Title: Studies on the Substrate Selectivity of the Hypoxia-Inducible Factor Prolyl Hydroxylase 2 Catalytic Domain

Authors: Martine Abboud; Rasheduzzaman Chowdhury; Ivanhoe Leung; Kerstin Lippl; Christoph Loenarz; Timothy D.W. Claridge; Christopher Schofield

This is the author manuscript accepted for publication and has undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record.

To be cited as: ChemBioChem 10.1002/cbic.201800246

Link to VoR: https://doi.org/10.1002/cbic.201800246
Studies on the Substrate Selectivity of the Hypoxia-Inducible Factor Prolyl Hydroxylase 2 Catalytic Domain

Abstract: In animals, the response to chronic hypoxia is mediated by upregulation of the α,β-heterodimeric hypoxia inducible factors (HIFs). Levels of HIFα isoforms, but not HIFβ, are regulated by their post-translational modification as catalysed by prolyl hydroxylase domain enzymes (PHDs). Different roles for human HIF-1α/2α isoforms and their two oxygen dependent degradation domains (ODDs) are proposed. We report genetic and NMR analyses on the ODD selectivity of the catalytic domain of wildtype PHD2 (which is conserved in nearly all animals) and clinically observed variants. Studies using Ala-scanning and 'hybrid' ODD peptides imply the relatively rigid conformation of the (hydroxylated) proline plays an important role in ODD binding. They also reveal differential roles in binding for the residues on the N- and C-terminal sides of the substrate proline. The overall results inform on how the PHDs achieve selectivity for HIFα ODDs and may be of use in identifying substrate selective PHD inhibitors.

In animals, the response to chronic hypoxia is mediated by upregulation of the α,β-heterodimeric hypoxia inducible factors (HIFs). Levels of HIFα isoforms, of which there are three in humans, but not HIFβ, are negatively regulated by post-translational modification of their oxygen dependent degradation domains (ODDs) as catalysed by the prolyl hydroxylase domain enzymes (PHD1-3 or EGLN1-3).[1] The three human PHDs (PHD1-3 or EGLN1-3) are Fe [II] and 2-oxoglutarate (2OG) dependent oxygenases, whose activity is normally limited by oxygen availability. PHD-catalysed HIFα prolyl hydroxylatation substantially promotes binding of HIFα isoforms to the von Hippel Lindau protein (pVHL), which is a targeting component of a ubiquitin ligase complex (Fig. 1A).[1]

Different, sometimes overlapping, roles of HIF-1α and HIF-2α have been identified and emerging results imply the PHDs may have different roles.[1a, 1c, 2] The two ODDs in the HIF-1α and 2α isoforms have prolyl hydroxylation sites.[1b, 1c] Hydroxylations of either the N- (NODD) or the C- (CODD) terminal ODD can signal for HIFα proteolysis,[2,3] with substitution of either Pro402CODD or Pro564CODD being sufficient to stabilise HIFα in normoxia.[2] There is evidence that CODD is preferentially hydroxylated over NODD, including in cells.[4] Bioinformatics imply a CODD, but not a NODD, type ODD is present in HIFα of early animals, which usually contains only one PHD, a PHD2 homologue.[5] The ODD selectivity of the PHDs varies; CODD is generally preferred over NODD, with PHD3 being particularly selective for CODD.[4a, 4b, 6] Crystallographic studies on complexes of the catalytic domain of PHD2b1-426 (tPHD2) with CODD and NODD have provided insight into how the PHDs bind to the ODDs (Fig. 1B), including how clinically observed PHD2 variants can manifest altered ODD selectivities.[1a, 9] They also reveal that induced fit during PHD:ODD binding involves a loop (β2β3 loop) and the C-terminal region of PHD2.[1a, 9a, 9u]

The precise reasons for the presence of two ODDS within the HIFα proteins in higher animals are unclear,[1b] but they may help modulate the kinetics of PHD catalysis.[1d] PHD inhibitors are presently in clinical trials for anaemia treatment in chronic kidney disease because erythropoietin is a HIF target gene,[8] and hence, understanding how PHDs achieve ODD selectivity is of medical interest. We report kinetic and binding studies on the HIF-1α ODD selectivity of human PHD2 and clinically observed tPHD2 variants, using alanine-scanning and HIF-1α CODD/NODD/CODD 'hybrid' peptides.

