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Abstract
There has recently been significant interest in unsupervised methods for learning

word sense distributions, or most frequent sense information, in particular for appli-
cations where sense distinctions are needed. In addition to their direct application to
word sense disambiguation (WSD), particularly where domain adaptation is required,
these methods have successfully been applied to diverse problems such as novel sense
detection or lexical simplification. Furthermore, they could be used to supplement or
replace existing sources of sense frequencies, such as SemCor, which have many sig-
nificant flaws. However, a major gap in the past work on sense distribution learning
is that it has never been optimised for large-scale application to the entire vocabu-
laries of a languages, as would be required to replace sense frequency resources such
as SemCor.

In this thesis, we develop an unsupervised method for all-words sense distribution
learning, which is suitable for language-wide application. We first optimise and extend
HDP-WSI, an existing state-of-the-art sense distribution learning method based on
HDP topic modelling. This is mostly achieved by replacing HDP with the more
e�cient HCA topic modelling algorithm in order to create HCA-WSI, which is over
an order of magnitude faster than HDP-WSI and more robust. We then apply HCA-
WSI across the vocabularies of several languages to create LexSemTm, which is a
multilingual sense frequency resource of unprecedented size. Of note, LexSemTm
contains sense frequencies for approximately 88% of polysemous lemmas in Princeton
WordNet, compared to only 39% for SemCor, and the quality of data in each is
shown to be roughly equivalent. Finally, we extend our sense distribution learning
methodology to multiword expressions (MWEs), which to the best of our knowledge
is a novel task (as is applying any kind of general-purpose WSD methods to MWEs).
We demonstrate that sense distribution learning for MWEs is comparable to that for
simplex lemmas in all important respects, and we expand LexSemTm with MWE
sense frequency data.
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Chapter 1

Introduction

1.1 Problem Background

Word senses and methods for disambiguating or otherwise dealing with word
senses have been of great interest to the Natural Language Processing (NLP) com-
munity for several decades (for a detailed overview, see Agirre and Edmonds (2007)
and Navigli (2009), and the citations therein). A word sense is a possible meaning
of a word. For example the lemma crane has at least two senses: a bird sense if the
word is referring to the animal, or a machine sense if it is referring to the vehicle for
lifting heavy objects. Given this, word sense disambiguation (WSD) is the problem of
deciding the most likely sense of a word given some context. For example, given the
sentence the crane flew towards the horizon, we could reasonably disambiguate crane
as having the bird sense, due the presence of key words like flew and horizon. WSD
is potentially of utility anywhere where distinctions in word meaning are important
— which is arguably every single problem involving natural language data, including
text and speech — and has been successfully applied to a range of NLP or related
problems.

One area where WSD has been applied successfully is in information retrieval (IR),
specifically in text retrieval (Krovetz and Croft 1992; Gonzalo et al. 1998; Zhong and
Ng 2012). This is the problem of obtaining relevant documents from a database based
on a text query, for example as solved by the Google search engine. As an example
to see how WSD is relevant to text retrieval, consider the query Java programming
language. It is clear given the context within this query — specifically due to the
keywords programming and language — that Java is being used in this query in
its programming language sense (as opposed to its Indonesian island sense, or
its coffee sense). This information could be used to refine retrieval results; for
example, documents containing Java in its programming language sense could be
given preference relative to documents containing Java in its other senses.

Another example area where WSD has shown utility is in machine translation
(Agirre et al. 2008; Agirre et al. 2011). This is the problem of using computers to au-

1
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tomatically translate text or speech from one language to another. Sense distinctions
are important in this task because there is not a simple one to one correspondence
in word meanings between languages. As an example to illustrate this, consider the
problem of translating the crane from English to German: if crane was being used in
its bird sense we would translate this to der Kranich, whereas if it was being used
in its machine sense we would translate it to der Kran. Therefore, accurate machine
translation requires WSD to be performed either explicitly or implicitly.

An important distinction in WSD research is between supervised and unsuper-
vised methods. Supervised WSD methods are those that make use of sense-labelled
usages1 to learn from, whereas unsupervised WSD methods are those that learn from
raw, unlabelled text (or speech). Unsupervised WSD methods have been attracting
increasing attention in recent years, as they address some of the serious shortcomings
of supervised WSD methods (Navigli 2009). First of all, the labelled data needed to
perform supervised WSD is expensive to obtain, since it involves manually annotat-
ing large numbers of usages per lemma.2 This is especially true if we want to obtain
sense-labelled data on a language-wide scale, as we would need to train a supervised
model that could be applied to all words in a language’s vocabulary. Secondly, dif-
ferent text domains3 have di↵erent patterns in sense occurrences; in order to take
advantage of this, supervised methods require separate labelled usages from each
possible text domain, which would further inflate the cost of obtaining labelled data.
Thirdly, supervised methods usually require the use of a fixed sense inventory;4 they
learn from sense-labelled data, which means it is non-trivial to use them to perform
WSD with a di↵erent sense inventory than was used to label the training data.

While there exist a wide range of approaches to unsupervised WSD (Navigli 2012),
many methods are based on the di�cult-to-beat most frequent sense (MFS) or first
sense heuristic (McCarthy et al. 2004a). The MFS heuristic simply disambiguates
every usage of a given polysemous5 lemma with the sense that is most common
in general (that is, the MFS). For example, if we knew that the noun bank was
most commonly used in its financial institution sense, we would apply the MFS
heuristic by disambiguating every usage of the noun with this sense, regardless of
context. This heuristic is also sometimes referred to as the “first sense” heuristic,
because in some major dictionaries (such asWordNet, which is described in detail in
Section 3.1.2) the MFS of each word is listed first.6 This heuristic is surprisingly strong

1That is, example usages of the target word that is being disambiguated, which have been labelled
with their correct senses.

2Note that in this thesis we will often use “lemma” and “word” interchangeably. For our purposes
we can define a lemma to be the dictionary form of a word, along with a part of speech (such as
noun, verb, adjective, or adverb).

3For example, news articles about sport, or journal articles about physics.
4A sense inventory is a dictionary that defines the set of all possible senses for each lemma in a

given vocabulary.
5A polysemous lemma is a lemma with more than one possible sense.
6For this reason, we use the terms “MFS” and “first sense” interchangeably in this thesis.
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in practice because word sense frequencies tend to follow power law distributions
according to Zipf’s Law (Zipf 1936; Zipf 1949), meaning that the MFS is typically
very dominant. This is particularly true when we look at sense frequencies within a
specific domain (Piantadosi 2014), and for this reason the MFS heuristic can also be
applied specifically within a given domain, based on the MFS of each word within
that domain (Koeling et al. 2005). For example, the MFS of bank may be financial
institution within domains related to finance or economics, whereas it may be
river bank within domains related to nature or geography.

Using the MFS heuristic, the problem of unsupervised WSD can be reduced to
that of learning probability distributions over the senses of each lemma, which we
refer to as sense distribution learning. This is because the sense distribution of any
given lemma directly gives the lemma’s MFS (the sense with maximum probability).
Furthermore, sense distributions can be used to automatically determine when the
MFS heuristic is appropriate to use, based on the sense distribution’s entropy (Jin
et al. 2009); if a sense distribution has relatively high entropy, it means the MFS is
less dominant.

