Rare eclogite-mafic granulite in felsic granulite in Blanský les: precursor of intermediate granulite in the Bohemian Massif?

P. Štípská¹², R. Powell³, M. Racek⁴⁵

¹ Center for Lithospheric Research, Czech Geological Survey, 11821 Praha 1, Czech Republic
² Ecole et Observatoire des Sciences de la Terre, Institut de Physique du Globe, CNRS UMR 7516, Université de Strasbourg, 1 rue Blessig, F-67084 Strasbourg Cedex, France
³ School of Earth Sciences, University of Melbourne, Victoria 3010, Australia
⁴ Institute of Petrology and Structural Geology, Charles University, 12843 Praha 2, Czech Republic
⁵ Czech Geological Survey, 11821 Praha 1, Czech Republic

ABSTRACT

Mafic granulite, generated from eclogite, occurs in felsic granulite at Kleť, Blanský les, in the Bohemian Massif. This is significant because such eclogite is very rare within the felsic granulite massifs. Moreover, at this locality, strong interaction has occurred between the mafic granulite and the adjacent felsic granulite producing intermediate granulite (see companion paper, Štípská et al., this issue), such intermediate granulite being of enigmatic origin elsewhere. The mafic granulite involves garnet from the original eclogite, containing large idiomorphic inclusions of omphacite, plagioclase and quartz, as well as rutile. The edge of the garnet is replaced by a plagioclase corona, with the garnet zoned towards the corona and also the inclusions. The original omphacite-plagioclase-matrix has recrystallised to coarse-grained polygonal (“equilibrium”-textured) plagioclase-diopsidic clinopyroxene-orthopyroxene also with brown amphibole commonly in the vicinity of garnet. Somewhat-larger quartz grains are embedded in this matrix, along with minor ilmenite, rutile and zircon. Combining the core garnet composition with core inclusion compositions gives a pressure of the order of 18 kbar from assemblage and isopleths on a $P−T$ pseudosection, with temperature poorly constrained, but most likely greater than 900 °C. From this $P−T$ pseudosection, the recrystallisation of the matrix took place at about 12 kbar, and from Zr-in-rutile thermometry, at relatively hot conditions of 900–950 °C. It is largely at these conditions that the eclogite/mafic granulite interacted with the felsic granulite to make intermediate granulite (see next paper).

Key words: Bohemian Massif, eclogite, mafic granulite, Zr-in-rutile thermometry
INTRODUCTION

Eclogite, dominated by garnet and omphacitic clinopyroxene, and mafic granulite, dominated by garnet, omphacitic clinopyroxene and plagioclase are the most obvious expression of high pressure metamorphism when mafic compositions are metamorphosed under low $a(\text{H}_2\text{O})$ (i.e. dry) conditions and/or high temperature (O'Brien & Rötzler, 2003; Rebay et al., 2010; Liu et al., 2011). The felsic granulite massifs of the Bohemian Massif are acknowledged to reflect metamorphic conditions of $>850\, ^\circ\text{C}$, and, as they tend to contain kyanite and grossular-rich garnet, their pressure of formation is $>16\, \text{kbar}$ from thermobarometry (O'Brien & Rötzler, 2003) or on P–T pseudosections (Racek et al., 2006; Tajčmanová et al., 2006; Štípská et al., 2008; Franěk et al., 2011a). At these P–T conditions, mafic compositions will occur as eclogite or mafic granulite under dry conditions. However, eclogite and mafic granulite directly embedded in the felsic granulite massifs (not in peridotites) are rare (Medaris et al., 1995b, 1998, 2006; Willner et al., 2000; Rötzler & Romer, 2001; Štípská & Powell, 2005a). Rather it seems that the majority of pyroxene-bearing granulites are intermediate in composition, containing significant potassium, reflected petrologically in the presence of ternary feldspar and/or biotite (Fiala et al., 1987; Carswell & O'Brien, 1993; Cooke, 2000; Cooke & O'Brien, 2001; O'Brien & Rötzler, 2003; Rötzler et al., 2004; Štípská & Powell, 2005b; Sláma et al., 2007; O'Brien, 2008; Racek et al., 2008; Tajčmanová et al., 2010).

At Kleť in the Blanský les massif (Fig. 1), such an eclogite-mafic granulite (referred to as eclogite below), in an unusually good state of preservation, occurs within intermediate granulite, adjacent to felsic granulite, in a low-strain zone. This eclogite is interesting in its own right as they are rare. However, its real significance lies in it being surviving material from the interaction between the eclogite and felsic granulite that has produced intermediate granulite. Given the excellence of the spatial context the formation of the intermediate granulite can be studied properly (see Štípská et al., 2014, this issue). The characterisation of the eclogite needed for such a study is undertaken here, with, in particular, its P–T path inferred from petrographic relations, Zr-in rutile thermometry and pseudosection modelling.

GEOLOGICAL SETTING

An overview of previous petrology of eclogite, felsic granulite and intermediate granulite is needed given that the eclogite described is considered as the surviving material from the interaction between eclogite and felsic granulite. This is presented following an outline of the overall geological context.
Tectonic setting of the Bohemian massif

The main tectonic domains of the Variscan Bohemian Massif are from the west to the east: the Saxothuringian, the Teplá-Barrandian, the Moldanubian and the Brunia domains (Fig. 1) (Schulmann et al., 2009). The Saxothuringian continental and oceanic crust was partly subducted under the Teplá-Barrandian and Moldanubian continental domains in Devonian and Carboniferous times. The Moldanubian domain is considered to be the root of the orogen, (including the Orlica-Snieznik dome; e.g. Chopin et al., 2012a). The majority of the Moldanubian high-grade rocks occurs in the Gföhln unit, composed mainly of kyanite–K-feldspar granulite (O'Brien & Rötzler, 2003) and the Gföhln orthogneiss (Hasalová et al., 2008a, b, c), both hosting mafic to intermediate granulite and peridotite associated with eclogite and pyroxenite (e.g. Carswell, 1991; Medaris et al., 1995b, 2005). At least part of the Gföhln unit is thought to be originally deeply subducted Saxothuringian crust (O'Brien, 2000; Janoušek & Holub, 2007; Lexa et al., 2011; Nahodilová et al., 2012). This origin is supported by the geochemical similarity of granulites with some Saxothuringian granites (Janoušek et al., 2004), and their deep subduction is supported by finding of diamond and coesite in the Moldanubian granulites (Kotková et al., 2011), and the presence of garnetiferous peridotites (Carswell, 1991). The rock association of kyanite–K-feldspar granulite, garnetiferous peridotite, eclogite, together with diamond-bearing quartzo-feldspathic rocks occurs also in the Saxothuringian domain (e.g. Stöckhert et al., 2001; Schmädicke et al., 1992, 2010; Willner et al., 1997, 2000), pointing to a possible genetic link with the Moldanubian granulites. The granulites appear in NE-SW trending belts subparallel to the boundaries of the major tectonic domains (Fig. 1). This geometry is attributed to vertical exhumation of the lower crust to mid-crustal levels, where the rocks are reworked by shallow dipping structures (e.g. Willner et al., 2000; Štípská et al., 2004; Schulmann et al., 2008; Jamieson et al., 2011).

Geochronology of the granulites and eclogites involves an extensive database of mainly zircon ages, clustering around 340 Ma, interpreted as the HP metamorphic climax (e.g. Kröner et al., 2000). However, in detail, the meaning of zircon ages spreading from c. 500 Ma to c. 335 Ma is not yet fully understood (e.g. Bröcker et al., 2010; Friedl et al., 2011; Nahodilová et al., 2012). Scarce garnet ages date the prograde metamorphic path (350 Ma, Sm–Nd method, Prince et al., 2000; 387 Ma, Lu–Hf method, Anczkiewicz et al., 2007).

