
276 POTENTIAL MECHANISMS OF RESISTANCE IDENTIFIED THROUGH ANALYSIS OF MULTIPLE BIOMARKERS IN IMMUNE HOT NON-RESPONDERS WITH NON-SMALL CELL LUNG CANCER (NSCLC) TREATED WITH TISLELIZUMAB

277 ASSOCIATION BETWEEN PROGRAMMED DEATH-LIGAND 1 (PD-L1) EXPRESSION AND GENE SIGNATURES OF RESPONSE OR RESISTANCE TO TISLELIZUMAB MONOTHERAPY IN HEPATOCELLULAR CARCINOMA (HCC)

278 Background Tislelizumab, an anti-PD-1 monoclonal antibody, has demonstrated clinical benefit for patients with NSCLC. The underlying response and resistance mechanisms to tisleli-

279 Background PD-L1 inhibitors are treatment options for patients with HCC who have progressed after first-line

280 Diagnostics). GEP analyses of NSQ and SQ NSCLC were per-

281 Results The ORR, mPFS, and mOS in this pooled NSCLC

282 mOS in this pooled NSCLC cohort were 15.2% (95% CI: 9.0, 23.6), 4.1 months (95% CI: 2.20, 6.11), and 15.1 months (95% CI: 11.20, NE), respectively, with a median study follow-up of 15.3 months (95% CI: 14.06, 15.90). Non-responders (NRs) exhibited distinct tumor and immune gene signature profiles and could be clustered into two subgroups: NR1 and NR2. Compared with responders, NR1 had elevated cell cycle signatures in both NSQ (P=0.2) and SQ (P=0.03) cohorts, and a trend of decreased inflamed gene signature profiles. However, NR2 showed comparable or even higher tumor inflammation (18-gene), and CD8+ T-cell signature scores in both NSQ and SQ cohorts and could be classified as immune hot. To explore the resistance mechanisms of immune hot NRs, differentially expressed gene analyses between immune hot NR2 and responders were performed. M2 macrophage and Treg signature scores were higher in NR2 in both NSQ (M2, P=0.05; Treg, P=0.03) and SQ (M2, P=0.05 [subgroup of NR2]; Treg, P=0.03) cohorts; significantly higher expression of immune regulatory genes included PIK3CD, CCR2, CD244, IRAK3, and MAP4K1 (P<0.05 in NSQ and PIK3CD, CCR2, CD244, IRAK3, and MAP4K1 (P<0.05 in NSQ and P<0.05). Significantly higher epithelial–mesenchymal transition (EMT) and angiogenesis gene expression, including SNAI1, FAP, VEGFC, and TEK (P<0.05) genes, were also observed in SQ NR2. Moreover, gene mutation analysis identified seven immune hot NR patients harboring either driver mutations (RET fusion, ROSI1 fusion, BRAF, and PIK3CA amp) or well-established resistance mutations (loss of function mutation in JAK2, STK11, and MDM2 amplification).

Conclusions Despite the presence of immune hot features, a subgroup of tislelizumab NRs with NSCLC were identified. High levels of immune suppressive factors, such as M2 macrophage and Treg signatures, angiogenesis, and EMT genes, as well as the existence of driver/resistance mutations, may indicate mechanisms of resistance of immune hot NRs, highlighting potential novel treatment targets.

Acknowledgements Editorial assistance was provided by Agnieszka Laskowski, PhD, and Elizabeth Hermans, PhD (OPEN Health Medical Communications, Chicago, IL), and funded by the study sponsor.

Trial Registration NCT02407990 and NCT04068519

http://dx.doi.org/10.1136/jitc-2020-SITC2020.0076
Minerva Access is the Institutional Repository of The University of Melbourne

Author/s:
Desai, J; Zhou, Q; Deva, S; Zhao, J; Wang, J; Tan, W; Ma, X; Zhang, Y; Shen, Z; Wu, X; Leaw, S; Zhang, J; Wu, Y-L

Title:
POTENTIAL MECHANISMS OF RESISTANCE IDENTIFIED THROUGH ANALYSIS OF MULTIPLE BIOMARKERS IN IMMUNE HOT NON-RESPONDERS WITH NON-SMALL CELL LUNG CANCER (NSCLC) TREATED WITH TISLELIZUMAB

Date:
2020-11-01

Citation:

Persistent Link:
http://hdl.handle.net/11343/280254

License:
CC BY NC ND