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Abstract 

Environmental decisions are often deferred to groups of experts, committees, or panels to 

develop climate policy, plan protected areas, or negotiate trade-offs for biodiversity 

conservation. There is, however, surprisingly little empirical research on the performance of 

group decision making related to the environment. We examined examples from a range of 

different disciplines, demonstrating the emergence of collective intelligence in the elicitation 

of quantitative estimates, crowdsourcing applications, and small-group problem solving.  We 

explored the extent  to which similar tools are used in environmental decision making. This 

https://doi.org/10.1111/cobi.13335
https://doi.org/10.1111/cobi.13335
https://doi.org/10.1111/cobi.13335


 

 

 
This article is protected by copyright. All rights reserved. 

2 
 

revealed  important gaps (e.g., a lack of integration of fundamental research in decision-

making practice, absence of systematic evaluation frameworks) that obstruct mainstreaming 

of collective intelligence. By making judicious use of interdisciplinary learning opportunities, 

collective intelligence can be harnessed effectively to improve decision making in 

conservation and environmental management. To elicit reliable quantitative estimates an 

understanding of cognitive psychology and to optimize crowdsourcing AI tools may need to 

be incorporated. The business literature offers insights into the importance of soft skills and 

diversity in team effectiveness. Environmental problems set a challenging and rich testing 

ground for collective-intelligence tools and frameworks. We argue this creates an opportunity 

for significant advancement in decision-making research and practice. 

 

Introduction 

Judgment and decision making are integral to conservation and environmental 

management, but the processes are complex and error-prone, in part due to the inherent 

uncertainty of social-ecological systems (Schick et al. 2017) and because decision makers 

have cognitive limitations. Under certain conditions, groups can deliver more accurate factual 

estimates and creative solutions to problems, referred to as collective intelligence (CI) 

(Malone & Bernstein, 2015). Democratic elections, jury decisions, and recruitment selection 

panels are founded on the idea that collectives have access to greater problem-solving 

resources (Landemore 2012), especially if processes for eliciting and aggregating 

information, beliefs, and preferences are effective (Hastie & Kameda 2005). Disciplines, 

including organizational psychology and economics, have long studied group dynamics, but 

scientific interest in CI has flourished only recently.  Enhanced group judgements are 

reported in medical diagnostics (Mayo & Woolley 2016),  taxonomic classification 

(Prestopnik & Crowston 2012), and meteorological forecasts (Hueffer et al. 2013). There has 
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been little recognition of the opportunities for collective intelligence in conservation or 

environmental management.  

Collective intelligence applies to  “groups of individuals acting together in ways that 

seem intelligent” (Malone & Bernstein 2015) and  covers a range of practices and tools. We 

evaluated its potential to enhance conservation and environmental decision making. We 

considered the strengths and weaknesses of 3 specific applications (Fig. 1) and aimed to set a 

research agenda. We examined wisdom-of-the-crowd effects (specifically how quantitative 

estimates are improved through structured elicitation) and investigated how crowdsourcing is 

used to gather distributed and diverse inputs to solve complex problems.  We also considered 

CI as an emergent property in teams making collaborative decisions and reviewed the 

conditions under which this may occur. If judiciously applied, CI could be deployed more 

effectively in environmental decision making . 

 

Improving quantitative judgements  

Decision makers often have inadequate information, but accurate estimates can be 

achieved by aggregating individual judgements, most straightforwardly by simple averaging 

(Armstrong 2001). Wise crowd judgement relies on a large set of diverse and independent 

opinions in which random errors cancel out to reveal underlying information (Galton, 1907; 

Surowiecki 2005).  

Yet many real-world decision-making contexts are messy, and the simple rules of 

crowd wisdom may not apply. People use shared resources to inform their opinions, making 

use of multiple cues that are often spatially and temporally correlated and vary in reliability. 

Large groups are subject to biasing effects of correlated information (Kao & Couzin 2014). 

Decision making may also go awry when social interactions among participants, such as 

dominance, trigger individuals to revise their judgments, ultimately leading to convergence 
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without accuracy improvement (Lorenz et al. 2011). The impact is more notable in 

centralized social networks (Becker et al. 2017).  Aggregated judgment accuracy improves 

when individual estimates are negatively correlated, suggesting that divergent opinions 

enhance collective judgment (Davis-Stober et al. 2014).  