Felsic granulites and Gföhln gneisses

The majority of felsic granulites are former granitoids, correlated with the Ordovician–Silurian meta-igneous rocks of the Saxothuringian domain (Janoušek et al., 2004). Rarely
reported muscovite (sensu lato) in garnet suggests incipient eclogite facies conditions (Willner et al., 1997; Faryad, 2009; Nahodilová et al., 2012). The peak assemblage garnet-kyanite-ternary feldspars-quartz-rutile, has led to estimation of $P-T$ conditions in excess of 800°C and greater than 18 kbar (O'Brien, 2000; O'Brien & Rötzler, 2003, and references therein), and the discovery of coesite and microdiamond suggests subduction to UHP conditions (Kotková et al., 2011). Decompression is commonly almost isothermal, into the sillimanite stability field (Tajčmanová et al., 2006; Štípská et al., 2010), in places is accompanied with significant cooling (Schulmann et al., 2008). The Gföhl gneisses are Cambro–Ordovician granitoids (Schulmann et al., 2005), locally metamorphosed under high-pressure conditions (Chopin et al., 2012b, Cooke & O'Brien, 2001), in most places occurring as biotite migmatites, commonly with garnet and/or sillimanite (Hasalová et al., 2008c).

Eclogites and mafic granulites within felsic granulites and gneisses

Eclogite in the Gföhl granulate and gneiss has been classified by Medaris et al. (1995b) according to their surrounding rocks. These are either peridotites or serpentinites (group P), or felsic granulites or gneisses (group G). Eclogite is common in peridotite, interpreted as high-pressure crystal cumulates formed in the upper mantle (Medaris et al., 1995a) or shallow Mg-rich cumulate gabbros transformed to eclogites (Obata et al., 2006). The G type eclogite (Medaris et al., 1995b; 1998; 2006; Štípská & Powell, 2005a) and the mafic granulate (Rötzler & Romer, 2001; Medaris et al., 1998) are very rare in the Moldanubian domain, but are common in the Saxothuringian Erzgebirge (Schmädicke et al., 1992; Klápová et al., 1998) and the Orlica-Sniezni dome (Smulikowski, 1967). As the petrology of the individual eclogites and mafic granulites differs significantly, most likely reflecting different metamorphic histories, a petrographic description by occurrence is given below. More generalised ideas of their $P-T$ evolution, coming from phase equilibria are given in the Discussion. For more detail about the intermediate granulites, see Štípská et al. (2014).

The prograde character of eclogites in felsic granulate from the Moldanubian domain at Spačice and Jemnice localities (Medaris et al., 1998, 2006; Štípská & Powell, 2005a), is based on prograde garnet profiles and inclusions within garnet that involve amphibole, epidote-group minerals, plagioclase and clinopyroxene (j_{27}). Peak is inferred to occur in the garnet-omphacite (j_{33})-rutile stability field and the coarse-grained recrystallized amphibole-diopside-plagioclase matrix without orthopyroxene indicates decompression in the amphibolite-facies conditions.
The eclogites associated with kydsp granulites in the Saxothuringian domain occur in
the Gneiss-eclogite unit of the Central Erzgebirge (Schmädicke et al., 1992). The peak
assemblage comprises omphacite (jd_{27-50}), unzoned garnet, coesite, rutile, rare muscovite and
kyanite. Retrogression involves limited growth of symplectite, amphibole, and replacement of
muscovite by plagioclase and biotite.

The eclogites in the Orlica-Snieznik dome gneisses are most commonly composed of
garnet and omphacite (jd_{36}), with variable accessory zoisite, muscovite, rutile, quartz and
kyanite (Smulikowski, 1967; Bröcker & Klemd, 1996; Štípská et al., 2012), with possible
coesite (Bakun-Czubarow, 1991). The retrograde evolution involves fine-grained symplectite
after omphacite and the development of an amphibolite facies assemblage of plagioclase,
amphibole, biotite, ilmenite and sphene.

The mafic and intermediate granulites in the Orlica-Snieznik dome are intimately
associated with each other. They are composed of omphacite (jd_{28}), garnet, plagioclase, quartz
and rutile, in places with kyanite and/or mesoperthitic plagioclase (Pouba et al., 1985;
Steltenpohl et al., 1993; Kryza et al., 1996; Štípská et al., 2004; Anczkiewicz et al., 2007),
with possible pseudomorphs after coesite (Klemd & Bröcker, 1999). Decompression involves
growth of retrograde amphibole, in places also biotite or orthopyroxene.

The mafic granulate from the Saxonian granulate massif is composed of garnet,
clinopyroxene, plagioclase, amphibole, titanite, spinel, magnetite and muscovite (Rötzler &
Romer, 2001). Spinel and clinopyroxene (jd_{2-3}) is included in garnet. The peak metamorphic
assemblage is inferred to involve the garnet core (grs_{46-38}), matrix clinopyroxene (jd_{10}) and
titanite without quartz and plagioclase. The matrix is recrystallized to clinopyroxene-
plagioclase-magnetite with amphibole.

The Spačice pyroxene granulite from the Moldanubian zone is composed of garnet,
clinopyroxene, plagioclase, quartz, rutile, ilmenite and amphibole (Medaris et al., 1998).
Garnet includes amphibole and shows decreasing spessartine and grossular (sps_{7>=0}, grs_{32=25}),
interpreted as prograde features. The matrix is recrystallized into coarse-grained symplectite
of clinopyroxene (jd_{10}) and plagioclase with some retrograde amphibole.

PETROGRAPHY AND MINERAL CHEMISTRY

Analytical procedures and abbreviations

The whole rock ICP-MS analyses were performed in the Acme laboratories, Canada. Mineral
analyses were obtained on an electron microprobe CAMECA SX-100 at the Institute of
Mineralogy at the University of Stuttgart in point beam mode at 15 kV and 15 nA and on a scanning electron microscope Tescan VEGA with X-Max 50 EDS detector at the Institute of Petrology and Structural Geology at the Faculty of Science of the Charles University in Prague in point beam mode at 15 kV and 1.5 nA. The field relations are shown in Fig. 2, the petrography is documented in Figs 3, 4 & 5, representative mineral analyses are summarized in Tables 1–3, garnet, plagioclase, clinopyroxene and amphibole chemistry are shown in Figs 6 & 7. Rutile was analysed for Si and Nb to screen for the possibility of micro-inclusions of zircon and the zirconium in rutile thermometry is portrayed in Fig. 8. The sign "=>" is used for a trend in mineral composition or for zoning and the sign "−" for a range of mineral compositions; p.f.u. = per formula unit (pyroxene recalculated on 6 oxygens, garnet 12, feldspar 8, and amphibole 23 oxygens and cations 13+Na+Ca+K).

Mineral abbreviations: g = garnet, cpx = clinopyroxene, o = omphacitic clinopyroxene, jd = jadeitic clinopyroxene, di = diopsidic clinopyroxene, opx = orthopyroxene, am = amphibole, hb = hornblende, pl = plagioclase, q = quartz, ilm = ilmenite, ru = rutile, mt = magnetite, zrc = zircon; alm = Fe\(^{2+}\)/\((\text{Ca + Fe}^{2+} + \text{Mg + Mn})\), py = Mg/(Ca + Fe\(^{2+}\) + Mg + Mn), grs = Ca/(Ca + Fe\(^{2+}\) + Mg + Mn), sps = Mn/(Ca + Fe\(^{2+}\) + Mg + Mn), XFe = Fe\(^{2+}\)/(Fe\(^{2+}\) + Mg), an = Ca/(Ca + Na + K), ab = Na/(Ca + Na + K), jd = Na/(Na + Ca). Ferric iron is estimated by charge-balance. The isopleth notation used is: (z(g) = Ca/(Ca + Fe\(^{2+}\) + Mg))*100, (j(cpx) = Na/(Na + Ca))*100.