In addition to their direct use in WSD and the associated applications, sense
distributions, or MFS information, have been successfully used in a variety of other
applications. For example, they have proven useful in performing automatic lexical
simplification (Biran et al. 2011), which is the problem of automatically simplifying
text to be more readable while preserving its meaning (for example, simplifying rotund
fauna to fat animals). Sense frequency information can be used here to find candidate
word substitutes for simplification, by searching for words whose MFS matches the
sense of the complex word to be replaced. In addition, sense distribution learning
methods have been extended to detect novel senses of words (Lau et al. 2012; Lau
et al. 2014). As an example, the noun click now has a web traffic click sense
that didn’t exist in the past, which is missing from many major dictionaries including
WordNet; this could be automatically detected using sense distribution learning
methodology. To this end, these methods have been successfully applied in the semi-
automatic construction of new dictionary entries (Cook et al. 2013).

Of particular interest, sense distribution learning provides the promise of either
supplementing or replacing existing resources containing the relative frequencies of
word senses. These resources are currently very limited; the most prominent example
of such a resource is SemCor (Miller et al. 1993), which is based on the Brown Corpus
(Kucera and Francis 1967) — a large, balanced corpus7 consisting of mid-20th cen-
tury American literature — whose words have been labelled with WordNet senses.8

Unfortunately, the data in SemCor contains many irregularities due to its age and
limited coverage. For example, the MFS of pipe according to SemCor is tobacco

pipe, whereas one might expect it to be tube carrying water or gas, which is

7In the context of this thesis, a corpus is a collection of text documents.
8The WordNet dictionary and the SemCor sense frequency resource are both described in

detail in Section 3.1.2.
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likely due to the age of the Brown corpus. Similarly, the MFS of tiger according
to SemCor is audacious person, whereas one might expect it to be carnivorous

animal. This is due to the fact that tiger has only two sense-labelled occurrences in
the Brown corpus, which in this case is clearly insu�cient to identify the “correct”
MFS. Furthermore, SemCor contains significant gaps; indeed, of the roughly 31,000
polysemous lemmas in WordNet, approximately 61% have no sense-labelled occur-
rences in the Brown corpus (and therefore no sense frequency data in SemCor), and
less than half of the remaining lemmas have at least five occurrences (which means
that sense distributions for these lemmas are less likely to be reliable).

However, despite the various applications of sense distribution learning, and its
potential to supplement or replace these flawed sense frequency resources, there are
some glaring gaps in the past work that limits its use. Most importantly, there
has been no prior work investigating how to apply sense distribution learning at the
scale of a full lexical resource such as WordNet. Updating language-wide sense
frequency resources like SemCor would require learning sense distributions over the
entire vocabularies of languages, which could be extremely computationally expen-
sive. Indeed, in our preliminary experiments using HDP-WSI (Lau et al. 2014) —
the previous state-of-the-art method in sense distribution learning — we found that
approximately one hour of computation time was needed per lemma on average.9 Ob-
viously over an entire vocabulary, containing potentially tens of thousands of lemmas,
this quickly becomes intractable! To make matters even worse, dealing with domain
di↵erences10 could require learning numerous sense distributions per word. While
these considerations may suggest learning sense distributions as cheaply as possible,
we would not want to make sense distribution learning scalable at the expense of
sense distribution quality. Therefore, it would be desirable to understand the trade-
o↵ between the accuracy and computation time of sense distribution learning, and
how to optimise this tradeo↵ for large-scale application.

A second major limitation is that past work on sense distribution learning has
focussed on simplex lemmas, which are lemmas consisting of a single word. How-
ever this neglects multiword expressions (MWEs), which can also be polysemous.
A MWE is a lexical item consisting of multiple words, with a meaning that is not
trivially predictable from the individual words, such as top dog (Baldwin and Kim
2010).11 Indeed, of the approximately 31,000 polysemous lemmas in WordNet,
close to 3,000 of these are MWEs. While there has been some past work dealing

9This number was obtained by applying HDP-WSI to the BNC dataset used by the authors in
their work, which is described in Section 3.1.3.

10That is, dealing with the fact that text from di↵erent domains will have di↵erent sense
frequencies.

11Note that for the purposes of this thesis we are not overly concerned with the precise definition
of what it means for the meaning to not be trivially predictable from the component words. As a
rough heuristic rule, we can define a MWE in practice as an item consisting of more than one word
that would be reasonable to include in a dictionary.



Chapter 1: Introduction 5

with MWEs that is related to WSD,12 to the best of our knowledge these have all
addressed very specific cases of WSD, and general-purpose WSD or sense distribution
learning for MWEs are still unsolved problems. Given this, it is unknown whether
the general-purpose methods of sense distribution learning for simplex lemmas can
be applied to MWEs. Furthermore, if they can be applied to MWEs, this intro-
duces additional challenges such as automatically identifying13 MWE usages from
unlabelled text. Another possible challenge in applying sense distribution learning to
MWEs is disambiguating between simple compositions of the individual words and
actual MWE usages (Hashimoto and Kawahara 2008; Fothergill and Baldwin 2012).14

However, making this distinction is very subtle and is methodologically questionable,
since in many cases the simple composition has a corresponding dictionary sense (for
example the elderly man sense of old man in WordNet), so we mostly ignore it in
the rest of the thesis.15

1.2 Research Aims

Given this context, the primary aim of our thesis is to develop a generic method for
unsupervised all-words sense distribution learning, which is capable of supplementing
or replacing existing sources of sense frequencies such as SemCor. By generic we
mean that the method can be applied as broadly as possible — that is, it is language-
independent and can applied to all kinds of lemmas — and by all-words we mean that
the method can be applied e�ciently on a language-wide scale. In addition we define
a secondary aim, which is to actually apply our method to create a new multilingual,
language-wide, domain-independent sense frequency resource, which will hopefully
be state-of-the-art. This resource could then be used either alongside or in place of
existing resources like SemCor, as a general-purpose source of sense frequencies.

In order to address our primary and secondary aims, we define three core research
questions that will help define the structure of our thesis:

1. What does a practical blueprint look like for e�ciently applying sense distri-
bution learning on a large scale, and achieving an optimal balance between
accuracy and computation time?

12For example, work on named entity recognition, supersense tagging, or disambiguating between
literal and idiomatic interpretations. We provide a brief overview of these tasks in Section 2.4.

13Note that in this thesis, we use the term “identification” in the context of MWEs specifically to
describe recognising occurrences of known MWEs.

14As an example, consider the expression red tape, which could be a MWE referring to bureaucracy,
or a simple composition of the component words referring to red coloured tape (which arguably
should not be classed as a MWE).

15With the exception of the creation of our MWE sense-tagged dataset in Section 5.4, where we
asked annotators to give sentences a specific label if they were simple compositions and there was
no corresponding WordNet sense.
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2. To what extent can unsupervised all-words sense distribution learning be used
to supplement or replace existing sense frequency resources?

3. Can sense distribution learning also be applied to MWE lemmas, and if so how
does this task compare to simplex sense distribution learning?

