES)26, a surrogate marker of SUDEP. 

2. Machine learning
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The increasing availability of WD and minimally invasive implanted devices for epilepsy 

monitoring is driving exponential growth of data. It is no longer feasible for this data to be 

evaluated by expert human reviewers, and computer-aided or computer-driven approaches are 

necessary. Machine learning (ML) has increasingly seen as a powerful solution for managing vast 

quantities of epilepsy data27. The field of ML encompasses a diverse array of algorithms used to 

train mathematical models, ranging from linear classifiers parameterized by just a few variables to 

deep neural networks with millions of parameters that must be fitted (“learned”) 28.  To-date ML has 

shown great promise in healthcare, from cancer diagnosis to seizure detection29-31; however, its 

dynamic nature and vast data requirements are present challenges for traditional medical regulatory 

systems32.

There are many possible uses for ML approaches in epilepsy, ranging from diagnosis and treatment 

selection to seizure forecasting and surgical planning. For instance, ML algorithms have 

demonstrated effectiveness for automated detection of seizures from diagnostic scalp EEG14. ML 

can also be used to guide clinical decision making and treatment selection. Recently, deep learning 

was used for automatic selection of electrical stimulation parameters after training on a large 

database of patient EEG characteristics and associated treatment outcomes33. ML has also been used 

with retrospective data to accurately predict drug resistance34, effectiveness of anti-epileptic 

drugs35, and surgical outcomes36 and effective treatment37. The aforementioned studies have shown 

promising results on retrospective data; however, there are still limited examples of the successful 

application of ML in clinical epileptology.

2.1 Challenges to clinical application of ML

Challenges to the practical implementation of ML in the clinic include regulatory concerns, large 

data requirements, and unclear performance benchmarks. Medical regulatory bodies are not 

traditionally equipped to assess algorithms that may continually learn and update as new data is 

collected, however the US FDA is increasing the scope for ML software to be approved and 

regulated38. In addition to learning dynamically, ML often requires large, consistent data sets to 

train algorithms. Missing data or unreliable data annotations can greatly degrade the performance of 

ML models39. The requirement for high-quality data curation is heightened when creating corpora 

from multiple centers, however efforts to standardize the storage of epilepsy-relevant data elements 

are underway40. Finally, to ensure ML is practical for real-world applications, it is crucial to 

carefully define the problem and understand performance requirements in a clinical setting. 
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Particularly in epilepsy, where clinical definitions are constantly evolving41, it is important to 

carefully consider what training and benchmarking datasets are used to develop ML algorithms.

Despite the aforementioned challenges, seizure detection and forecasting are notable examples 

where ML has been successfully applied in a clinical setting. ML algorithms in conjunction with 

WD have been approved for clinical use in the field of automated seizure detection. For instance, a 

multimodal WD based on accelerometry and electrodermal activity (EDA) has obtained clearance 

from the FDA. With an algorithm developed using ML, the multimodal WD detected GTCS with 

high sensitivity (92-100%) and low false alarm rate (0.2-1 per day), in phase-2 studies42. In the 

diagnostic space, ML approaches can expedite clinical review of diagnostic scalp EEG43-45, 

although currently there are relatively few approved algorithms for automated EEG review14. ML 

has also been extensively applied to the problem of seizure forecasting. For example, ML was used 

in a successful clinical trial for an implantable seizure warning device46. A key goal of the epilepsy 

community is to provide forecasting technology to people with epilepsy47, and ML is likely to play 

a vital role in next generation forecasting technology48,49. The following sections discuss the utility 

of ML for seizure detection and forecasting in more detail.

2.2 Lessons from long-term EEG

ML has been well developed for applications requiring long-term EEG analysis, in particular for 

seizure detection and forecasting. Both detection and forecasting are examples of epilepsy 

applications that have drawn on the crowd-sourced data science competition, Kaggle, to help 

develop ML algorithms31,50,51. An important driver of these competitions has been the availability of 

large curated datasets of continuously recorded, prolonged EEG. All three Kaggle competitions 

drew on the same NeuroVista databases of ambulatory EEG from either canines or humans52. An 

earlier initiative created an open source dataset of continuous EEG for a seizure prediction 

competition that was used to train and test ML algorithms53,54. Similarly, a scalp-EEG database used 

to develop ML approaches for seizure detection was made freely available and has been cited by 

hundreds of subsequent studies employing ML for seizure detection or prediction55. Another freely 

available data platform was developed to share neuroimaging data for epilepsy researach56. These 

publicly available, curated datasets of EEG with labelled epileptic events have been an important 

driver of ML applications in epilepsy.

The availability of long term EEG has provided several lessons that have guided ML approaches. 