Petrography

Eclogite samples were collected at the Kleť mountain, in a low strain domain of felsic granulite in the core of the Blanský les massif (Franěk et al., 2006; 2011a,b). The eclogite occurs as centimetre- to metre-scale oval-shaped bodies within intermediate granulite, at an outcrop dominated by intermediate granulite with subordinate felsic granulite (Fig. 2a,b). The eclogite grades into the intermediate granulite which abuts the felsic granulite. The formation of the intermediate granulite is the subject of the companion paper (Štípská et al., 2014). Macroscopically, the eclogite has a greenish fine-grained matrix with variable proportions of fine-grained amphibole-rich black domains and millimetre-size red garnet (Fig. 2c–f). 20 thin sections were studied from one large piece of the eclogite, sampled within an oval-shaped body 0.5m size across. Two whole rock ICP-MS analyses were obtained from the core and from the rim of the same body, respectively (in wt%, sample KL1i: SiO\(_2\) = 51.51, Al\(_2\)O\(_3\) = 15.41, MnO = 0.16, CaO = 9.64, MgO = 8.47, Fe\(_2\)O\(_3\) = 10.84, Na\(_2\)O = 3.05, K\(_2\)O = 0.12, TiO\(_2\) = 27.90).
As shown by BSE imaging, as well as under the microscope, the matrix has a coarse-grained (50–150 µm), equilibrated microstructure with straight grain boundaries and triple junctions between grains (Fig. 3a,b). It is formed of diopsidic clinopyroxene, orthopyroxene, plagioclase and quartz, which constitute 60–70% of the rock. Quartz has rare contacts with plagioclase and tends to be surrounded by diopsidic clinopyroxene and orthopyroxene (Fig. 3a,b,f). Brown amphibole (5–20%, 50–150 µm) tends to occur within this coarse-grained matrix in the vicinity of garnet (Figs 3f & 6). The modal content of garnet is 10–25%. Garnet contains large inclusions of omphacite (up to 500 µm in size), plagioclase (up to 50 µm in size) and quartz (up to 50 µm in size) that tend to have idiomorphic shapes (Fig. 4). Garnet is surrounded by a multi-grained corona of plagioclase (Fig. 3c,f). Within the corona, garnet may be embayed by kelyphite composed of plagioclase and green amphibole, locally with small orthopyroxene (20 µm) and ilmenite. Accessory minerals are zircon, rutile, ilmenite and apatite. Rutile and zircon occur included in garnet and in the matrix. Ilmenite occurs as lamellae in some rutile. Proportions of garnet, garnet with kelyphite and garnet with kelyphite and plagioclase corona were calculated for the whole thin section KL2N and separately for a garnet-rich area within the same thin section (Fig. 5). The proportions are 11% and 25%, 17% and 31%, and 33% and 43%, respectively.

Mineral chemistry

The garnet has a compositionally flat core (grs$_{0.22-0.26}$ alm$_{0.30-0.36}$ py$_{0.32-0.36}$ sps$_{0.01}$, XFe = 0.50–0.52) and shows decrease of grossular and pyrope, with simultaneous increase of almandine and XFe, at the rim (for example to grs$_{0.15}$ alm$_{0.50}$ py$_{0.30}$ sps$_{0.02}$, XFe = 0.63) (Fig. 7a). The decrease of grossular occurs at the contact with the plagioclase corona, but less so at the contact with the kelyphite (Fig. 6). Garnet is also zoned around inclusions. Clinopyroxene included in garnet is omphacite with a flat compositional profile in the core (jd = 0.40–0.43, Ca = 0.47–0.50 p.f.u., AlIV = 0.06 p.f.u., XFe = 0.21), and a rim marked by decrease in jadeite and XFe and increase in diopside and AlIV (jd = 0.22, Ca = 0.68 p.f.u., AlIV = 0.15 p.f.u., XFe = 0.18; Fig. 7c). Next to these omphacite inclusions, grossular decreases, and pyrope and almandine increases significantly (grs$_{0.18}$ alm$_{0.41}$ py$_{0.40}$ sps$_{0.01}$, XFe = 0.50) (Fig. 7a). In contrast to the inclusions in garnet, matrix clinopyroxene is diopsidic (jd = 0.01–0.07, Ca = 0.01–0.07, AlIV = 0.01–0.07, XFe = 0.01–0.07).
0.85–0.90 p.f.u., AlIV = 0.03–0.10 p.f.u., XFe = 0.20; Fig. 7c). Orthopyroxene has AlIV =

0.03–0.05, XFe = 0.36 and Ca = 0.02–0.03 p.f.u.

Plagioclase composition varies according to its textural position (Fig. 7b). Inclusions in garnet have the composition of around an$_{0.27}$–ab$_{0.73}$–or$_{0.01}$. Matrix plagioclase is zoned with increase of anorthite from core to rim (an$_{0.29}$–ab$_{0.70}$–or$_{0.01}$ => an$_{0.40}$–ab$_{0.60}$–or$_{0.00}$). Plagioclase grains making up the corona around garnet show similar zoning to grains in the matrix (Fig. 6), with a tendency towards asymmetric profiles showing a greater increase of anorthite next to garnet (up to an$_{0.70}$–ab$_{0.30}$–or$_{0.00}$) than next to matrix clinopyroxene or orthopyroxene (an$_{0.32}$–ab$_{0.68}$–or$_{0.01}$; Fig. 6). Plagioclase within the kelyphite has up to 90% of anorthite (an$_{0.55}$–ab$_{0.45}$–or$_{0.00}$–0.01).

Amphibole is pargasitic and shows slightly different composition for the brown matrix grains (in p.f.u.: Si = 6.32–6.45, AlIV = 0.26–0.32, Na(A) = 0.38–0.41, Na(M4) = 0.10–0.14, K = 0.19–0.20, Ti = 0.23–0.36; XFe = 0.26–0.37) and green grains in the kelyphite (in p.f.u.: Si = 6.15–6.27, AlIV = 0.40–0.48, Na(A) = 0.28–0.35, Na(M4) = 0.14–0.20, K = 0.15–0.22, Ti = 0.07–0.12; XFe = 0.17–0.29). The major difference is in the greater Ti, and also Si, Na(A), and XFe, and the lesser AlVI in the matrix amphibole compared to the kelyphite.

Zr in rutile

The Zr content of rutile was used to calculate the temperature according to Tomkins *et al.* (2007). This thermometer includes a pressure dependence for the substitution of Zr in rutile coexisting with zircon and quartz. Box-plots of the Zr content and calculated temperatures are shown in Fig. 8, at 18 kbar for rutile included in garnet, and at 12 kbar for various textural settings of matrix rutile. Zr contents in rutile show ranges of: 1000–2500 ppm for rutile included in garnet, 3000–4500 ppm for the matrix rutile with or without ilmenite lamellae, and 4500–7000 ppm for rutile that seems to be intimately associated with ilmenite. The upper temperature ends of the boxes are used to indicate a representative temperature for each textural context giving 900 °C, 950 °C, and 1000 °C, respectively, following the suggestion of Tomkins *et al.* (2007). Given that the temperatures obtained may be too high or too low if a rutile was not in communication with quartz or zircon when it grew, a conservative estimate of temperature of equilibration of the matrix is 950 °C, as discussed below.
Calculation methods and strategy

The pseudosections were calculated using THERMOCALC 3.3 (Powell et al., 1998, 2009 version) with dataset 5.5 (Holland & Powell, 1998, November 2003 upgrade), in the system \(\text{Na}_2\text{O-CaO-FeO-MgO-Al}_2\text{O}_3-\text{SiO}_2-\text{H}_2\text{O-TiO}_2 \) (NCFMASHTO) with the amphibole model of Diener et al. (2007) modified by Diener & Powell (2012), clinopyroxene from Green et al. (2007) modified by Powell (unpubl., 2008) and used in all following work, and orthopyroxene from White et al. (2007), feldspar from Holland & Powell (2003), and ilmenite from White et al. (2000). There are two main ways that the available models do not correspond to the observed mineral compositions: the clinopyroxene model does not include the cats end-member (up to a proportion of 0.1 in the matrix clinopyroxene and up to 0.15 in the omphacite inclusion rim), and the amphibole model does not include K or Ti (of the order of 0.2 p.f.u. and 0.3 p.f.u. respectively in the matrix amphibole). In addition there is no current melt model for mafic compositions. It is unlikely that the cats substitution at this level will dramatically affect the phase relationships, but might be more significant to higher temperatures than those of interest here. However it is possible that this shortcoming will affect the calculated jadeite contents of clinopyroxene, particularly at lower pressures. K and Ti in amphibole will have the effect of stabilising amphibole, but the main calculations do not involve \(\text{H}_2\text{O} \) or amphibole, because of the absence of an appropriate melt model. Petrographic observation suggests that the eclogite was unlikely to have melted, so this absence only relates to a negative constraint on conditions of formation.