Figure 1. A. Prolyl hydroxylase domain enzymes (PHDs) catalyse oxygen available limited hydroxylation of N- and C-terminal oxygen dependent degradation domains (NODD and CODD, respectively) of hypoxia inducible factor α (HIFα) isoforms. B. Sequences of CODD and NODD of HIF-1α and the hybrid peptides used in this study. The conserved ODD LxxLAP motif in the ODDs is underlined.

To investigate the selectivity of HIF-1α binding to tPHD2, we carried out 18 'alanine-scanning' and other substitutions of clinical or mechanistic interest on a 19-mer HIF-1α CODD556-574 peptide (substrate (DLDELMAPLAPYIMDDDFQNL)NH2), which has been extensively used in prior work on the PHDs.[4a, 10] The alanine substituted HIF-1α CODD556-574 peptides were tested as tPHD2 substrates using HIF-1α CODD556-574 and HIF-1α NODD594-413 (PDALTLLAPAAGDTIISLDF-NH2) for comparison; an [a] Dr. M.I. Abboud, Prof. Dr. T.D.W. Claridge, Prof. Dr. C. J. Schofield, Chemistry Research Laboratory, University of Oxford, OX1 3TA, Oxford, United Kingdom. E-mail: christopher.schofield@chem.ox.ac.uk
[b] Dr. R. Chowdhury, Current Address: Department of Molecular and Cellular Physiology, University of Stanford, California 94305-5345, United States of America.
[c] Dr. I.Y.H. Leung, Current Address: School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
[d] K. Lippi, Current Address: Roche Innovation Center Munich, Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany.
[e] Prof. Dr. C. Loenarz, Current Address: Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany.
[f] These authors contributed equally.

For internal use, please do not delete. Submitted_Manuscript

This article is protected by copyright. All rights reserved
COMMUNICATION

For internal use, please do not delete. Submitted Manuscript

Figure 2. Hydroxylation and binding of HIF-1α ODD variant peptides assayed by MS (turnover) and NMR (binding). A. 'Individual substrate assays' showing % hydroxylation of ODD variant peptides by PHD2. B. 'Competition experiments' with substrate pairs. PHD2 (2 μM) was incubated with (NH4)2Fe(II)(SO4)2 (50 μM), 2OG disodium salt (60 μM), sodium L-ascorbate (300 μM) and HIF-1α CODD peptides (50 μM), in Tris (50 mM), pH 7.5/25°C. Reactions (15 min) were quenched with 1% (v/v) aqueous formic acid. Errors: standard deviations (n = 3). 100% corresponds to full substrate hydroxylation. C. Summary of differences in 1H-15N HSQC spectra for 15N-PHD2s1–402-Zn(II)-2OG-CODD1–42 and 15N-PHD2s1–402-Zn(II)-2OG with Ala-substituted CODD HIF-1α variants. Residues with Δδ > 0.1 ppm difference between the 2 forms are listed, except for Q573A, where Δδ cut-off was 0.05 ppm due to small overall changes in the spectra. Samples contained 15N-PHD2s1–402 (50 μM), (NH4)2Fe(II)(SO4)2 (50 μM), 2OG disodium salt (200 μM), HIF-1α CODD variant peptides (200 μM), in Tris-D2O (50 mM), pH 6.5, 25°C.

using an established MS based assay (Fig. 2A).[54] Consistent with prior reports indicating the importance of the (subsequently hydroxylated) prolyl-residue (Pro564 in HIF-1α CODD) for PHD2 catalysis,[49, 66, 11] the results revealed all the singly substituted HIF-1α peptides were hydroxylated under standard conditions, except for the P564A and P564G variants (Fig. 2A).