These research questions are made complex by the wide range of languages and
classes of lemmas they could be applied to. In order to narrow the scope of our the-
sis, we mostly limit our evaluations in answering these questions to English nouns.
Although in our aims we are interested in sense distribution learning for all languages
and parts of speech (POS), this restriction in scope for our evaluation greatly sim-
plifies analysis, and makes the cost of obtaining labelled data reasonable. We focus
on English because this is the language most frequently studied in prior work, and
is strongly resourced. Similarly, we focus on nouns because this is the POS most
frequently studied in prior work, and because these lemmas are generally the most
important to be able to disambiguate.16

Given our aims, research questions, and defined scope, the rest of this thesis
proceeds as follows: In Chapter 2 we provide a review of the literature relevant to our
research questions. In this review we make the case for building our unsupervised all-
words sense distribution learning method upon the state-of-the-art HDP-WSI method
of Lau et al. (2014), which is a modular method using HDP topic modelling. In
addition, we identify HCA as a compelling potential replacement for HDP in HDP-
WSI, given our aim of e�cient large-scale application. Then in Chapter 3 we provide
a detailed description of the resources and methods from past work that form the
building blocks of our investigation, including the HDP and HCA topic modelling
methods, and the HDP-WSI sense distribution learning method. In Chapter 4 we
provide a detailed series of experiments in order to address our primary aim and
answer our first research question. In this process we extend HDP-WSI to HCA-WSI
by replacing HDP with HCA, and provide some guidelines for e�ciently applying
HCA-WSI on a large scale. Subsequently in Chapter 5 we address our secondary aim
by applying HCA-WSI vocabulary-wide across English, Japanese, Italian, Mandarin
and Indonesian to create our new LexSemTm sense frequency resource. This then
allows us to more thoroughly evaluate HCA-WSI, and in doing so answer our second
and third research questions. Specifically, we show that LexSemTm can at worst
supplement SemCor by supplying sense frequency data for the majority of lemmas
missing from SemCor, and can possibly replace SemCor-based sense frequencies
altogether. Furthermore, we show that MWE sense distribution learning is possible,
and that this task appears to be comparable with simplex sense distribution learning
in all important respects. Finally, in Chapter 6 we provide a detailed summary of our

16This is because they more often contain context information, as well as domain-specific meanings
(McCarthy et al. 2007).
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findings, discuss their relevance, and provide some possible directions for extending
this study in future work.



Chapter 2

Literature Review

2.1 Introduction

We now provide a review of the literature relevant to our aims of developing and
applying a method of unsupervised all-words sense distribution learning. We break
this literature review up into several sections. First, in Section 2.2 we review the past
work directly related to sense distribution learning, which covers sense distribution
and first sense learning, as well as the related tasks of unsupervised WSD and word
sense induction (WSI: see Section 2.2.3). Next, in Section 2.3 we review some of the
past work on topic modelling, since this is relevant to HDP-WSI (described in detail
in Section 3.2.3), which is the particular sense distribution learning method we have
chosen to build upon. Finally, in Section 2.4 we review some of the relevant literature
related to identifying and disambiguating MWE usages, given that we wish to apply
our sense distribution learning on as wide a scale as possible by targeting MWEs as
well as simplex lemmas.

2.2 Sense Learning

Although to the best of our knowledge nobody has attempted to automatically
learn sense frequencies on a language-wide scale before, there has been extensive work
on learning sense frequencies — including sense distribution and first sense learning
— in general. In addition to this, there has been extensive work on the problems
of unsupervised WSD and WSI, which although not exactly the same problem as
sense distribution learning are directly related. The bulk of this section is dedicated
to exploring the existing methods of sense distribution and first sense learning. We
systematically compare the competing methods (a summary of which is presented in
Table 2.1), and from this identify HDP-WSI as an appropriate method to build upon.
In addition, we provide a short overview of recent work on unsupervised WSD and
WSI, placing this work in the context of our aims.

8



Chapter 2: Literature Review 9

Method Sense Inventory Other Limitations

McCarthy et al. (2004a) WordNet-like Requires parsing of corpus

Boyd-Graber and Blei
(2007)

WordNet-like Requires parsing of corpus

Mohammad and Hirst
(2006)

Thesaurus-like —

Lapata and Brew (2004) Levin (1993) verb classes Requires POS tagging of corpus

Lapata and Keller (2007) WordNet-like —

Lau et al. (2014) Any containing glosses —

Bhingardive et al. (2015) WordNet-like —

Chan and Ng (2006) Any Requires trained WSD classifier

Brody et al. (2006) Any
Relies on combining output of other
methods (ensemble learning approach)

Loukachevitch and
Chetviorkin (2015)

RuThes Requires labelled sense frequency data

Table 2.1: Summary of di↵erent methods for first sense or sense distribution learning.
For each method the kind of sense inventory it can be applied to is listed, as well
as any other limitations of the method. By “WordNet-like” we mean that the
sense inventory is assumed to have WordNet specific features (such as hypernym
relations), and by “Thesaurus-like” we mean that the sense inventory is assumed to
have a simple coarse-grained structure based on overlapping categories (such as in
the Macquarie Thesaurus).

Note that in this chapter we use the phrases “sense distribution learning” and
“first sense learning” interchangeably, since we consider them to be equivalent tasks
(although authors tend to frame their methods as being one or the other). This is
because first sense learning methods involve calculating some kind of predominance
score for each sense in order to rank them, which could be normalised to give a
distribution over the senses, and sense distribution learning automatically provides
the first sense via the mode of the distribution. The terms used reflect the particular
emphasis of the methods we review.

2.2.1 Sense Distribution and First Sense Learning

The original work on first sense and sense distribution learning came from Mc-
Carthy et al. (2004a). They proposed a method of calculating predominance scores
for each sense of a target word from unlabelled corpora. Their method uses Word-
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Net1 as a sense inventory, and is based on calculating distributionally similar words
with the target word based on the method of Lin (1998); these distributionally similar
neighbours represent the contexts in which the target word is used. For each available
WordNet sense of the target word, their method calculates a predominance score
by summing the similarity of the sense with each distributionally similar neighbour,2

weighted by the neighbour’s distributional similarity score. Their initially proposed
method was tailored specifically to nouns, but was subsequently extended to other
parts of speech (POS) (McCarthy et al. 2004b). Their first sense predictions were
shown to be competitive with those based on SemCor3 (although slightly worse),
as evaluated by their accuracy for the purposes of unsupervised WSD on a general
domain corpus using the first sense heuristic. However, the method is limited in that
the distributional similarity calculations require parsing4 of the input corpora (which
is computationally expensive, and is not available for all languages), and it relies on
using a WordNet-like sense inventory — the methods used to calculate similar-
ity between senses and distributionally similar neighbours make use of the network
structure of WordNet— which limits its applicability.

Subsequent work has demonstrated the e↵ectiveness of McCarthy et al.’s (2004a)
method. For example, Koeling et al. (2005) showed that their automatically gener-
ated first sense predictions outperformed SemCor when applied to domain-specific
corpora, where they could learn domain-specific sense frequencies. In addition, Mc-
Carthy et al. (2007) showed that the method was able to outperform SemCor on
general domain data for lemmas with fewer than five sense-labelled occurrences in
SemCor, and Jin et al. (2009) showed that it performed particularly strongly in
instances where the produced sense distribution was relatively skewed.

McCarthy et al.’s (2004a) method can be generalised by viewing it as a process of
finding the contexts in which the target word appears (represented by the distribu-
tionally similar neighbours), and aligning these to the provided sense inventory (by
calculating WordNet similarities with each sense). This generalisation provided
the basis for many of the subsequent first sense learning methods. For example,
Boyd-Graber and Blei (2007) formalised the method of McCarthy et al. (2004a) as a
graphical probabilistic model, which they then extended by introducing latent topic
variables to model document-specific context patterns throughout the input corpus.
However this extension was shown to result in minimal improvement (roughly a 1%
increase in WSD accuracy), and their method comes with the same limitations as

1WordNet is a dictionary with a specialised network structure, and is discussed in detail in
Section 3.1.2.