For the pseudosections, the whole rock ICP-MS analyses were used. The \(\text{Fe}_2\text{O}_3 \) was set to be 9% of the total FeO, very close to the average of the two analysed samples (9.04%), and corresponding to the mean value obtained for ocean floor basalts (Sun & McDonough, 1989; Rebay et al., 2010).

The pseudosection in NCFMASHTO (ie “dry”) is calculated to discuss peak \(P-T \) conditions and the retrograde path of the anhydrous eclogite assemblage (Fig. 9). The approximate effect of some garnet proportion not being part of the effective whole rock composition during decompression is examined using a \(P-X \) diagram (Fig. 10). Such a dry pseudosection obviously cannot be used to consider the small amount of amphibole observed in the equilibrated matrix. Additionally, later replacement of garnet by plagioclase-amphibole kelyphite cannot be considered. However in the absence of a melt model for mafic rocks, the
role of H_2O cannot be studied properly. However it is still worth trying to explore the effect of
H_2O on phase relations, even though this is at best approximate for the appearance of melt,
and acknowledging the possibility that the stabilising effect of K and Ti is responsible for the
observed amphibole in the matrix. This is done using a P−T pseudosection (Fig. 11), and with
T−M(H_2O) and T−μ(H_2O) diagrams (Fig. 12).

Dry P−T pseudosection

A dry pseudosection (Fig. 9) is calculated for the composition of the eclogite sample KL1i.
The pseudosection shows fields of mineral assemblages stable at eclogite and granulite facies
conditions and is contoured with the calculated molar proportion isopleths for garnet and
compositional isopleths for garnet, clinopyroxene and plagioclase.

The mineral assemblage in the eclogite was garnet, omphacite, quartz and rutile.
Plagioclase is included in some garnets, in the vicinity of omphacite inclusions. It is therefore
likely that at least part of garnet crystallized in the presence of both omphacite and
plagioclase, which corresponds in the pseudosection to the g-cpx-pl-ru-q field. However, it is
not excluded that part of garnet crystallization occurred outside the stability of plagioclase.

Garnet core compositions (grs = 0.23−0.27) and clinopyroxene core compositions in the
inclusions (jd = 0.40−0.43) are consistent with the calculated isopleths in the higher pressure
part of the g-cpx-pl-ru-q field. The predicted molar proportion of garnet between 40 and 45
mol. % at these conditions suggests that both the plagioclase corona and kelyphite developed
at the expense of garnet and not only around it. Compositions at the rim of the clinopyroxene
inclusions (jd = 0.25), garnet next to them (grs = 0.15), and the chemistry of the included
plagioclase (an = 0.27) point to reequilibration of these contacts accompanying
decompression.

The texturally-equilibrated matrix dominated by clinopyroxene, orthopyroxene and
plagioclase points to decompression into the g-cpx-opx-pl-ru-q field. The garnet rim
composition next to plagioclase (grs = 0.12−0.18) and matrix plagioclase composition (an$_{0.30}$
>0.40) fit closely the calculated isopleths in this field. However the jadeite content of the matrix
clinopyroxene (jd = 0.07) is much lower than the calculated isopleths. The unaccounted-for
cats end-member in the matrix clinopyroxene (AlIV = 0.04−0.10) may be responsible for the
discrepancy. The predicted molar proportion of garnet (in the range 15−30 mol. %)
corresponds to the observed proportion of garnet if combined with the plagioclase corona
estimated from the thin section (Fig. 5). This suggests that a substantial proportion of the
Garnet was replaced by plagioclase, rather than the plagioclase growing on the garnet (e.g. as plagioclase grows on kyanite, not replacing it, e.g. Štípská et al., 2010).

The microstructural evolution and mineral chemistry therefore record decompression from eclogite (or highest-pressure granulite) conditions to medium-pressure granulite conditions. The temperature from Zr-in-rutile thermometry indicates 900°C (at 18 kbar) for rutile included in garnet and 950°C (at 12 kbar) for matrix rutile (Fig. 8). It is likely that the equilibration of the matrix therefore occurred at very high temperature, of the order of 950°C, at a pressure around 12.5 kbar. It has not been established why temperatures from Zr-in-rutile thermometry from rutile inclusions in garnet are somewhat lower.

Dry T–X pseudosection with variable proportion of garnet

The effect of the interior part of the garnet not being part of the effective bulk composition controlling the matrix phase relationships is discussed with the aid of a P–X diagram (Fig. 10). The X axis represents variation from the original whole rock composition of the sample KL1i to the whole rock composition KL1i with all garnet subtracted, at 20 kbar and 950 °C (from 0 to 1 on the X axis). Such an approach is necessarily approximate as the breakdown of communication of the interior part of the garnet with the matrix during decompression is a chemical potential effect not readily handled by an effective bulk composition approach. The zoned plagioclase corona reflects the fact that it grew under the action of chemical potential gradients (e.g. Štípská et al., 2010).

The main impact on overall phase equilibria is that orthopyroxene appears at higher pressure with decompression, followed by garnet disappearing at higher pressure, if an increasing proportion of garnet is not part of the equilibration volume. The effects are discussed in terms of three types of paths on the diagram, labeled A, B and C. For path A, almost all garnet is in equilibrium on decompression and the path ends at 12.5 kbar with 10–15 mol. % garnet, around 15 % of grossular in garnet and 40–45 % of anorthite in plagioclase. This is not credible for the rock studied, because the garnet cores still show compositions corresponding to high pressure equilibration. Moreover there would be no reasonable explanation for the presence of the plagioclase corona, which presumably reflects reaction between the garnet and the matrix to decrease garnet mode.

For path B, only a small part of the garnet is in equilibrium with matrix, and the path ends in the garnet-absent cpx-opx-pl-ru-q field. Given that garnet is observed in the rock, this is not a possible scenario. It would imply that the garnet is efficiently reacted out of the rock and the rock would become garnet-absent at about 17 kbar.
For path C, only a small part of the garnet is in equilibrium with the matrix, and as garnet mode wants to decrease on decompression, the necessary proportion of garnet is consumed (for example via the growth of the plagioclase corona) and another small proportion of garnet becomes part of the matrix equilibration volume. Therefore the path is oblique on the diagram and ends at 12.5 kbar with the same amount of garnet and the same mineral compositions as path A. Because the garnet cores in the sample studied preserve their composition from high pressure and therefore are still isolated from the matrix, the path C is the more likely scenario for the behavior of the rock studied. On decompression, the garnet rim is in equilibrium with the matrix, changes therefore its composition, and simultaneously is progressively consumed (by the plagioclase corona, with Na coming from the matrix, and Fe and Mg added to the matrix). As it is consumed, the new outermost part of garnet becomes the rim, starts to be in equilibrium with the matrix and is consumed. Then the rock ends as observed, with 10−15% of garnet, isolated garnet cores with composition corresponding to high pressure equilibration, garnet rim compositions with 11−16% of grossular, and plagioclase rim compositions with around 40−45% of anorthite, which fits approximately the mineral assemblage and calculated isopleths at around 12.5 kbar.

Because the compositional isopleths of grossular and anorthite are subhorizontal on the diagram in the g-cpx-opx-pl-ru-q field corresponding to the observed matrix mineral assemblage, the equilibration mineral chemistry is similar whether all garnet or up to half of the garnet is part of the equilibration volume. The resulting equilibration at medium pressure therefore may be discussed directly in the dry $P-T$ pseudosection.