For instance, a finding from the NeuroVista human and canine studies has been that signal features 
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of the EEG were not stable over time57,58, and seizures also showed long-term electrographic 

changes59. These dynamics required ML models to be retrained once data had stabilized. Long term 

fluctuations in the EEG signal highlight the benefits of ML, which can learn continuously as new 

data is collected. ML analysis of long-term EEG has also shown there are limitations of data-driven 

algorithms. For people with rare seizures, there may never be enough data to train reliable, patient-

specific models for seizure detection or forecasting. For seizure detection, it may be sufficient to 

train generalized algorithms that can be applied to patient populations. However, seizure forecasting 

is considered highly patient-specific48, and seizure detection may be further improved with 

personalized data60,61. In cases where training examples (i.e. seizures) are limited, ML may 

ultimately be outperformed by less data-hungry methods. For instance, recent forecasting 

approaches using simple cyclic models of seizure susceptibility have shown more robust seizure 

prediction compared to complex machine learning models62,63.

2.3 ML for seizure detection from EEG

There has been significant interest in developing generalizable algorithms that can be trained to 

recognize epileptic activity in EEG data. The aforementioned Kaggle competition utilized human 

and canine implanted EEG recordings to develop a generalized seizure detection algorithm31. The 

winning entrants reported an AUC of over 0.97, using a random forest classifier, demonstrating the 

utility of ML for automated seizure detection from long-term EEG. A recent review of seizure 

detection from scalp EEG reported good performance from machine learning algorithms (neural 

network, support vector machine), with sensitivities between 75% and 90% and false positive rates 

of between 0.1 and 5 per hour14.

In addition to detecting seizures, automated detection of interictal epileptiform discharges is of 

paramount importance for the diagnostic workup of patients with epilepsy. There is an increasing 

amount of long-term video EEG monitoring, including home monitoring. The analysis of this huge 

amount of data is facilitated by reliable, automated spike detection. ML algorithms were able to 

identify EEG epochs without spikes, thus excluding them from visual analysis64. In a clinical 

environment, deep learning was found to be robust for automated review and quantification of 

epileptic discharges in patients with generalized epilepsy44,65. Another recently published large-

scale study, also used a deep learning-based detection algorithm for epileptiform EEG discharges 

that was validated against scorings of experts, with remarkable results43.
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A challenge facing automated seizure detection is a lack of consensus on what constitutes epileptic 

activity. Different specialists often do not agree on whether an EEG waveform is epileptiform or 

not, which makes it difficult to train and evaluate ML algorithms66. Seizure detection may also be 

highly context dependent. In a diagnostic setting it may be important to detect all epileptiform 

discharges as well as detecting and quantifying the type of electrographic seizures. On the other 

hand, for ongoing management, it may only be important to monitor clinically relevant events.

2.4 ML for seizure forecasting from EEG

Seizure detection and seizure forecasting are inextricably linked, because reliable seizure detection 

is vital to develop seizure forecasts47,67. A variety of ML algorithms have been used for seizure 

prediction with both EEG and data from WD, although these have primarily used a retrospective 

approach to develop and test forecasting algorithms, rather than evaluating performance within a 

prospective real-world trial68,69.

One clinical trial for an implantable seizure advisory device demonstrated successful use of ML for 

seizure forecasting in a prospective setting46. The device used a decision tree-type classifier with 

hand-coded features (line length and power in various frequency bands) and, in the human trial, 

classifiers were trained after 4-months of recording. Results were promising, with seizure prediction 

accuracy of 100% in some cases; however, for other participants, ML classifiers failed to produce 

useful forecasts. A subsequent Kaggle competition on three of the most challenging patients showed 

significant improvements, finding that algorithms must be flexible enough to deal with patient-

specific pre-ictal signals50. An earlier Kaggle competition51 also showed strong results from ML 

approaches, with the winning entrant showing an AUC of 0.82 using a weighted combination of a 

neural network, support-vector machine and random forest. More recently, forecasting with the 

canine data was further improved in performance (sensitivity 0.79, time in warning 0.18) and 

computational efficiency using deep learning70.

A range of ML approaches have been applied for seizure prediction using databases of scalp EEG, 

with excellent performance reported from various deep learning methods52,71. However, the 

comparatively short duration of scalp EEG recordings limits the ability to rigorously test seizure 

prediction methods. Studies using scalp EEG for seizure prediction are typically developed with 

less than 10 seizures per individual, limiting the ability to train ML algorithms and leading to poor 

generalizability on unseen data72,73.
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2.5 ML for seizure detection and prediction from WD

Signals from WD, measured during phase 0 to phase 2 trials13, have used a variety of ML methods 

to detect and forecast seizure events. Combined accelerometry and electrodermal activity recordings 

have been used as inputs for support vector machine models to detect tonic-clonic seizures74,75. 