Individual contributions may be weighted based on criteria, such as stated confidence 

or level of expertise (e.g. Prelec et al. 2017). Unfortunately, there is little relationship 

between people’s confidence and their accuracy (Burgman et al. 2011). Those considered 

experts by others  typically provide confidence bounds that are too narrow (Soll & Klayman 

2004), leading to poor judgement on all but the simplest questions (Griffin & Tversky 1992). 

The best predictor of accuracy is prior performance on questions of a similar kind, 

irrespective of experience, qualification, or training (McBride et al. 2012). Implementing 

such testing procedures is not always feasible due to resource or time constraints or the 

difficulty of obtaining and validating test questions.   

While aggregation can minimize random error, systematic bias may arise from 

entrenched, value-based positions or anchoring on previous judgements (e.g., Bosetti et al. 

2017). Such cognitive biases are pervasive and occur most often when people use mental 

shortcuts (heuristics) rather than engaging in  in-depth processing (Tversky & Kahneman 

1974). When applied ineffectively, heuristics distort judgements; this affects group 

judgements too because standard aggregation techniques do not correct bias (e.g., Simmons 

et al. 2011).  

Success of mitigation approaches vary (Montibeller & von Winterfeldt 2015). 

Education in logic and probability theory sometimes enhances judgments (Larrick 2004). 

Even a single training session based on innovative “serious games” persistently reduces 

judgement bias (Morewedge et al. 2015). However, motivational incentives have little effect 

(Camerer & Hogarth 1999). Changing the problem presentation can generate more accurate 
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judgements, e.g. by restating probabilistic questions as natural-frequency problems 

(Gigerenzer & Hoffrage 1995). Overprecision can be reduced by asking for bounds before 

eliciting a best estimate and requiring respondents to estimate how confident they are (Speirs-

Bridge et al. 2009). Deliberate practice and unambiguous and immediate feedback are also 

helpful (Fischhoff 1982). Socially mediated biases, such as group-think and dominance 

effects, can be managed through well-structured interaction (e.g.  Schultze et al. 2012), and 

feedback about others’ estimates improves individual judgments (Wintle et al. 2012).  

Structured elicitation methods have been developed that offer multiple strategies to 

reduce bias and improve accuracy. In conventional Delphi protocols, experts interact through 

a facilitator who provides feedback about others’ estimates. The aim is to reach consensus 

rapidly (Rowe & Wright 2001), but accuracy is not guaranteed (Murphy et al. 1998). 

Improving on this, the IDEA protocol uses guided social interactions to avoid the biasing 

elements of group deliberation and behavioral aggregation (Hanea et al. 2017). Participants 

provide individual estimates before receiving anonymized information about peer judgments. 

Ensuing group discussion introduces new information and reconciles differences in 

understanding. In a second round, individual, anonymous estimates are averaged. The method 

generates relatively accurate judgements that usually improve with performance-based 

weighting (Hanea et al. 2018). 

Appropriately managed, aggregate estimates from many contributors (experts or not) 

typically surpass those of conventionally knowledgeable individuals. Most real-life problem 

settings, although complex and multifaceted, require some element of judgement and are 

informed by factual estimates. This suggests great potential in harnessing this form of CI to 

provide more accurate and reliable decision making.  

 

Distributed processing 
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Complex problem solving requires more than collating and estimating facts; it 

assumes active coordination of cognitive resources and mental activity. Even cognitively 

simple animals (e.g., ants) act collectively to undertake complex tasks and solve problems 

that are intractable for individuals (Krause et al. 2010). Social learning (i.e., learning from 

observation of others’ behavior) probably plays an important role in this phenomenon in 

animal collectives (Kao et al. 2014) as well as some human decision-making groups (e.g. 

Kurvers et al. 2014). In  “swarm intelligence,” a population of unintelligent or uninformed 

agents, each following simple rules, interacting locally, may produce intelligent global 

behaviour without the need for centralised control.  

This principle  has been used to amplify the intelligence of human groups by 

connecting networked individuals through an online interface that is moderated by artificial 

intelligence (AI) algorithms (Rosenberg 2016). Artificial swarm intelligence (ASI) enables 

groups of people to answer questions, make predictions, express opinions, and reach 

decisions as a unified emergent intelligence by tracking group members as they signal their 

intent toward choice alternatives. The group’s decision is dynamic, representing real-time 

negotiation among group members collectively exploring the decision space and converging 

upon the most agreeable answer. Artificial swarm intelligence outperforms medical experts 

and machine-learning algorithms  and makes relatively accurate predictions for financial 

markets and the outcomes of sporting events (Rosenberg et al. 2017, 2018). 