H_2O-undersaturated pseudosection

The effect of minor H_2O on phase equilibria is studied in an H_2O-undersaturated pseudosection (Fig. 11). The position of the $[\text{H}_2\text{O}]$ line is critically dependent on the mole % H_2O chosen for the calculations (here, 0.2 %). As the amount is decreased, the line moves up pressure, converging on the position of [hb] which is independent of the mole % H_2O. Given that melting is precluded by the absence of a melt model for mafic rocks, the high temperature part of the pseudosection is likely to be metastable with respect to melt. The solidus is likely to be sub-parallel to [H$_2$O], and [liq] (if we could calculate it) would occur down pressure from [H$_2$O], but probably not by a lot (<50 °C), and the corresponding [hb] would be close to it. These relationships can be thought of in terms of the $a(\text{H}_2\text{O})$ being less than 1 for melting, but $a(\text{H}_2\text{O}) = 1$ for H_2O-present.
Given that the amphibole model does not include K and Ti, the position of both [H$_2$O] and [hb] will be displaced up pressure (amphibole is stabilised) with respect to those calculated for a given mole % H$_2$O. Analogously both [liq] and its [hb] will be displaced up pressure. So, on balance the phase relationships in Fig. 11 might be close to correct, with the effect of melting counteracting that of the unaccounted-for solid solution in amphibole. In Fig. 11, the H$_2$O-bearing fields should instead be considered to be melt-bearing. A small amount of melt will not influence the solid phase equilibria above the solidus significantly. Amphibole is stable below the solidus, and its presence will not significantly influence the stability of the g-cpx-opx-pl-ru-q field compared to the dry pseudosection, nor if K and Ti could be considered. At least in part this is because the molar proportion of amphibole is essentially constant below the solidus, controlled by the mol. % H$_2$O in the bulk composition. If Fig. 11, but with H$_2$O replaced by liq in the labelling, is considered to be correct, then this may account for the small amount of hornblende occurring in the equilibrated hbl-cpx-opx-pl matrix.

T−M(H$_2$O) and T−µ(H$_2$O) diagram

The microstructural observations suggest that the coarse-grained equilibrated matrix of clinopyroxene-orthopyroxene-plagioclase involving also 5–10% of brown hornblende was developed first, and that the plagioclase corona around garnet had developed by this time, most likely while decompression proceeded. Then, within the plagioclase corona, garnet is invaded by fine-grained green amphibole-plagioclase kelyphite in the form of embayments, suggesting that the fine-grained kelyphite developed later than the coarse-grained matrix. This sequence of microstructural development is also supported by the style of garnet zoning next to the plagioclase corona and next to kelyphite, with, respectively, a smooth grossular decrease to the edge of the garnet, and the kelyphite growth cutting across pre-existing zoning, with only a minor response in the garnet (grossular decrease). This will have occurred to lower temperature, when diffusion was less effective. Kelyphite growth cannot be explained in the H$_2$O-undersaturated P−T pseudosection, because its development requires an additional amount of H$_2$O fluxed/diffused into the rock on cooling. Therefore, T−M(H$_2$O) and T−µ(H$_2$O) diagram were constructed (Fig. 12). The first diagram allows consideration of the addition of H$_2$O without attention to process, whereas the second allows the likely method of access of the H$_2$O to be considered: diffusion.

In the T−M(H$_2$O) the x axis ranges from the dry composition of the eclogite to a composition that allows H$_2$O-saturated assemblages (with H$_2$O in the bulk ranging from 0 to 5
mol %, unnormalised; Fig. 12a). With orthopyroxene still present in the rock only paths in the
g-cpx-opx-pl-hb-ru-q field are of interest. In this field the hornblende mole proportion
contours are vertical as amphibole is the only resident for the H₂O. Two paths, labelled A and
B are discussed. Along path A, the limited amount of H₂O allows less than 5 mol. % of
hornblende to be stable. This would appear in a rock as a single generation of hornblende, for
example accounting for the matrix brown hornblende, but not the kelyphite growth. Along
path B, more H₂O allows around 10 mol% of hornblende to form at higher temperature. In
order to make more hornblende, it is necessary to increase the amount of H₂O in the bulk
(horizontal arrow, Fig. 12a). Such a path will result in two generations of amphibole, the one
crystallized at higher temperature, and the other at lower temperature (at the T of the
horizontal arrow). This is the likely case for the rock studied, as it accounts for the first
generation of brown amphibole in the coarse grained matrix, and the later development of the
fine-grained green amphibole in the kelyphite replacing garnet. As in the discussion of Fig. 11
above, the effect of considering melt, combined with the counteracting effect of shortcomings
in the amphibole model, means that the current figure can be considered with H₂O replaced
with liq.

If diffusion is the process involved in adding H₂O to the rock to allow kelyphite
growth, then the appropriate phase diagram should have \(\mu(\text{H}_2\text{O}) \) on an axis (Fig. 12b). The
\(T-\mu(\text{H}_2\text{O}) \) diagram has the same topology as the \(T-M(\text{H}_2\text{O}) \) diagram, with the [H₂O] line
there corresponding to the edge of the inaccessible area here (Fig. 12). Now the amphibole
mode contours are oblique. The same paths A and B are plotted. Path A, follows the 5 mol. %
amphibole isopleth and this can be thought of as an internal buffering path. For path B, the
path follows the 10 mol. % isopleth for amphibole. In order to increase the amount of
amphibole to form the kelyphite, an increase in \(\mu(\text{H}_2\text{O}) \) is needed. This should be thought of
as the result of a superimposed \(\mu(\text{H}_2\text{O}) \) from the surrounding rocks, e.g. felsic granulites or
partial melts from the felsic granulites. This external \(\mu(\text{H}_2\text{O}) \) pulls the path across (horizontal
arrow) towards the value superimposed by the environment of the rock. Considering the
presence of melt, this will form a narrow band (of unknown width) towards the +H₂O line.

The H₂O addition to make the kelyphite may happen by H₂O influx or by diffusion. In
the case of influx into the vicinity of the kelyphite, the H₂O would be incorporated into the
kelyphite, but only if sufficient H₂O is added will the vicinity become H₂O-saturated. We can
observe from the phase equilibria that H₂O-saturation would generate a large proportion of
hornblende (>50%) rather than the 10% observed. Much more likely is that the vicinity will
be H$_2$O undersaturated, with the proportion of amphibole simply corresponding to the H$_2$O added. Regardless there will be a μ(H$_2$O) gradient set up away from where the H$_2$O is added. More distal addition of H$_2$O will set up such a μ(H$_2$O) gradient, and analogously an adjacent rock with greater μ(H$_2$O) will set up a gradient, both superimposing their μ(H$_2$O) on the garnet rim, with the capacity of growing the kelyphite.

DISCUSSION AND CONCLUSIONS

We have established the P–T and corresponding textural evolution in this eclogite, as summarised in Fig. 13: 1) equilibration of high grossular garnet core and omphacite inclusions (in places with plagioclase) at 18–20 kbar; 2) decompression to 12 kbar at 950 °C, with decompression accompanied by the growth of the plagioclase corona; 3) recrystallisation of the matrix to texturally-equilibrated diopsidic clinopyroxene-orthopyroxene-plagioclase-brown amphibole with surviving garnet following decompression; 4) development of the zoning at plagioclase contacts; and 5) development of the kelyphitic replacement of garnet.

Regarding the Zr-in-rutile thermometry used to constrain the temperature of equilibration of the matrix at 950 °C, it is suggested that the rutile with ilmenite involved textural modification in the absence of communication with quartz, so the calculated temperatures above 950 °C for such rutile do not reflect formation conditions. It is feasible that the rutile in garnet had lost contact with zircon following envelopment, and there followed a redistribution of Zr between rutile and garnet on cooling. Thus their temperatures also do not reflect formation conditions. Alternatively the rutile and the enclosing garnet could have crystallised at the lower temperature.

The high temperature of the reworking of the eclogite at 12 kbar is interesting on several counts. The first relates to the observed survival of garnet with a high-pressure character (e.g. high grossular), indicating that the interior part of the garnet was essentially isolated from the matrix while the matrix was profoundly recrystallised, at the high temperature of 950 °C. The zoning in the garnet and the consumption of the garnet rim by the plagioclase corona is consistent with this idea of isolation. While the zoning in the plagioclase corona has been modified by re-equilibration during cooling around all plagioclase grains in the corona and the matrix, a plausible interpretation is that, before this modification took place, the zoning across the corona was strongly asymmetric, as expected in a diffusion-controlled situation.