Similarly, these signals have been used in a hybrid k nearest neighbor and random forest 

algorithm76. The aforementioned studies used the same FDA approved wrist-worn seizure detection 

watch. However, due to the small number of recorded seizures and inconsistent seizure definitions 

used, it is difficult to assess the relative merits of these ML. Furthermore, existing studies only 

reported retrospective seizure detection results using the smartwatch device. Prospective studies are 

underway using the same device42; although, to the best of our knowledge, the results are not yet 

published. As well as wrist-worn sensors, EMG signals have been relatively widely used as features 

for ML algorithms in seizure detection. Larsen et al used sEMG recorded from deltoid electrodes to 

derive features for a random forest classifier to detect GTCSs, with excellent sensitivity (median = 

1.0, min = 0.5)77.

In addition to seizure detection, ML has been applied to detect pre-ictal signal features from WDs. 

Heart rate has been most commonly used for seizure forecasting from WDs, and pre-ictal heart rate 

changes have been documented in early studies78. More recently, ECG has been shown to anticipate 

seizures utilizing deep learning methods to extract predictive features79
. Another study used ECG 

signals with a support vector machine to develop patient-specific seizure prediction algorithms80. 

This study used 15 patients with different seizure types and reported average sensitivity of 89%, 

with predictive signals obtained up to 20 minutes prior to seizures80. Although heart rate and WD 

have shown some early promise in seizure forecasting studies, their predictive utility has yet to be 

tested in a prospective setting80,81.

The application of ML to WD data for seizure forecasting may be on a similar trajectory that has 

been seen with seizure forecasting from EEG, where early results are promising, but issues remain 

with clinical translation. It is not clear that the computational complexity of many ML techniques is 

warranted, when simpler predictive models based on known physiological phenomena may perform 

better. For example, phenomena such as circadian and multiday cycles of seizure occurrence have 

proven valuable in forecasting applications62,63. Furthermore, ML models typically require more 

training data compared to other models (i.e. feature thresholding). Larger data requirements 

introduce a trade-off between patient-specific models that require many seizures for each 
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individual, versus generic models, which are faster to train but may generalize poorly to 

individuals49. Studies may struggle to demonstrate statistical significance due to limited numbers of 

seizures per patient. Comparison between ML methods remains difficult due to variations in 

devices, definitions of seizure types and inclusion criteria. Many of these early challenges can be 

addressed with the public availability of large, standardized datasets of WD signals from people 

with epilepsy, as has been undertaken with EEG recordings.

2.6 New developments in ML for seizure detection and forecasting

The advent of minimally invasive, implantable devices to record long-term, continuous EEG 

promise to improve machine learning, with the potential to greatly change the practice of 

epileptology48,49. Current incarnations of these devices are designed for monitoring and do not 

deliver therapeutic stimulation, as the goal is to establish accurate seizure counts to replace 

unreliable seizure diaries82. Accordingly, such devices will be reliant on automated methods of 

seizure detection, as the volume of streaming data cannot be feasibly analyzed by human reviewers. 

The continuous EEG recorded from these minimally invasive implant devices promises to provide a 

valuable data source to develop and test methods of automated seizure detection. Nevertheless, the 

first subcutaneous EEG devices are still in early phase clinical trials83, so the promise of ML for 

sub-scalp EEG remains to be tested prospectively in large patient cohorts.

Subcutaneous EEG and automated seizure detection will have flow-on benefits for seizure 

forecasting by providing a more accurate record of seizure activity. Recently it has been shown that 

the past history of seizure times can be used to establish cyclic trends and forecast seizure 

likelihood63,84. However, an accurate record of seizure times is critical63. Forecasts based on 

epileptic rhythms also become more accurate when long-term EEG is available to measure cyclic 

trends62,85. In addition, the inclusion of other physiological signals measured from WD, or even 

environmental conditions may also improve seizure detection and forecasting performance47.

Future Perspectives

There is a huge potential benefit in using WD for seizure detection, prediction and characterization. 

This could help preventing the morbidity and mortality associated with seizures, and address the 

anxiety generated by the unpredictability of seizure occurrence. Objective quantification of seizure 

burden could help in tailoring the therapy to the needs of the individual patients (precision 
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medicine) and improve the quality of the therapeutic studies. In spite of the considerable progress in 

this field, we are still far from this goal. At present there is convincing evidence only for detection 

of GTCS, using non-EEG WD. Further development is needed to: 1) reduce the false alarm rate, 

which at present is the main obstacle for using WD for quantification of the burden of GTCS; 2) to 

reliably detect all seizure types – including the non-convulsive seizures, which is still a challenging; 

3) to develop seizure prediction using non-invasive modalities; 4) to develop methods for objective 

risk assessment of the recorded seizures. Application of ML using the data recorded with WD from 

a large number of patients could be a game changer in this field. The authors encourage groups 

working on these topics to share anonymized data recorded with WD and establish large databases 

to facilitate development and validation of novel algorithms. 
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