Despite the success of AI-supported systems, the dominant form of crowdsourcing 

still relies on some central control. Originally, crowdsourcing enabled tasks once performed 

by a single expert or a small group to be executed through a wide, undefined network of 

individuals, connected via the web (Howe 2006). A vast range of applications, from simple, 

repetitive tasks to multifactorial problem solving and design innovation have since been 

explored. Typical crowdsourcing marketplaces (e.g., Amazon’s Mechanical Turk [AMT]) 
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connect requesters with thousands of potential workers to complete so-called human 

intelligence tasks rapidly and in parallel. The Lego Company, for instance, launched a public 

call to design new products, rewarding successful creators with a 1% royalty on net revenue. 

Many applications (e.g., Google Earth) rely on intrinsic public-good motivation to mobilise 

distributed knowledge. Its success extends to scientific advancement (e.g., a new protein 

structure discovered through an online game; Cooper et al. 2010). 

Although most crowdsourcing is collaborative, distributed knowledge can also be 

aggregated efficiently in competitive settings. In prediction markets, participants trade the 

probabilities of the outcomes of events, receiving pay outs when events occur. The market 

price reflects a consensus forecast of the underlying event probability, which is typically 

more accurate than probabilities gathered through conventional polls and surveys (Paton et al. 

2009). Prediction markets effectively forecast, for example,  election results (Rothschild 

2009), company valuations (Berg et al. 2009), and spread of infectious disease (Polgreen et 

al. 2007).   

Despite its uptake in commercial and public sectors, there exists only a rudimentary 

understanding of the intellectual gains crowdsourcing may achieve and under which 

conditions this happens (Zhao & Zhu 2014). Some evidence suggests that a traditional 

microtasking approach has potential for significant intelligence amplification. Kosinski et al 

(2012) crowdsourced the completion of a nonverbal intelligence test by AMT workers and 

aggregated responses by majority vote. They found that collective intelligence increases with 

the size of the crowd, although gains are marginal in groups with >6 members, a finding 

replicated by Vercammen et al. (2019).   

Yet, crowdsourcing platforms do not automatically enhance collective intelligence 

(Guth & Brabham 2017). Crowdsourcing can produce problematic or ineffectual solutions 

(Greengard 2011) and may not be egalitarian (Brabham 2012), or it may produce unbalanced 
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views that do not reflect the majority’s voice (e.g., Wikipedia entries [Lee & Seo 2016]). 

Because contributors’ efforts cannot be observed directly and individual accuracy is difficult 

to monitor due to volume of data, potential free riding, malicious, or manipulative activities 

need to be curtailed, for example, through motivational tools, such as reputation metrics 

(Allahbakhsh et al. 2013). Crowdsourcing complex or creative products may require active 

promotion of collective learning and tailored feedback (e.g. Cullina et al. 2015). For instance, 

output quality on a creative  task improves when workers are informed of other contributors’ 

efforts and their rationales (Xiao 2014).  

To maximise the utility of crowdsourcing as a support tool further research is 

required, focusing on the management of contributors’ behaviour, quality-control measures, 

incentive schemes, and systematic evaluation of crowdsourcing performance. 

 

Small-group collaboration 

The small, collaborative consensus-seeking group is the most popular forum for 

decision making. Groups often outperform the average and the best-regarded individual 

within a group (Hill 1982). However, “group think” may compromise decisions by 

introducing dominance effects and correlated judgements. Cases, such as the Bay of Pigs 

invasion (Janis 1982),  highlight that perceived expertise, social status, cognitive and 

motivational biases, differences in personality and thinking styles, and social processes all 

potentially influence a group’s ability to act intelligently.  So, can one measure and predict a 

group’s collective intelligence? The psychometric concept of intelligence is based on the 

finding that a single underlying dimension, g, (general intelligence), explains 40-50% of 

individual variability in test performance across a range of cognitive domains (e.g., 

numeracy, working memory, visuospatial skills). General intelligence can be measured 

reliably, varies among individuals, but is relatively constant over time within an individual 
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(Spearman 1904). It also correlates well with scholastic achievement, job performance, and 

other indicators of success, consistent with the concept of intelligence as an “adaptive 

capacity” (Nisbett et al. 2012).  