2Similarity is given by the maximum WordNet similarity between the target word sense, and
each of the neighbour’s senses. The WordNet similarity functions of Banerjee and Pedersen (2003)
and Jiang and Conrath (1997) were experimented with, which are discussed in Section 2.2.2.

3A large, balanced corpora with WordNet sense annotations. SemCor is described in Sec-
tion 3.1.2

4In the context of natural language processing, this is the problem of calculating the grammatical
structure of text.
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McCarthy et al.’s (2004a) method.
Mohammad and Hirst (2006) also presented a method similar to that of McCarthy

et al. (2004a). However, their approach relies on using a sense inventory similar in
structure to thesauri such as the Macquarie Thesaurus (Bernard 1986), where words
are organised into overlapping categories, and each category of a word corresponds
to a single sense. They proposed multiple methods for inferring sense frequencies
with respect to such thesauri, based on co-occurrences of the target word with other
words in the corresponding categories. They achieved very strong results in terms
of raw WSD accuracy, using the Macquarie Thesaurus. However, their results are
not directly comparable to those of McCarthy et al. (2004a) and others who use
WordNet, since sense distinctions in WordNet are far more fine grained than
those in the Macquarie Thesaurus,5 which means their reported accuracy numbers
are far higher than those that could be obtained if working with WordNet.

Similar to Mohammad and Hirst (2006), Lapata and Brew (2004) proposed a
method that relies on a very specific non-WordNet sense inventory. In their case
they used a sense inventory of verbs only, in which verbs are grouped into overlapping
classes based on the English verb categorisation of Levin (1993). As with Mohammad
and Hirst (2006), each category is assumed to correspond to a single sense. Lapata
and Brew (2004) proposed a probabilistic model based on these verb categories —
as well as known information of POS patterns for each category — which can be fit
to the input unlabelled corpus. This is done by first POS tagging6 the corpus, and
then comparing the POS tags surrounding each verb usage to the allowed POS tags
for each sense of the verb. Sense frequencies are present as latent variables in their
model, which can be read out after fitting the model to data. As with Mohammad
and Hirst (2006), despite the fact that they obtained strong results in terms of raw
accuracy numbers, their method is limited by the very specific sense inventory used.
That is especially true in this case, because it is only applicable to verbs.

A slightly di↵erent kind of approach to first sense learning was provided by La-
pata and Keller (2007), who approached the problem using information retrieval
techniques. Their method involves indexing a search engine over the input unlabelled
corpus, and then inferring sense frequencies by making a series of targeted queries for
each sense. For example, to infer the relative frequency of the river bank sense of
bank , a query is made in the form of “bank AND s”7 for each synonym or hypernym8

s of the river bank sense of bank in WordNet, and the number of results returned
by each query is counted. The authors experimented with multiple methods for com-

5This refers to the fact that words in WordNet often have multiple senses that are very similar
in meaning. For example, the word bank has separate financial institution (referring to the
company) and bank building (referring to the building itself) senses.

6POS tagging is explained in Section 3.1.4.
7The query is also expanded by adding inflected forms of words, such as plurals or di↵erent verb

endings.
8See the WordNet description in Section 3.1.2 for details on how hypernyms are defined.
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bining the resultant counts from these queries to produce sense frequency estimates.
However, in all of their evaluations, the results of their method were at best compa-
rable with those from McCarthy et al. (2004a).9 Lapata and Keller’s (2007) method
has slightly less limitations than that of McCarthy et al. (2004a), since it does not
require parsing, though it still relies on WordNet-specific features (in this case, the
use of hypernyms).

More recently, Lau et al. (2014) proposed their HDP-WSI method for sense dis-
tribution learning using topic modelling. Like McCarthy et al. (2004a), theirs is a
two-step method of identifying contexts of the target word, and aligning these to the
given sense inventory, and as with Boyd-Graber and Blei (2007) they make use of
topic modelling. Their method discovers contexts of the target word using the WSI
(see Section 2.2.3) approach of Lau et al. (2012), which is based on topic modelling.
However unlike Boyd-Graber and Blei (2007), this topic modelling is not performed
on entire documents in the input corpus, but rather on individual usages of the target
word, where each usage is treated as a separate “document”. The results of this topic
modelling are aligned to the provided sense inventory by comparing each topic to
the gloss10 of each possible sense. Therefore their method is very general, and unlike
prior methods it can be applied to any sense inventory with glosses, with no language-
specific restrictions. They evaluated their method against that of McCarthy et al.
(2004a) on multiple datasets, and showed that it obtained comparable performance in
terms of WSD accuracy with the MFS heuristic, and superior performance in terms
of the overall quality of the resultant sense distributions (evaluated by comparing
these sense distributions against gold-standard distributions obtained from manually
sense-labelled data).

Another recent method has been proposed by Bhingardive et al. (2015). They
proposed a method using word embeddings,11 which were calculated using the method
of Mikolov et al. (2013). Their method involves calculating vector representations for
each sense of the target-word, in the same space as the word embeddings, based on
related words to the sense (according to relations in the WordNet network). Sense
predominance scores are then calculated according to the similarity of the target
word with each of its senses, based on their respective vector representations (using
cosine similarity). While on the surface they appear to deviate from past work by not
making use of usage patterns of the target word, in reality such information should
implicitly be encoded in the word vectors. They evaluated their method on both

9An exception was the performance for verbs, where McCarthy et al.’s (2004a) method performed
relatively poorly (McCarthy et al. 2004b). However, these verbs are not usually the focus of sense
learning work, since they do not contain as much context information or the same tendency for
domain specific meanings as nouns for example (McCarthy et al. 2007).

10Worded definitions of the senses, as appear in standard dictionaries.
11This refers to real-valued vector representations of words, which capture subtle patterns in word

meaning and word usage. A canonical example of a word embedding method is word2vec (Mikolov
et al. 2013)
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Hindi and English data: although they achieved strong results on the Hindi dataset
relative to their benchmarks, their results for English were poor and substantially
worse than those of McCarthy et al. (2004a). Furthermore, their method is limited
in applicability by its reliance on the WordNet network structure.

Some other methods deviate wildly from the general paradigm of McCarthy et al.
(2004a), which was based on aligning sense inventories to usage patterns of the target
word from unlabelled corpora. For example, Chan and Ng (2006) presented a method
for learning sense distributions from domain-specific corpora, given a supervised WSD
system that has previously been trained on a labelled general domain corpus. This
method is an extension of the previous method by the same authors (Chan and Ng
2005), which addressed the same task. Chan and Ng (2006) proposed a generative
probabilistic model for the domain-specific corpora, based on the constraint that the
probability of observing any usage given a fixed sense is the same as in the domain-
independent corpus on which the WSD system was trained, and only the prior sense
probabilities (that is, the sense frequencies) change in the new corpus. In this model,
sense frequencies in the new domain appear as latent variables. Their method involves
fitting this model to the domain-specific corpus using the EM algorithm, after which
the domain-specific sense frequencies can be read o↵. Although this method relies
on having a sense-labelled general domain corpus on which to train their supervised
WSD model, and is therefore not completely unsupervised, they also proposed a
semi-automatic method for creating this labelled data. This semi-automatic method
is based on the work of Ng et al. (2003), and involves using parallel corpora,12 as well
as hand-annotated relationships between the senses and possible translation of each
word. The results of their method were shown to be very promising; in particular, they
were stronger than those from fully unsupervised methods such as that of McCarthy
et al. (2004a). However, because of the use of labelled data, these methods are not
directly comparable.