In agreement with crystallographic analyses indicating that the 3 aspartyl-residues in CODD1–42 (Fig. 3B) are important in binding to tPHD2,[11] the triple D569A/D570A/D571A CODD1–42 variant was not hydroxylated by tPHD2 under our assay conditions.[44, 10] Notably, NODD1–409 I409D was not hydroxylated by tPHD2, consistent with the proposed importance of hydrophobic interactions between I409NODD and F391tPHD2.[14, 10] (Fig. 3C).

To further investigate these observations, competition assays between the variant peptides and wildtype HIF-1α NODD and CODD sequences were employed (Fig. 2B). The results provided further insight into important elements in substrate binding. Whilst D571A CODD1–42 (D571CODD is part of the DDD motif) in isolation was almost completely hydroxylated under standard conditions, when in competition with CODD1–42, D571A was ≤60% hydroxylated. This observation is consistent with the crystallographically observed salt-bridge between D571CODD and PHD2 (Fig. S3B).[14] An L562R CODD1–42 variant (L562 is the second Leu of the LxxLAP motif) is proposed to manifest increased binding of CODD1–42 to PHD2, and to a lesser extent, to PHD3, based on yeast-two hybrid assay results.[15] However, in our competition assays (Fig. 2B) the L562R CODD1–42 variant was hydroxylated with lower efficiency than CODD1–42, and with almost equal efficiency to NODD1–42.

We then used NMR (Fig. 2C and S1-2) to investigate binding of the alanine-substituted CODD peptides to the 15N-labelled PHD2181–402-Zn15N2OG complex using the minimal shift approximation method,[13] in which the assignments of the slow exchange perturbed peaks were made on a proximity basis by considering 1H and 15N shifts between the two spectra. A cut-off of 0.1 ppm was used for analyses and peaks not observed to have an apparent slow exchange partner were not considered. All the tested variants, except P564A CODD1–42, and the triple substituted D569A/D570A/D571A CODD1–42 variant, fully saturate PHD2181–402-Zn15N2OG at the same concentration as CODD1–42 (using a 2.7 fold molar excess of peptide) as judged by 1H-15N HSQC NMR, indicating binding is not disrupted by alanine substitution (under these assay conditions). The triply substituted D569A/D570A/D571A CODD1–42 variant manifested weak binding, and is likely in fast exchange with the PHD2181–402-Zn15N2OG complex. These results are in agreement with the observations with catalytic assays that (most) single amino acid substitutions on CODD1–42 did not cause substantial loss of tPHD2 activity (Fig 2A).

The importance of Pro564 of CODD1–42 in binding to tPHD2 is consistent with the observation that all the CODD1–42 variants which were observed to bind by NMR, induced similar chemical shift changes relative to the PHD2181–402-Zn15N2OG complex spectrum without CODD1–42. Previous studies have shown that when P564 CODD1–42 is substituted with some close proline-analogues, inhibition is observed (e.g. L-3,4-
dehydroproline, IC₅₀ = 8.5 μM. Similarly to P564A CODD, binding of P564G CODD to PHD2 was weak by ¹H-¹⁵N HSQC NMR. As the glycine- and alanine-substituted peptides are likely more flexible than the proline-residue wildtype, these results suggest that the relatively rigid conformation of the (hydroxylated) Pro-564 may play an important role in the induced fit mediated binding of the ODDs to the PHDs (Fig. S3A); the P564A/G substitutions may disrupt the 3₁₀-helix adopted by both the NODD and CODD LxxLAP motifs at the tPHD2 active site (Fig. S3A). Note, hydroxylated-prolyl HIFα can bind to IPHD2 in the absence of 2OG.