To examine whether a group equivalent of the individual g exists, Woolley et al 

(2010) assessed small, randomly assembled groups on tasks relevant to group performance 

(e.g.,  creative thinking, decision making, rational judgments under uncertainty). A single 

underlying dimension explained 43% of group-performance variability, which the authors 

took as evidence of a collective intelligence factor (c). When the same groups were 

challenged on a strategy game or an architectural design challenge,  c predicted group 

achievement, whereas individual intelligence did not, suggesting the problem-solving 

capacity of groups does not depend directly on intellectual ability of individual group 

members.  

Group performance appears to depend more on soft skills than individual cognitive 

acumen. The single best predictor of collective intelligence is average social perceptiveness, 

or group members’ ability to correctly identify and appropriately respond to ones’ own 

mental states and those of others, a skill linked to empathy (Woolley et al. 2010). Even a few  

group members with low social perception can adversely affect collective intelligence (Engel 

et al. 2014).  

Diversity of identity (e.g., demographic differences) and disposition (differences in 

problem-solving approaches and heuristics) drive CI in small groups (Hong & Page 2004). 

An intermediate level of diversity in thinking styles appears to be particularly advantageous  

(Aggarwal et al. 2015). Too much diversity within groups hampers communication through 

lack of trust and respect (Jackson et al. 2003). Within-group communication patterns are also 

relevant; high-performing online collaborations typically exhibit high volumes of interaction 

and more equal conversational turn taking (Engel et al. 2014; Aggarwal et al. 2015). Groups 
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that synchronize their activities to allow for more immediate feedback also tend to 

outperform those that do not use these strategies (Kim et al. 2017).  

Some qualitative aspects of group communication also improve group CI. To solve 

difficult problems, groups must develop a shared mental model (e.g., Maciejovsky et al. 

2013), and the more diverse the shared information, the better the group does (Riedl & 

Woolley 2016). This emerges in so-called hidden profile tasks, where some relevant 

information is known to most group members, whereas other facts are available only to 

individuals. A bias toward discussing shared information and avoiding unique or private 

information contributes to pooling distributed facts (Stasser & Titus 1985), which may have 

important consequences (Lu et al. 2012). This suggests sharing of rare information should be 

incentivised so that collaborative groups benefit from all available knowledge (Tausczik & 

Boons 2018). 

Although some argue that coordination cost associated with group problem solving 

may nullify the potential intellectual gain (Bates & Gupta 2017), well-managed teams have 

substantial CI. To enable reliable engineering of CI-supportive conditions, more systematic 

research is required into effects of compositional features (e.g., individual cognitive ability, 

empathic skill) and operational characteristics (e.g., opportunity for participation, group 

communication patterns) in teams working on real-world problems. 

 

Collective intelligence in conservation  

Expert judgements are indispensable when data are scarce and decisions about 

socioecological systems are complex and pressing (Martin et al. 2012). The use of structured 

elicitation methods may increase the rigour with which decisions are made, aid the 

management of uncertainty, and mitigate prevalent and persistent biases that undermine 

judgement. Despite successful applications in, for example, threatened species assessments 
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(McBride et al. 2012), prioritizing management strategies (e.g. Carwardine et al. 2019), risk 

assessments (Smith et al. 2015), and estimating population trends (Adams‐ Hosking et al. 

2016), most researchers do not use a structured approach (Drescher & Edwards 2019).  

Expert-elicitation protocols require testing in a wider range of environmental decision 

making (Hemming et al. 2017), including in the harnessing of collective local ecological 

knowledge in groups without a strong numerical background or with different knowledge 

systems (Mantyka-Pringle et al. 2017). More research is also required to establish who should 

be consulted, the required number of experts, methods for combining judgments, techniques 

for training and feedback, and tools for independent verification of expert judgments (Martin 

et al. 2012). Evidence of how quickly expert judgments can be derailed by individual 

cognitive limitations highlights that experimental studies on human cognition in applied 

settings and with actual decision makers are a priority. Other fields, including education (e.g. 

Fay & Montague 2015) and medicine (e.g. Reilly et al. 2013), have integrated behavioural 

science into decision making and have devised and tested quality-control procedures and 

instructional materials. Methodological and conceptual advances could be made relatively 

quickly if practitioners and researchers adapt existing resources to the conservation context.  