A di↵erent kind of approach again was taken by Brody et al. (2006), who presented
an ensemble learning approach to first sense learning. They experimented with several
ensemble learning methods to combine the output of the McCarthy et al. (2004a)
method, along with the outputs of several unsupervised WSD systems, which were
based onWordNet similarity (Banerjee and Pedersen 2003), lexical chaining (Galley
and McKeown 2003), and graph-based (Navigli and Velardi 2005) approaches (these
methods are all discussed in Section 2.2.2). Although they were able to improve
first sense learning accuracy beyond what could be achieved by any of the individual
methods, we do not view this as a competing method for large-scale sense distribution
learning, due to its ensemble nature. Instead, we consider it as a method of using
sense frequencies obtained from unsupervised all-words sense distribution learning,
and combining them with other methods to obtain higher accuracy in applications.

12This means a corpus consisting of pairs of documents in two languages, such that the documents
in each pair are translations of each other (Brown et al. 1988). Parallel corpora were first applied
to WSD by Dagan et al. (1991).
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Finally, Loukachevitch and Chetviorkin (2015) recently proposed a fully super-
vised method for first sense learning. Their method is designed around RuThes
(Loukachevitch and Dobrov 2014), which is a Russian thesaurus with a graph-based
structure vaguely similar to that of WordNet, but with relations between words
based on concepts rather than lexical relationships (such as synonymy or hyper-
nymy). They proposed a set of features that could be extracted from an input corpus
for each target word, for example a feature for each sense of the target word based on
the total count of words or phrases related to the sense (based on RuThes relations)
within documents containing the target word. These features could be used to train a
supervised machine learning model using gold-standard sense frequencies for a small
set of words (the training data), which could then be generalised to predict sense
frequencies for words outside this training set. They performed an evaluation of their
method on a Russian news corpus annotated with sense frequencies, using several
general-purpose supervised machine learning algorithms and a train/test split of the
annotated words in the corpus. However, their results are di�cult to relate to past
work due to the di↵erent kind of sense inventory and datasets used.13 In addition,
while the supervised approach is novel and there may be some scope to use it on top
of unsupervised methods,14 the requirement of annotated sense frequency data is very
limiting.

Out of these methods for unsupervised first sense and sense distribution learning,
we believe the method most suitable for our aims of unsupervised all-words sense
distribution learning, which can be applied generically across languages, is the HDP-
WSI method of Lau et al. (2014). Firstly, it is the most widely applicable, because:
(1) it does not require preprocessing such as parsing of the input corpus, which would
limit the languages it could be applied to; (2) it can be applied to any sense inventory
that contains glosses;15 and (3) it doesn’t require any kind of sense-labelled data,
which is expensive to obtain. Secondly, it has been shown to perform strongly on
WordNet— the sense inventory used in all cross-method comparisons that we are
aware of — with performance in terms of first sense learning at least on par with
competing methods, and performance in terms of overall sense distribution quality
superior to others. Finally, because of the two-step process consisting of WSI followed
by topic–sense alignment, the WSI results can be saved to provide an additional sense
resource. This would allow trivial re-estimation of sense frequencies for new sense
inventories, for example.

13For example, it is unclear how fine- or coarse-grained their sense inventory is, so accuracy
numbers are di�cult to interpret.

14For example, by using automatically learnt general domain sense frequencies from unsupervised
learning as training data for domain adaptation.

15This allows application to resource-poor languages that only contain simple gloss-based sense
inventories.
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2.2.2 Unsupervised WSD

We now present a high-level review of past work on unsupervised WSD (excluding
methods based on first sense learning, which have been thoroughly covered above).
Although this is not quite the same problem as sense distribution or first sense learn-
ing, it is related in that an accurate unsupervised WSD method could infer sense
frequencies by disambiguating usages over an entire corpus, and counting the number
of usages disambiguated with each sense. Because there has been substantial work on
this topic and it is only indirectly related to our aims, we do not delve into individual
papers, but instead present a general overview of the subfield.

One of the oldest families of techniques is based on methods that calculate the
similarity between senses, usually using WordNet. Examples of such sense similar-
ity methods include those of Lesk (1986) and Banerjee and Pedersen (2003), which
compare the word overlap between sense glosses, or that of Jiang and Conrath (1997),
which computes similarity using the WordNet graph structure. Unsupervised WSD
can be performed using these similarity methods on a per-usage basis, by comparing
each possible sense of the target word to all possible senses of the surrounding context
words.

Another major family of methods use structural or graph-based methods to simul-
taneously disambiguate all words within some context. This can involve performing
all-words WSD at a per-sentence level (Navigli and Velardi 2005; Chen et al. 2014),
or at a per-document level (Galley and McKeown 2003; Boyd-Graber et al. 2007).
What these methods have in common is they make use of known relationships be-
tween senses to guide this simultaneous disambiguation. These relationships are often
based on theWordNet graph (Galley and McKeown 2003; Navigli and Velardi 2005;
Boyd-Graber et al. 2007) but can also be from other sources such as vector repre-
sentations of senses (Chen et al. 2014). Disambiguation can be performed for all
words at once within the context after fitting some probabilistic model (Boyd-Graber
et al. 2007) or extracting relationships (Galley and McKeown 2003) within the con-
text. Alternatively, it can be performed iteratively one word at a time, using the re-
sults of earlier steps to refine later disambiguation choices (Navigli and Velardi 2005;
Chen et al. 2014).

A final kind of unsupervised approach involves fully- or semi-automatically ex-
tracting sense-labelled data. This can be done by automatically performing web
searches (Agirre and Martinez 2004), or by making use of parallel corpora (Ng et al.
2003). These methods usually involve making some kind of constraining assumption
to facilitate automatic extraction; for example, if a sense of some word has a monose-
mous16 synonym then any usage of the word containing the synonym belongs to that
sense (Agirre and Martinez 2004), or that there is a direct correspondence between
the senses of a word in some primary language and its possible translations in a sec-
ondary language (Ng et al. 2003). Although these methods are mostly automatic,

16This means the word has only a single sense.
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some small amount of annotation is sometimes required; for example, the method
of Ng et al. (2003) requires that for each word in the primary language, all possible
secondary language translations are labelled with their corresponding primary lan-
guage sense. These methods allow WSD to be performed by automatically generating
training data that can be fed into a generic supervised WSD system.

In addition to the fact that these methods do not address the exact problem we are
concerned with, they are also limited in that they produce disambiguation results for
a specific sense inventory. Therefore, if we were to adopt them for language-wide sense
resource creation, we would only obtain frequency data for a single sense inventory.
In contrast, the HDP-WSI method of Lau et al. (2014) produces data that can easily
be re-aligned to multiple sense inventories. On the other hand, these unsupervised
WSD methods could be seen as complementary to our aims; for example, they could
be combined with the results of unsupervised all-words sense distribution learning,
using ensemble methods such as that of Brody et al. (2006).