Figure 3. Proposed key determinants in binding of CODD and NODD to IPHD2. A. Overlaid views of IPHD2.2OG.Mn.CODDHIF-1α (PDB ID: 5L9B) and IPHD2.2OG.Mn.NODDHIF-1α (PDB ID: 5L9V) complexes, highlighting differences in interactions between CODD and NODD with the C-terminal α-helix (α4) of IPHD2. Metal binding residues (H313, H374 and D315) are in purple. B. View from a structure of IPHD2.2OG.Mn.CODDHIF-1α (PDB ID: 5L9B) highlighting elements in CODD binding to IPHD2 (green). S242, K244, D246, S248, D249 and I251 are part of the β2β3 tPHD2 loop, which is involved in induced fit binding. K402, Y403 and R396 are part of the tPHD2 C-terminal α4 helix. Note the salt-bridge between CODD D571 and the tPHD2 C-terminal region. C. View from a structure of IPHD2.2OG.Mn.NODDHIF-1α (PDB ID: 5L9V) highlighting elements in NODD binding to IPHD2 (light purple). Color coding as Fig. 3A. Note β2β3 loop residues interact with the xx residues of the LxxLAP motifs of PHD2 and IPHD2 and is important for NODD hydroxylation. Overall, only small localised changes between the ¹H-¹⁵N HSQC spectra of the PHD2₁₈₁₋₄₀₂-Zn²⁺-2OG-CODD and PHD2₁₈₁₋₄₀₂-Zn²⁺-2OG-CODDHIF-1α were observed (Table 1; Fig. 3A). Most of these were observed when an Ala was
substituted at the C-terminal side of HIF-1α CODD (Fig. 1B). To investigate the relative importance of the proline in the N- and C-terminal sides of the hydroxylated proline in IPHD2 catalysis/binding, we made hybrid (HIF-1α) ODD peptides, i.e., hybrid CODD-NODD: LDLEMLAPAGDTISLDF-NH₂ and hybrid NODD-CODD: PDALTLLAPYPMDDDFQL-NH₂ (Fig. 1B).

CODD_{Wt} was preferentially hydroxylated by IPHD2 over both of the hybrid peptides (Fig. 2B). The hybrid CODD-NODD appeared to be slightly more hydroxylated than hybrid NODD-CODD. Both hybrid peptides were more efficiently hydroxylated than NODD_{Wt}. Under standard assay conditions (Fig. 2B). The increased hydroxylation of hybrid NODD-CODD over NODD is likely, in part, due to the presence of a stabilising D571_{CODD}-R396_{PHD2} salt-bridge as observed in the IPHD2-CODD_{HIF-1α} structure (Fig. S3B). An analogous acidic residue to HIF-1α CODD D571_{CODD} (equivalent to HIF-2α CODD D536) is not present in either HIF-1α or HIF-2α NODD (Fig. 1B).^{14}

CONCLUSIONS

The overall results inform on key elements involved in ODD binding to the catalytic domain of PHD2, and by implication the other PHDs. Combined with previous biophysical and kinetic analyses,^{16} they support the proposal that CODD/CODD selectivity arises from multiple interactions including: (i) between the non-conserved ‘xx’ elements of the ODD LxxLAP motif and the PHD β2β3 loop; (ii) between the N-terminal part, and the conserved LxxLAP motif, of the ODD substrates and the PHD β2β3 loop region; and (iii) between C-terminal part of the ODDs and the α4 of IPHD2 (see below). The evidence implies that although all these elements are important in binding both NODD and CODD, their relative importance varies in the binding of the two types of ODD (the relative importance may also change with specific PHD variants). The observation that the hybrid CODD-CODD and CODD-NODD peptides are substrates to differing extents compared to NODD and CODD is consistent with the proposal that the extent of relative NODD/CODD hydroxylation is regulated by discrete elements. The different effects of key elements in binding NODD and CODD are clearly manifested in terms of the roles of R396_{IPHD2} and P317_{IPHD2}.

The results with singly substituted CODD variant peptides and the hybrid peptides (with both wildtype IPHD2 and the R396A IPHD2 variant) support the proposal that the interactions between the C-terminal part of the ODDs and the C-terminal region of IPHD2, including α4, are important in enhancing CODD relative to NODD hydroxylation; as observed here and previously.^{54} CODD is a better substrate than NODD. The reduced reactivity of R396A IPHD2 with CODD, but not NODD, is consistent with the observed salt-bridge between R396{PHD2} (part of the α4 helix) and D571_{CODD} (Fig. S3B). Note, given the evidence for induced fit during ODD binding,^{11} it is possible that the D571_{CODD},R396_{PHD2} salt bridge interaction is more dynamic.
in solution than indicated by the crystal structures and that R396_PHD may also interact with D569 and D570 of HIF-1α C0DD during binding.