The commonly adopted view would be that sluggish kinetics, with evidence of chemical potential gradients essentially preserved, is responsible for what is observed as a
consequence of the decompression. The big question is whether the diffusion coefficients combined with the likely time that the decompression took are consistent. The diffusion coefficients are not very well known, but the implication is that there cannot be consistency (e.g. Tajčmanová et al., 2014). It might be noted that the high temperatures given by the Zr-
in-rutile thermometer raise serious questions themselves because they are much higher than expected from closure temperature arguments (Watson et al., 2006; Racek et al., 2008; Kooijman et al., 2012). The decompression is likely to be fast given the ubiquity of 340 Ma ages in the Bohemian Massif, but not fast enough to correspond to the rutile diffusion data (Fig. 9 in Racek et al., 2008). An alternative, developed in Tajčmanová et al. (2014), is that grain-scale pressure variations occur, which for the rocks considered here would involve the central part of the garnet being still at elevated pressure while the matrix was recrystallising at 12 kbar. The zoned plagioclase corona would then be part of a pressure variation at diffusive equilibrium (see Tajčmanová et al., 2014).

Comparing the Kleť eclogite with other mafic rocks reported from the granulites and Gföhlt type orthogneisses we underline the remarkable scarcity of eclogites and mafic granulites within the felsic granulite bodies (Fiala et al., 1987). Some show prograde features and retrogression under amphibolite facies, in which way they differ from the Kleť eclogite (Medaris et al., 1998, 2006; Štípská & Powell, 2005a; Faryad, 2009; Štípská et al., 2012). The coesite-bearing eclogites from the Gneiss-eclogite unit from the Central Erzgebirge in the Saxothuringian zone show equilibration at UHP conditions and retrogression at amphibolite-facies conditions (Schmädicke et al., 1992). The only mafic granulites with low potassium, and therefore being without ternary feldspar, K-feldspar, or biotite, are described from the Saxonian granulite massif (Rötzler & Romer, 2001) and Spačice granulite (Medaris et al., 1998). The granulites described from the Orlica-Snieznik dome are both mafic and intermediate types, and the features of the intermediate types are discussed in Štípská et al. (2014). Each of these occurrences differs from the Kleť mafic granulite. It seems that even if the Spačice granulite preserves prograde garnet zoning, the clinopyroxene (jd_{10}) is reequilibrated at medium pressure. The clinopyroxene with 10% of jadeite in the Saxonian granulite seems also to have reequilibrated at medium pressure, and the clinopyroxene with 2% of jadeite included in garnet, and associated with spinel cannot be interpreted as equilibrated at high pressure. In such circumstances, even if garnet compositions are interpreted to be preserved from high pressure, they cannot be combined with matrix clinopyroxene to derive the peak \(P−T \) conditions at high-pressure. In contrast, the Kleť eclogite preserves clinopyroxene inclusions with high jadeite content (up to 43%) in garnet
with high grossular content (25−27 %), so with compositions that are compatible with
predicted eclogite-facies mineral compositions. The presence of plagioclase in the same
garnet, in places included with omphacite, is consistent with the rock being at some point
equilibrated at the transition of eclogite and high-pressure granulite conditions. The
petrographic features associated with decompression, involving the plagioclase corona
replacing garnet, reequilibration of garnet rim to lower grossular compositions,
recrystallization of matrix to coarse aggregate of clinopyroxene, orthopyroxene and
plagioclase with some amphibole, and late replacement of garnet by plagioclase-amphibole
dominated kelyphite is consistent with the major reequilibration features from the Saxonian or
Spačice mafic granulites.

A further aspect of the high temperature at 12 kbar concerns the behaviour of the
orogen if such high temperatures are regional in the orogenic root. In the context of the
gravitational/convective inversion of the less dense orogenic root (Lexa et al., 2011), it is not
clear whether it could heat up areally to such a temperature without inverting. Thus, were the
rocks studied here locally hot, e.g. associated with the intrusion of mafics or incorporation of
ultramafic/mafic complexes into the orogenic root, but that areally most of the orogenic root
was cooler?

ACKNOWLEDGEMENTS

We gratefully acknowledge the financial support of the Czech National Grant Agency (13-
16315S to P. Štípská and O. Lexa), the Ministry of Education of the Czech Republic (grant
LK11202 to K. Schulmann), the French National Grant Agency (ANR DSP-Tibet). RP
acknowledges ARC DP0987731. T. Theye from the Institute of Mineralogy at the University
of Stuttgart is thanked for operating the microprobe. Two anonymous reviewers are thanked
for their constructive reviews, and D. Robinson is thanked for his editorial work.
References

Willner, A. P., Rötzler, K. & Maresch, W. V., 1997. Pressure - Temperature and fluid evolution of quartz-feldspathic metamorphic rocks with a relic high-pressure,

Figure captions

Fig. 1. Geological map of the Bohemian Massif (after Franke, 2000). Location of the study area is indicated. Left inset is position of study area in the framework of the European Variscides (after Edel *et al.*, 2003).

Fig. 2. Field relations of the eclogite studied. (a) Outcrop dominated by dark intermediate granulite with white layers of felsic granulite. (b) At the boundary of a felsic granulite layer with intermediate granulite, cuspatelobate relationships occur, showing lower viscosity of the felsic granulite. In the internal parts of the lobate forms of the intermediate granulite are bodies of eclogite. (c) Eclogite bodies within the intermediate granulite. (d) Greenish eclogite with dark amphibole-bearing patches and red garnet at boundary with intermediate granulite with macroscopically-visible white feldspar-bearing domains. (e) 0.5 m large eclogite body with relatively sharp boundaries with respect to layered felsic granulite. (f) Detail of eclogite at boundary with intermediate granulite.

Fig. 3. BSE images of eclogite. (a) Garnet within texturally equilibrated matrix. The location of chemical profiles indicated by arrows. (b) Detail of texturally equilibrated matrix. (c) Detail of garnet surrounded by multigrain plagioclase corona. (d) Fine-grained kelyphitic embayments of plagioclase and amphibole in garnet. (e) Fine grained kelyphite replacing garnet. (f) Garnet with left side surrounded mainly by plagioclase corona, and right side surrounded by amphibole-plagioclase dominated kelyphite with minor orthopyroxene. Omphacitic clinopyroxene inclusion in garnet. (g) Detail of fine-grained kelyphite dominated by amphibole and plagioclase, and minor orthopyroxene. Note the larger amphibole and ilmenite in the plagioclase matrix.

Fig. 4. BSE images of inclusions in garnet. (a) Large garnet with omphacite inclusion. (b) Detail of omphacite inclusion with idiomorphic shapes. (c) Inclusions of zircon and rutile. (d) Large garnet with omphacite inclusion. (e) Detail of idiomorphic omphacite, chemical profile is indicated. (f) Inclusion of idiomorphic quartz. (g) Rim area of large garnet contains
inclusions of omphacite and plagioclase. (h) Detail of plagioclase inclusion shows
idiomorphic shape. (i) Detail of clinopyroxene inclusion.

Fig. 5. Calculated proportions of (a) garnet (11%) and (b) garnet with plagioclase corona and
plagioclase-amphibole kelyphite (33%).

Fig. 6. Compositional maps of garnet and surrounding areas. For detail see text.

Fig. 7. Composition and zoning of minerals in textural positions as indicated.

Fig. 8. Zr content in rutile and temperature from the Zr-in-rutile thermometer of Tomkins et
al. (2007). The results are presented in the form of box-plots. In a box-plot, the box is given
by the interquartile range of the data (the middle half of the data), the line across the box is at
the median of the data, and the whiskers extend out to the furthest datapoint that is within 1.5
times the interquartile range from the box. Dots are points beyond the whiskers (outliers). The
number of analyses is marked.

Fig. 9. P–T pseudosection calculated for the rock composition of the eclogite sample KL1i
(a). The ellipses indicate areas of P–T equilibration derived by comparing the modelled
assemblages and isopleths with assemblages, chemistry and zoning of minerals observed in
the sample. (b,c,e) The pseudosection with calculated isopleths of molar proportions and
mineral composition.

Fig. 10. Dry P–X pseudosection varying the proportion of garnet included in the bulk
composition, showing its control on the matrix phase relationships. For details see text.

Fig. 11. H₂O-undersaturated pseudosection for the eclogite sample KL1i. The ellipses indicate
areas of P–T equilibration. For details see text.

Fig. 12. T–M(H₂O) and T–µ(H₂O) diagrams contoured with molar proportion of amphibole
are used for discussion of significance of coarse-grained amphibole in the equilibrated matrix
and formation of fine-grained amphibole-plagioclase kelyphite. For details see text.