2.2.3 Word Sense Induction

We conclude our review of the relevant sense learning literature with a brief
overview of the past work on word sense induction (WSI). WSI is the problem of
automatically inducing sense inventories from data, which can then be used for dis-
ambiguation, as opposed to using fixed inventories like WordNet (Navigli 2012).
WSI is related to our aims in that it could be applied to learn language-wide sense
frequencies for an automatically induced sense inventory. In addition, it is relevant to
discuss since our chosen sense learning method to build upon, HDP-WSI, is based on
performing WSI (the results of which are then aligned to an existing sense inventory).

Most WSI methods involve some kind of clustering of word usages, where the
clusters correspond to the automatically induced senses. A variety of di↵erent kinds
of techniques have been employed to do this, including graph-based methods (Véronis
2004; Navigli and Crisafulli 2010), probabilistic methods (Brody and Lapata 2009;
Choe and Charniak 2013; Yao and Van Durme 2011; Lau et al. 2012; Goyal and Hovy
2014), and spectral clustering (Goyal and Hovy 2014). In addition, word embedding-
based methods (Chang et al. 2014; Neelakantan et al. 2014) have recently been em-
ployed, which also learn vector representations of the induced senses in the same space
as word vectors.

An alternative approach involves the clustering of words themselves, in order
to automatically induce a thesaurus-like sense repository. An example of this is
the distributional similarity method of Lin (1998), which was used as part of the
prototypical first sense learning method of McCarthy et al. (2004a). Using a word
similarity method such as this, similar words can be grouped into overlapping clusters,
and a sense inventory with similar structure to the Macquarie Thesaurus (discussed
in Section 2.2.1) can be automatically induced.

Another kind of approach again involves building an inventory by extracting
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glosses from web-based sources. For example, Faralli and Navigli (2012) propose
a method for inducing a sense inventory by mining word–gloss pairs using automati-
cally generated web search queries. Their method is semi-automatic, and bootstraps
from a supplied list of domains and domain terms to create a hierarchical sense inven-
tory, where the mined glosses for each term in the inventory are grouped by domain.
This kind of hierarchical inventory supports both coarse-grained (domain-level) and
fine-grained (gloss-level) disambiguation.

The WSI method employed by HDP-WSI is that of Lau et al. (2012), which follows
a probabilistic clustering-based approach using topic modelling. Because it has been
shown to achieve results competitive with the state-of-the-art in WSI, and it comes
with a proven method to accurately align its results to existing sense inventories such
as WordNet, we choose not to experiment with any of these other WSI methods.
However, because HDP-WSI is based on HDP— which is a general-purpose topic mod-
elling algorithm — it has the potential to be customised and improved by substituting
HDP for other topic modelling algorithms. This motivates the next section, in which
we provide a brief overview of some of the recent literature on topic modelling.

2.3 Topic Modelling

In the previous section we provided a thorough overview of the relevant sense
learning literature, and justified our decision to build on HDP-WSI for our aims of
language-wide sense distribution learning and resource creation. However, it is a
modular method based on topic modelling, and thus could potentially be customised
and tailored for our aims by replacing the HDP topic modelling algorithm. Given
this, we provide a brief review of some of the recent literature on topic modelling.

In general, topic modelling refers to a family of probabilistic modelling methods,
which model document collections using some kind of latent “topic” variables. These
topic variables are shared between documents, and typically provide a kind of soft-
clustering mixture model for the document collection. Perhaps the most prototypical
topic modelling method is LDA (Blei et al. 2003), which is based on a directed graph-
ical model, and uses a fixed number of topics that is decided as a hyperparameter.
Subsequently HDP was proposed (Teh et al. 2006), which is a nonparametric exten-
sion of LDA based on Dirichlet processes (Ferguson 1973) that automatically learns
the “right” number of topics to use. This algorithm provides the basis of HDP-WSI,
and is discussed in more detail in Section 3.2.2.

Subsequent work on LDA-like topic modelling has followed a couple of di↵erent
tracks. One direction has been the creation of more e�cient inference algorithms. An
example is the recent table indicator sampling algorithm (Chen et al. 2011), which is
a Gibbs sampling algorithm that has been demonstrated to converge faster and more
accurately than competing approaches. In addition, there has been work on improving
the underlying probabilistic models. For example, Teh and Jordan (2010) extended
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HDP by using Pitman-Yor processes (Pitman and Yor 1997) instead of Dirichlet
processes, which is a better theoretical fit for language data due to Zipf’s Law (Zipf
1936; Zipf 1949). Subsequently, Buntine and Mishra (2014) extended HDP further to
create HCA,17 by also introducing a burstiness (Doyle and Elkan 2009) component,
which models a natural language phenomenon where words used at least once in
a discourse are disproportionately more likely to be used subsequent times.18 In
addition, they make use of the table indicator sampling algorithm of Chen et al. (2011)
for fast inference, although this comes at the cost of HCA using a fixed number of
topics, like LDA.19 However, they also challenge the wisdom that being nonparametric
is important, and argue that as long as enough topics are used and the inference
algorithm is accurate, the presence of extra junk topics will be benign.

In addition to the work on LDA-like topic modelling, there has been work on
alternative topic modelling paradigms. One such approach has involved the incor-
poration of WordNet structure into the probabilistic graphical model, in order to
explicitly model word senses (Boyd-Graber et al. 2007). However this was not very
successful, and it did not accurately model WSD as hoped. Another kind of approach
has been based on undirected graphical models, for example using models based on
restricted Boltzman machines (Salakhutdinov and Hinton 2009; Larochelle and Lauly
2012) or Markov random fields (Xie et al. 2015). It is argued that these kinds of
approaches better model discrete data such as text than LDA-style models, and they
have achieved competitive results in terms of evaluation metrics such as perplexity
(which is a measurement of how well the model fits data).

Of these topic modelling methods, we choose to experiment with the HCA method
of Buntine and Mishra (2014). This is because it not only achieves strong results in
terms of perplexity, but has been shown to be over an order magnitude faster than
HDP, which is important for us given our aim to apply sense distribution learning on
a very large (language-wide) scale. In addition, it is very similar to HDP— it follows
the same LDA-like modelling approach — which means it can probably be substituted
successfully without too much work. In contrast, the alternate undirected graphical
model-based approaches are quite di↵erent, so they may not be as straightforward to
apply in our sense distribution learning framework. In addition, unlike with HCA we
could not access readily usable implementations of these methods. Given these rea-
sons we elected to not experiment with them, and to instead leave such investigation
to future work.

17See Section 3.2.2 for a more detailed description of HCA.
18This is true even after controlling for the topic of discourse.
19The table indicator sampling algorithm relies on the assumption of a fixed number of topics.
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2.4 Multiword Expression Analysis

One major gap in the past work on sense learning methods is that, except for some
minor exceptions discussed below, these methods have only been applied to simplex
lemmas. In order to address this gap and include multiword expressions (MWEs)
in our sense distribution resource creation, we need to extend our sense distribution
learning methodology to MWEs. As discussed in Section 1.1, this introduces chal-
lenges such as identifying MWE usages from unlabelled text. To this end, we provide
a brief overview of some of the relevant literature dealing with the identification and
disambiguation of MWEs.

One strand of research has dealt with identifying usages of particular kinds of
MWEs, based on expected patterns in how they are used. For example, Kim and
Baldwin (2010) and McCarthy et al. (2003) both dealt with identifying usages of
verb particle constructions, such as stand up, while Lapata and Lascarides (2003)
addressed the identification of compound nouns. In addition, there has been some
work on general-purpose MWE identification using supervised learning (Schneider
et al. 2014). However, to the best of our knowledge there has been no work on
general purpose unsupervised MWE identification, which is what we would need to
apply sense distribution learning on a language-wide scale to all kinds of MWEs.