The results also support the proposal that the interactions between the LxxLAP motif and the β2β3 loop are relatively more important in NODD than C0DD binding/hydroxylation. P317_PHD2 is part of a hydrophobic patch binding the LxxLAP-3p-helix and P317R IPHD2 does not hydroxylate NODD, but does hydroxylate C0DD (Fig. 4A). Interestingly, both hybrid peptides were accepted by P317R IPHD2, though at reduced levels compared to C0DD. With P317E IPHD2, the same trend was observed, but with some NODD hydroxylation being observed. Thus, whilst these results support the relatively more important role of P317_PHD2 (β2β3 loop) in binding the LxxLAP residues in NODD rather than C0DD, they suggest the substitutions can have subtle effects on ODD binding (note, in the P317R crystal structure, the P317 side chain was refined in more than one conformation – Fig. S3C).[1a]

The combined substrate selectivity studies and NMR binding results imply that the proline of the LxxLAP motif is important, not only for positioning the Pro-564 C4-H bond appropriately for hydroxylation in the immediate vicinity of the Fe-binding centre, but also for productively organising the overall conformation of the PHD:ODD complex, part of which is observed as a 3p-helix in the region of the active site Fe (Fig. 3A). Such a role is likely relevant to binding of both unhydroxylated and hydroxylated-prolyl ODDs to the PHDs, though the latter only binds in the absence of 2OG.[15] The importance of the LxxLAP proline-residue (P564 in HIF-1α C0DD) is supported by results showing that the P564A and P564G CODD variants only bind weakly to PHD2, likely due to the lack of conformational constraints imposed by the proline residue; CODD is substantially disordered in solution.[19]

By contrast with the Pro-564 substitutions, the other tested alanine substituted CODD variants were hydroxylated and manifested similar affinity for IPHD2 as CODD, except for the triple substituted aspartyl D569A/D570A/D571A CODD variant (see above) which disrupts the salt bridge interaction D571_CODD396_PHD2[16] (Fig. S3B).

To date, near all PHD inhibitors (including those in clinical trials) bind at the active site of the PHDs, ligating to the Fe6 and competing with 2OG.[20] Although their development may be challenging, our results imply that pursuing substrate selective inhibitors (either for HIFα isoforms and/or ODDs) may be viable. Recent work has revealed high affinity peptides not binding to the PHD active site.[20] The development of these and other allosteric compounds could be the starting point for the development of substrate selective inhibitors that work by modulating the induced fit processes involved in ODD binding.[19]

Such substrate selective inhibitors are of potential interest from a biomedicinal perspective and would be useful in assigning ODD function.

Experimental Section

Recombinant forms of tPHD2, the pHDr variants used, and 15N-PhD2 were produced as reported.[14a, 14b, 19, 15, 17] Alanine variants of CODD peptides were from Peptide Synthetics, U.K. All other peptides were produced by solid-phase synthesis as C-terminal amides as reported.[14a, 19a]

For internal use, please do not delete. Submitted_Manuscript

Acknowledgements

We thank Kellogg College Oxford for a Junior Research Fellowship and the Biochemical Society Krebs Memorial Award (to MIA), the Commonwealth Commission scholarship (to RC), the Wellcome Trust, and Cancer Research UK for funding this work.

Keywords: Prolyl hydroxylase domain enzymes • hypoxia inducible factor (HIF) hydroxylases • 2-oxoglutarate/o-ketoglutarate oxygenases • oxygen sensing • transcriptional regulation.

Oxygen Degradation Domain Binding Selectivity of the Hypoxia-Inducible Factor Prolyl Hydroxylases
Minerva Access is the Institutional Repository of The University of Melbourne

Author/s:
Abboud, MI; Chowdhury, R; Leung, IKH; Lippl, K; Loenarz, C; Claridge, TDW; Schofield, CJ

Title:
Studies on the Substrate Selectivity of the Hypoxia-Inducible Factor Prolyl Hydroxylase 2 Catalytic Domain

Date:
2018-11-02

Citation:

Persistent Link:
http://hdl.handle.net/11343/261073