Fig. 13. Summarization of microstructural evolution of the eclogite along the inferred P–T
path. Microstructural changes related to changes in P–T conditions are in white circles.

Table 1. Representative mineral analyses of garnet and amphibole. Mx=matrix, in=inclusion,
kel=kelyphite, r=rim, c-core, cont-contact.

Table 2. Representative mineral analyses of clinopyroxene and orthopyroxene. Mx=matrix,
in=inclusion, kel=kelyphite, r=rim, c-core.

Table 3. Representative mineral analyses of plagioclase. Mx=matrix, in=inclusion,
cor=corona, kel=kelyphite, r=rim, c-core, +g=at contact with garnet.
SAXOTHURINGIAN UNIT
- L. Carboniferous flysch (very low grade)
- Proterozoic to Devonian (very low to medium grade)
- Paleozoic (very low to low grade)
- crystalline rocks (low to high grade)

MOLDANUBIAN REGION
TEPLA-BARRANDIAN UNIT
- mainly Proterozoic (low to high grade)
- Cambrian to middle Devonian (very low to low grade)
- MOLDANUBIAN UNIT s.s.
- Góří unit (medium to high grade)
- Monotoneous & Varied units (low to high grade)
- Devonian to L. Carboniferous (very low grade)

WEST SUDETES
- Upper Proterozoic granitoids & sediments (very low to medium grade)
- Cambro-Ordovician granitoids (very low to medium grade)
- Devonian & L. Carboniferous synorogenic clastic sediments (very low grade)
- Cambrian to L. Carboniferous, with Cambro-Ordovician sediments and/or volcanics (low to medium grade)
- Cambro-Ordovician (Carboniferous medium to high grade metamorphism)

NOTE: F01-Bohmasmap

164x158mm (300 x 300 DPI)
Fig. 02 [fieldphotos]
Fig. 03 [photo-micro1]
F04 [photo-inclusions]

165x190mm (300 x 300 DPI)
Fig. 05 [modegrt]

(a) KL2N: garnet

(b) KL2N: garnet with plagioclase corona & kelyphite
Fig. 00 [element-maps]
Fig. 08 [rutile]

158x119mm (300 x 300 DPI)
Fig. 10 [PX]

174x195mm (300 x 300 DPI)
Fig. 11 [H2O-pseu]
Table 1. Representative mineral analyses of garnet and amphibole

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>g</td>
<td>g</td>
<td>g</td>
<td>g</td>
<td>g</td>
<td>g</td>
<td>am</td>
<td>am</td>
<td></td>
</tr>
<tr>
<td>Position</td>
<td></td>
<td>c</td>
<td>c</td>
<td>mx-r</td>
<td>mx-r</td>
<td>kel-r</td>
<td>kel-r</td>
<td>cont+omphacite</td>
<td>cont+omphacite</td>
<td></td>
</tr>
<tr>
<td>Spectrum</td>
<td></td>
<td>S28</td>
<td>S29</td>
<td>S2</td>
<td>S64</td>
<td>S23</td>
<td>S89</td>
<td>S19</td>
<td>S4</td>
<td>2-am</td>
</tr>
</tbody>
</table>

SiO₂ 39.76 40.04 38.77 38.73 38.80 38.46 39.39 44.04 42.87
TiO₂ 0.13 0.09 0.00 0.09 0.16 0.21 0.00 2.95 1.09
Cr₂O₃ 0.12 0.00 0.00 0.08 0.05 0.00 0.00 0.27 0.17
FeO 17.64 17.66 23.61 22.70 21.27 22.53 19.56 11.25 12.44
MnO 0.40 0.34 0.99 0.92 0.76 0.93 0.38 0.14 0.16
MgO 9.12 9.13 7.95 7.50 6.98 6.58 10.35 12.97 13.02
CaO 10.64 10.77 6.59 7.54 9.56 8.98 7.11 11.66 11.37
Na₂O 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.59 1.88
K₂O 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.78 0.82

Total 100.28 100.48 99.92 99.43 99.46 99.46 99.16 95.60 96.81

Si 2.99 3.00 2.98 2.99 2.99 2.98 2.99 6.58 6.26
Ti 0.01 0.00 0.00 0.01 0.01 0.01 0.00 0.33 0.12
Cr 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.02
Al 1.99 1.98 1.99 1.99 1.99 1.99 2.00 1.75 2.24
Fe³⁺ 0.02 0.01 0.06 0.02 0.01 0.03 0.02 0.06 0.76
Fe²⁺ 1.09 1.10 1.46 1.45 1.36 1.42 1.22 1.34 0.76
Mn 0.03 0.02 0.06 0.06 0.05 0.06 0.02 0.02 0.02
Mg 1.02 1.02 0.91 0.86 0.80 0.76 1.17 2.89 2.83
Ca 0.86 0.86 0.54 0.62 0.79 0.74 0.58 1.87 1.78
Na 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.46 0.53
K 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.15 0.15
Total 8.00 8.00 8.00 8.00 8.00 8.00 8.00 15.47 15.46

XFe 0.52 0.52 0.62 0.63 0.63 0.65 0.51 0.32 0.21
alm/NaA 0.36 0.37 0.49 0.48 0.45 0.48 0.41 0.33 0.31
py/NaM4 0.34 0.34 0.31 0.29 0.27 0.25 0.39 0.13 0.22
gs 0.29 0.29 0.18 0.21 0.26 0.25 0.19
sps 0.01 0.01 0.02 0.02 0.02 0.02 0.01
Table 2. Representative mineral analyses of clinopyroxene and orthopyroxene