Another strand of research deals with disambiguation of MWEs between literal
and idiomatic interpretations. As an example, the MWE red herring has a literal
interpretation (a kind of fish that is red) and an idiomatic interpretation (a distrac-
tion). A range of di↵erent kinds of approaches have been used for this task, including
supervised methods that are trained on labelled usages of the MWEs being disam-
biguated (Hashimoto and Kawahara 2008), supervised methods that are trained on
a fixed set of MWEs but generalise to MWEs outside the training set (Fothergill
and Baldwin 2012), or unsupervised methods (Fazly et al. 2009). Although idiomatic
versus literal interpretations could be viewed as di↵erent senses, this is not quite the
same problem as we are wanting to address, because a given MWE can have multiple
di↵erent idiomatic or literal senses. For example, the MWE old man has a father

sense and a common wormwood sense, which are both idiomatic.
There has also been some work on identifying and disambiguating named entities

(for example names or places) (Yosef et al. 2011; Moro et al. 2014). These often consist
of multiple words, and therefore could be viewed as a kind of MWE; for example,
we may wish to determine whether San Francisco refers to the United States city or
one of the many other cities with the same name. However, this again does not solve
the problem we are interested in, since methods for named entity recognition make
use of rich knowledge sources and very specific kinds of information not available for
general WSD.

Finally, very recently there has been some work on supersense tagging of MWEs,
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as set out by Task 10 of SemEval-2016 (Schneider et al. 2016).20 This task in part
involves extracting MWEs21 from text (which the authors of the task describe as
segmenting the text into “minimal semantic units”), and labelling occurrences of
these MWEs with their correct supersense. Supersenses are an extremely broad
version of senses; the task involves 26 di↵erent noun supersenses in total (such as
person, location, or time), and 15 di↵erent verb supersenses (such as motion or
communication), which are shared between all nouns and verbs respectively. How-
ever, because the distinctions between supersenses are extremely coarse-grained com-
pared to senses (even compared to relatively coarse-grained sense inventories), and
the set of supersenses doesn’t contain features standard to regular sense inventories
such as glosses, this is a very di↵erent task. Therefore, it is reasonable to believe that
methods for supersense disambiguation will not translate to general WSD.

In summary, although there is some relevant work on MWEs that could be lever-
aged to address our sense learning aims — both with regard to disambiguating be-
tween MWE senses, and identifying usages of MWEs in unlabelled text – this work
either deals with very specific kinds of MWEs and sense distinctions, or requires la-
belled data. Therefore, given that we want to work with unlabelled data to learn
senses across all kinds of words, we can conclude that there are no existing methods
for either of these tasks that satisfy our requirements.

2.5 Summary

We have provided an overview of the existing work relevant to our aim of language-
wide sense distribution learning. In Section 2.2 we provided a thorough overview of
the work on sense learning, focussing mostly on existing methods for first sense or
sense distribution learning, and identified HDP-WSI as an appropriate method to build
on top of. This is because it has achieved state-of-the-art results in sense distribution
learning, it is widely applicable across languages and to any sense inventory containing
glosses, and it also produces WSI output that is competitive with the state-of-the-art.
In addition, it is modular and can be easily customised by replacing its topic modelling
component using other topic modelling algorithms. Then in Section 2.3 we provided
an overview of some of the recent work on topic modelling, where we identified HCA
a promising method that could possibly be used in place of HDP in HDP-WSI to
better tailor it for our aims, particularly in terms of reducing computation time.
Finally, given that we wish to apply our sense distribution learning to MWEs as
well as simplex lemmas, in Section 2.4 we provided an overview of the past work on
identifying and disambiguating MWEs, where we concluded that none of the existing

20At the time of the submission of this thesis, the proceedings containing solutions to this task
have not yet been published.

21This means learning new MWEs, as opposed to MWE identification, which means recognising
occurrences of known MWEs.
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methods are appropriate for our aims.
In the literature that we have reviewed, there are a few obvious gaps that we aim

to address with our research. One is that although there has been extensive work
on sense distribution learning and related problems, none of this work has addressed
the problem of scalability, and e�ciently applying this learning on a language-wide
scale. Also, there has been no work in applying any kind of general-purpose sense
learning to MWEs; all past work on disambiguating MWEs has dealt with very specific
kinds of distinctions (such as between di↵erent named entities, between idiomatic
and literal interpretations, or between di↵erent supersense classes). Furthermore,
applying unsupervised all-words sense distribution learning to MWEs introduces the
additional challenge of identifying MWE usages for all kinds of words without labelled
data, which has not been adequately addressed in past work.

Now that we have analysed the existing literature with regard to how it relates to
our research aims, and have identified appropriate methods from this literature that
can be used to address these aims, the next step is to detail the existing resources and
methods from past work that we use in our experiments. This will then provide the
foundation to describe these experiments. In the next chapter we provide a thorough
description of these background resources and methods.
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Background

3.1 Resources and Tools

3.1.1 Introduction

In this section we provide a detailed description of the resources used in our
investigation. This includes: (1) sense resources, including sense inventories and sense
frequency resources; (2) text resources, which are used to train our unsupervised
learning methods; (3) NLP resources, which are used to perform various kinds of
text-processing tasks as minor components of our experiments; (4) crowdsourced
annotation resources, which are used to e�ciently obtain high-quality annotated data
for the purpose of evaluating our methods; and (5) cloud computing resources, which
we employ to facilitate sense learning on a language-wide scale. We proceed with an
overview of each of these resource categories in turn.

3.1.2 Sense Resources

WordNet

The sense inventory used for all of our English experiments is Princeton Word-
Net (Fellbaum 1998) (or simply WordNet for brevity).1 The structure of Word-
Net is based on synsets, where each synset corresponds to a set synonyms. Specifi-
cally, each sense of any given lemma corresponds to a separate synset, which contains
that lemma and all other lemmas that are synonyms with respect to that sense.
For example, the banking company sense of bank in WordNet corresponds to a
synset containing the lemmas bank , depository financial institution, banking concern
and banking company . These synsets define the synonym relationship in WordNet:
lemma l

1

is a synonym of lemma l
2

if and only if they belong to a common synset.

1Note that when we refer to WordNet in this thesis without qualification, we are referring to
Princeton WordNet. Furthermore, except where stated otherwise, we are referring to version 3.0.

22
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Language Sense Inventory
Japanese Japanese WordNet (Isahara et al. 2008)
Italian MultiWordNet (Pianta et al. 2002)

Mandarin Chinese Open WordNet (Wang and Bond 2013)
Indonesian WordNet Bahasa (Mohamed Noor et al. 2011)

Table 3.1: Summary of the non-English WordNet sense inventories used from Open
Multilingual WordNet.

These synsets are organised in a network based on di↵erent kinds of lexical rela-
tionships. An example of such a relationship is hypernymy: s

1

is an hypernym of s
2

if and only if s
1

is a generalisation of s
2

. Correspondingly, a lemma l
1

is a hypernym
of lemma l

2

if and only if l
1

belongs to a synset that is a hypernym of some synset
of l

2

. For example, bank is a hypernym of commercial bank , because a commercial
bank is a kind of bank (so bank is a generalisation of commercial bank).2 In addition
to hypernymy there are several other lexical relationships in WordNet, including
hyponymy (which is the reverse of hypernymy). However, the only relationships we
use in this thesis are synonymy and hypernymy, so we do not discuss these other
relationships any further.