Crowdsourcing applications in conservation are advancing rapidly. For instance, the 

immensely popular Zooniverse (https://www.zooniverse.org/) hosts dozens of citizen science 

projects that combine the efforts of human volunteers completing research microtasks on 

anything from counting penguins to classifying galaxies. iNaturalist (www.inaturalist.org) 

supports over 9000 different projects and has gathered millions spatially explicit observations 

and species identifications submitted by the general public. These applications are 

forerunners of an increasingly participatory science model (Tinati et al. 2015).  

Beyond collection and aggregation of data, crowdsourcing provides opportunity for 

innovation. For example, Climate CoLab, an online problem-solving platform, connects over 
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90,000 people to design and evaluate plans for addressing climate change.  Projects may be 

combined into integrated plans and are finally evaluated by experts for cash prizes. It has so 

far generated proposals on new technologies, community projects, marketing strategies, 

businesses, and policies, attracting a global stream of new and returning visitors who generate 

innovative and high-quality solutions (Duhaime et al. 2015). Climate CoLab has also 

provided rich content to evaluate the use of these sociocomputational systems to solve other 

difficult problems (Introne et al. 2013). 

Overall, crowdsourcing applications show great promise to scale up initiatives where 

resources and data are limited. They may also have additional benefits in education and 

raising awareness, supporting adaptive management, revealing low-frequency events, and 

improving scientific methods. Further improvements can be expected through integration 

with machine learning and AI-supported interaction.  

However, to reach their full potential, environmental crowdsourcing initiatives must 

coordinate efforts, make data freely available, improve quality control, and explain  how 

activities are linked to specific scientific objectives (Cox et al. 2015). Innovation-focused 

crowdsourcing tools may improve their impact by tapping into existing social networks and 

reinforcing a sense of community. To boost wide uptake and increase impact, contributors 

should receive personalised feedback and local, accessible, and directly relevant advice 

(Piccolo et al. 2018).  

The main challenge across all forms of crowdsourcing is the lack of systematic 

evaluation. A better understanding of the mechanisms that support success could also inform 

how problems can best be structured for crowdsourcing. Existing research suggests platform 

management, problem decomposition strategies, preferred characteristics of contributors, 

quality control, incentive setting, management of participant motivations, and clarity on 

intellectual property rights are all parameters that require further testing (Ghezzi et al. 2017). 
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Evaluation of these elements should be guided by specific frameworks (Tredick et al. 2017) 

so that ultimately standards for best practice could evolve into a refined, generalizable, and 

effective model for problem solving (Biggar 2010).  

 The empirical study of teamwork has largely been restricted to the realm of business 

studies and organizational psychology, and there has  been little diffusion of this work into 

conservation. Organizations typically recruit employees based on individual technical skills 

and knowledge, possibly negating soft skills and group compositional features. This may 

come at the expense of collective performance, with some initial evidence from the 

conservation sector indicating potential impacts on judgement accuracy (e.g., Hemming et al. 

2018) and decision quality (e.g., Buckingham 2010).  

 Metrics have been developed that enable organizations to assess the potential for CI in 

teams (e.g. theory of mind [Bosco et al. 2016], group cognition [Woolley et al. 2010]). To 

have a real impact in terms of enabling capacity building for CI, these tools must be made 

widely available, validated against meaningful performance criteria, and tested specifically in 

environmental decision-making settings. Data from other fields suggest that to enable 

collective intelligence, organizations will have to consider restructuring communications, 

studying the formation of formal and informal networks and the roles team members play in 

each, strategically managing incentives, and promoting an organizational culture of 

psychological safety in which team members feel confident in expressing personal opinions 

and alternative views (Edmondson 1999). This shift in conception of what makes an effective 

conservation professional must be embedded in the curriculum for environmental and 

conservation courses and become part of organizational recruitment. We acknowledge that 

this will challenge institutional biases, bureaucratic processes, and accepted norms of power 

and decision making.  
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Conclusions 

Conservation and environmental decision making is complex and dynamic, providing 

a rich testing ground for existing and new CI tools. Some techniques (e.g., structured expert 

elicitation, crowd computing) may improve input into the decision-making process by 

enhancing data-processing capacity and judgement accuracy. Other tools (e.g., crowd-based 

design and innovation contests) may add value by enabling more innovative or representative 

solutions. Recognition of the emergent properties of groups, rather than a focus on individual 

capacity could improve capacity for problem solving. We challenge researchers and decision 

makers to draw on lessons learned in other disciplines and to further develop, implement, and 

evaluate the utility of CI tools for decision making. 
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Figure 1. Three forms of collective intelligence and how they may assist in improving 

decision-support and decision-making processes in conservation.  
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