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mineral</td>
<td>cpx</td>
<td>cpx</td>
<td>cpx</td>
<td>cpx</td>
<td>cpx</td>
<td>cpx</td>
<td>cpx</td>
<td>cpx</td>
<td>cpx</td>
</tr>
<tr>
<td>Position</td>
<td>in-c</td>
<td>in-c</td>
<td>in-r</td>
<td>in-r</td>
<td>mx</td>
<td>mx</td>
<td>mx</td>
<td>mx</td>
<td>kel</td>
</tr>
<tr>
<td>Spectrum</td>
<td>S14</td>
<td>S15</td>
<td>S8</td>
<td>S18</td>
<td>S6</td>
<td>S11</td>
<td>S12</td>
<td>S13</td>
<td>3-opx</td>
</tr>
<tr>
<td>SiO₂</td>
<td>54.21</td>
<td>54.28</td>
<td>52.17</td>
<td>51.98</td>
<td>52.02</td>
<td>51.32</td>
<td>52.12</td>
<td>52.08</td>
<td>52.05</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.29</td>
<td>0.27</td>
<td>0.65</td>
<td>0.82</td>
<td>0.37</td>
<td>0.50</td>
<td>0.12</td>
<td>0.08</td>
<td>0.08</td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td>0.02</td>
<td>0.05</td>
<td>0.00</td>
<td>0.06</td>
<td>0.10</td>
<td>0.11</td>
<td>0.12</td>
<td>0.04</td>
<td>0.15</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>13.23</td>
<td>13.23</td>
<td>11.80</td>
<td>10.74</td>
<td>2.57</td>
<td>3.30</td>
<td>1.04</td>
<td>0.93</td>
<td>1.97</td>
</tr>
<tr>
<td>FeO</td>
<td>4.12</td>
<td>4.31</td>
<td>4.47</td>
<td>4.62</td>
<td>8.28</td>
<td>8.80</td>
<td>22.96</td>
<td>23.15</td>
<td>22.07</td>
</tr>
<tr>
<td>MnO</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.20</td>
<td>0.06</td>
<td>0.33</td>
<td>0.34</td>
<td>0.40</td>
</tr>
<tr>
<td>MgO</td>
<td>8.41</td>
<td>8.27</td>
<td>9.84</td>
<td>10.71</td>
<td>13.27</td>
<td>13.38</td>
<td>20.95</td>
<td>20.93</td>
<td>21.65</td>
</tr>
<tr>
<td>CaO</td>
<td>14.19</td>
<td>13.86</td>
<td>17.01</td>
<td>17.97</td>
<td>21.92</td>
<td>21.16</td>
<td>0.59</td>
<td>0.61</td>
<td>0.43</td>
</tr>
<tr>
<td>Na₂O</td>
<td>5.73</td>
<td>5.83</td>
<td>4.04</td>
<td>3.43</td>
<td>0.47</td>
<td>0.52</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Total</td>
<td>100.21</td>
<td>100.12</td>
<td>99.97</td>
<td>100.34</td>
<td>99.20</td>
<td>99.16</td>
<td>98.24</td>
<td>98.17</td>
<td>98.79</td>
</tr>
<tr>
<td>Si</td>
<td>1.93</td>
<td>1.93</td>
<td>1.88</td>
<td>1.87</td>
<td>1.95</td>
<td>1.92</td>
<td>1.99</td>
<td>1.99</td>
<td>1.96</td>
</tr>
<tr>
<td>Ti</td>
<td>0.01</td>
<td>0.01</td>
<td>0.02</td>
<td>0.02</td>
<td>0.01</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Cr</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Al</td>
<td>0.56</td>
<td>0.56</td>
<td>0.50</td>
<td>0.46</td>
<td>0.11</td>
<td>0.15</td>
<td>0.05</td>
<td>0.04</td>
<td>0.09</td>
</tr>
<tr>
<td>Fe³⁺</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Fe²⁺</td>
<td>0.12</td>
<td>0.13</td>
<td>0.13</td>
<td>0.14</td>
<td>0.26</td>
<td>0.26</td>
<td>0.73</td>
<td>0.74</td>
<td>0.70</td>
</tr>
<tr>
<td>Mn</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Mg</td>
<td>0.45</td>
<td>0.44</td>
<td>0.53</td>
<td>0.58</td>
<td>0.74</td>
<td>0.75</td>
<td>1.19</td>
<td>1.19</td>
<td>1.22</td>
</tr>
<tr>
<td>Ca</td>
<td>0.54</td>
<td>0.53</td>
<td>0.66</td>
<td>0.69</td>
<td>0.88</td>
<td>0.85</td>
<td>0.02</td>
<td>0.03</td>
<td>0.02</td>
</tr>
<tr>
<td>Na</td>
<td>0.40</td>
<td>0.40</td>
<td>0.28</td>
<td>0.24</td>
<td>0.03</td>
<td>0.04</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>K</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Total</td>
<td>4.00</td>
<td>4.00</td>
<td>4.00</td>
<td>4.00</td>
<td>4.00</td>
<td>4.00</td>
<td>4.00</td>
<td>4.00</td>
<td>4.00</td>
</tr>
<tr>
<td>Al⁴⁺</td>
<td>0.07</td>
<td>0.07</td>
<td>0.12</td>
<td>0.13</td>
<td>0.05</td>
<td>0.08</td>
<td>0.01</td>
<td>0.01</td>
<td>0.04</td>
</tr>
<tr>
<td>XFe</td>
<td>0.22</td>
<td>0.23</td>
<td>0.20</td>
<td>0.19</td>
<td>0.26</td>
<td>0.26</td>
<td>0.38</td>
<td>0.38</td>
<td>0.36</td>
</tr>
<tr>
<td>jd</td>
<td>0.40</td>
<td>0.40</td>
<td>0.28</td>
<td>0.24</td>
<td>0.03</td>
<td>0.04</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>
Table 3. Representative mineral analyses of plagioclase.
Mx=matrix, in=inclusion, cor=corona, kel=kelyphite, r=rim, c-core, +g=at contact with garnet.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Position</td>
<td>in-c</td>
<td>in-r</td>
<td>in-c</td>
<td>mx-c</td>
<td>mx-c</td>
<td>mx-r</td>
<td>mx-r</td>
<td>cor-c</td>
</tr>
<tr>
<td>Spectrum</td>
<td>S18</td>
<td>S17</td>
<td>15-pl</td>
<td>S2</td>
<td>S9</td>
<td>S3</td>
<td>S10</td>
<td>S60</td>
</tr>
<tr>
<td>SiO$_2$</td>
<td>60.93</td>
<td>59.19</td>
<td>55.39</td>
<td>59.97</td>
<td>62.51</td>
<td>58.93</td>
<td>59.91</td>
<td>61.21</td>
</tr>
<tr>
<td>TiO$_2$</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Cr$_2$O$_3$</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Al$_2$O$_3$</td>
<td>25.09</td>
<td>26.05</td>
<td>27.79</td>
<td>25.60</td>
<td>24.03</td>
<td>27.03</td>
<td>25.82</td>
<td>24.81</td>
</tr>
<tr>
<td>FeO</td>
<td>0.19</td>
<td>0.25</td>
<td>0.45</td>
<td>0.15</td>
<td>0.15</td>
<td>0.27</td>
<td>0.18</td>
<td>0.16</td>
</tr>
<tr>
<td>MnO</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>MgO</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>CaO</td>
<td>6.42</td>
<td>7.57</td>
<td>9.93</td>
<td>6.97</td>
<td>5.21</td>
<td>8.24</td>
<td>7.15</td>
<td>6.18</td>
</tr>
<tr>
<td>Na$_2$O</td>
<td>7.60</td>
<td>6.93</td>
<td>5.75</td>
<td>7.52</td>
<td>8.36</td>
<td>7.06</td>
<td>7.58</td>
<td>8.02</td>
</tr>
<tr>
<td>K$_2$O</td>
<td>0.86</td>
<td>0.70</td>
<td>0.16</td>
<td>0.31</td>
<td>0.50</td>
<td>0.26</td>
<td>0.38</td>
<td>0.42</td>
</tr>
<tr>
<td>Total</td>
<td>101.09</td>
<td>100.68</td>
<td>99.47</td>
<td>100.52</td>
<td>100.75</td>
<td>101.80</td>
<td>101.03</td>
<td>100.80</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Position</td>
<td>in-c</td>
<td>in-r</td>
<td>mx-c</td>
<td>mx-r</td>
<td>cor-c</td>
<td>cor+g</td>
<td>cor+cpx</td>
<td>kel</td>
</tr>
<tr>
<td>Spectrum</td>
<td>S50</td>
<td>S61</td>
<td>S61</td>
<td>S50</td>
<td>S58</td>
<td>S60</td>
<td>S10</td>
<td>S9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Element</th>
<th>Sample</th>
<th>KL2N</th>
<th>KL2N</th>
<th>KL2N</th>
<th>KL2N</th>
<th>KL2N</th>
<th>KL2N</th>
<th>KL2N</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO$_2$</td>
<td>60.93</td>
<td>59.19</td>
<td>55.39</td>
<td>59.97</td>
<td>62.51</td>
<td>58.93</td>
<td>59.91</td>
<td>61.21</td>
</tr>
<tr>
<td>TiO$_2$</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Cr$_2$O$_3$</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Al$_2$O$_3$</td>
<td>25.09</td>
<td>26.05</td>
<td>27.79</td>
<td>25.60</td>
<td>24.03</td>
<td>27.03</td>
<td>25.82</td>
<td>24.81</td>
</tr>
<tr>
<td>FeO</td>
<td>0.19</td>
<td>0.25</td>
<td>0.45</td>
<td>0.15</td>
<td>0.15</td>
<td>0.27</td>
<td>0.18</td>
<td>0.16</td>
</tr>
<tr>
<td>MnO</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>MgO</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>CaO</td>
<td>6.42</td>
<td>7.57</td>
<td>9.93</td>
<td>6.97</td>
<td>5.21</td>
<td>8.24</td>
<td>7.15</td>
<td>6.18</td>
</tr>
<tr>
<td>Na$_2$O</td>
<td>7.60</td>
<td>6.93</td>
<td>5.75</td>
<td>7.52</td>
<td>8.36</td>
<td>7.06</td>
<td>7.58</td>
<td>8.02</td>
</tr>
<tr>
<td>K$_2$O</td>
<td>0.86</td>
<td>0.70</td>
<td>0.16</td>
<td>0.31</td>
<td>0.50</td>
<td>0.26</td>
<td>0.38</td>
<td>0.42</td>
</tr>
<tr>
<td>Total</td>
<td>101.09</td>
<td>100.68</td>
<td>99.47</td>
<td>100.52</td>
<td>100.75</td>
<td>101.80</td>
<td>101.03</td>
<td>100.80</td>
</tr>
</tbody>
</table>