Sense distinctions in WordNet are very fine grained, so sense learning with this
inventory is a di�cult task (Palmer et al. 2007; Hovy et al. 2006). For example, the
lemma bank has separate banking company and bank building senses, even though
arguably each of these is replaceable with a single financial bank sense. Indeed, the
lemma bank contains 10 separate noun senses in total, and an additional 8 separate
verb senses!

Open Multilingual WordNet

The Japanese, Italian, Mandarin, and Indonesian sense inventories used to create
the non-English data in LexSemTm (in Section 5.2) all come from Open Multilingual
WordNet (OMW: Bond and Paik (2012)). OMW is a collection of sense inventories
covering many languages, all under open-source licences. These inventories have the
same network-based structure as Princeton WordNet, and therefore are referred to
as WordNet’s. The specific sense inventories we use from OMW are summarised in
Table 3.1. These non-EnglishWordNet’s were accessed using the Natural Language
Toolkit (NLTK: Bird et al. (2009)).

2Technically hypernymy is usually defined as a transitive relation, meaning if s
1

is a hypernym of
s
2

and s
2

is a hypernym of s
3

, then s
1

is a hypernym of s
3

. However, in all cases where it is used in
this thesis we refer to immediate hypernymy, meaning there is a direct “is-a” relationship between
the two synsets or lemmas.
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SemCor

SemCor (Miller et al. 1993) is a 220,000 word corpus manually annotated with
WordNet sense tags, which accompanies WordNet. It is based on a subset of the
Brown Corpus (Kucera and Francis 1967), which is a balanced corpus of mid-20th
century American literature. SemCor is often treated as the de-facto standard source
of sense frequencies: SemCor sense frequencies are often used for the purposes of
unsupervised WSD with the MFS heuristic, which is frequently employed as a strong
benchmark in the WSD and sense distribution learning literature (for example in
McCarthy et al. (2004a), Lapata and Keller (2007), and Bhingardive et al. (2015)).
Furthermore, WordNet lists SemCor frequencies with each sense, and orders its
senses in descending order based on these frequencies.

However as discussed in Section 1.1, SemCor leaves much to be desired as a
source of sense frequencies, due to the lack of annotation coverage (most lemmas
have no or very few sense annotations), the age of the data (language usage has
changed significantly since the mid-20th century), and inconsistencies because of the
source of the data (the Brown Corpus is based on literature, which often employs
unusual word senses that do not reflect everyday language use, and also fails to cover
many topics, for example topics related to science).

Because of its status as the de-facto standard for WordNet sense frequencies,
we use SemCor extensively in our experiments as a sense distribution benchmark,
and in Section 5.3 we investigate to what extent our LexSemTm sense distributions
can supplement or replace SemCor.

3.1.3 Text Resources

BNC

The first corpus used in our experiments is the British National Corpus (BNC:
Burnard (1995)), which is a balanced English corpus. This corpus was previously
utilised by Koeling et al. (2005), who used it to evaluate the first sense learning
method of McCarthy et al. (2004a). They introduced a set of 40 English nouns
(which we refer to as L

bnc

), and annotated a subset of the BNC usages for each
of these nouns with WordNet 1.73 senses. From these annotations we can obtain
gold-standard sense distributions for each lemma in L

bnc

(by maximum likelihood
estimation), which can be used to evaluate candidate sense distributions for L

bnc

lemmas using the metrics discussed in Section 3.2.4.
We use this corpus extensively in our experiments in Chapter 4 in order to opti-

mise sense distribution learning for language-wide applications. In these experiments
we use the same same set of usages for each lemma in L

bnc

as training data, as in prior

3Note that because the corpus is tagged with WordNet 1.7 rather than WordNet 3.0 senses,
all experiments we performed using the BNC corpus (as well as the Sports and Finance corpora
discussed below) were done using WordNet 1.7.
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work with this corpus (including that of Koeling et al. (2005) and Lau et al. (2014)),
which had previously been preprocessed using tokenisation, POS-tagging, and lem-
matisation. These preprocessing steps are described in more detail in Section 3.1.4.

Sports and Finance

In addition to the domain-neutral BNC corpus, Koeling et al. (2005) also pro-
duced gold-standard WordNet 1.7 sense annotations for the lemmas in L

bnc

for two
domain-specific corpora. These corpora, which we refer to as Sports and Finance,
were obtained from the larger Reuters corpus (Rose et al. 2002). The Reuters corpus
consists of documents from a variety of domains, and these Sports and Finance
corpora were obtained by selecting the documents from the Reuters corpus in the
sports and finance domains respectively.

We use this corpus in addition to BNC for some of our optimising experiments in
Chapter 4, in cases where we wish to be more sure of our conclusions and confirm them
over a wider range of data. These corpora were also used by Lau et al. (2014) in their
evaluation of HDP-WSI, along with BNC. As with BNC, the usages in the corpus had
previously been preprocessed using tokenisation, POS-tagging, and lemmatisation.

EnWiki

For the purposes of performing language-wide sense distribution learning and pro-
ducing LexSemTm (see Section 5.2), which is our attempt to supplement or replace
SemCor, we use corpora based on Wikipedia. This was chosen because of its ready
availability, its wide coverage over many topics, and because its language use is rela-
tively formal and of high quality.

The specific corpus we use for English, which we refer to as EnWiki, is based
on an English Wikipedia dump dated 2009-11-28.4 This dump had previously been
tokenised and POS-tagged (using the maximum entropy model) with OpenNLP.5 In
addition we performed lemmatisation, giving two versions of each section: a surface
(unlemmatised) version, and a lemmatised version.

MultiLingualWiki

Analogous to EnWiki, the corpus we use for producing the non-English data in
LexSemTm is also based on Wikipedia. We refer to this corpus as MultiLingual-
Wiki, which covers 4 languages: Japanese, Italian, Mandarin, and Indonesian. This

4We this dump because it was readily available and had already been POS-tagged, which is a
computationally expensive process.

5

https://opennlp.apache.org/



Chapter 3: Background 26

corpus was mined from publicly available Wikipedia text dumps for each language,6

and from each dump text was extracted using WikiExtractor with default settings.7

As with EnWiki, the text had previously been preprocessed using tokenisation and
POS-tagging. Preprocessing was performed using MeCab for Japanese (Kudo et al.
2004), Freeling for Italian (Padr et al. 2010), Stanford tools for Mandarin (Tseng
et al. 2005; Chang et al. 2008), and the process built in the creation of the NTU-MC
for Indonesian (Tan and Bond 2014).

3.1.4 NLP Resources

Tokenisation

Tokenisation is the process of breaking text into individual “tokens”, which can
then be used as the input for text algorithms such as topic modelling. This is mostly
a simple problem for English (except for dealing with punctuation), but is more chal-
lenging for languages such as Japanese or Chinese where text is not conventionally
broken up into separated words. Tokenisation in our experiments is performed us-
ing the same processes for each language used in the creation of the EnWiki and
MultiLingualWiki corpora (see Section 3.1.3).

POS-tagging

POS-tagging is the process of labelling each token in some text with its part of
speech (POS), such as noun or verb. Again, this is done using the same methods for
each language used to create EnWiki and MultiLingualWiki (see Section 3.1.3).

The sets of POS-tags used for each language are based on the Penn Treebank for
English (Marcus et al. 1993), IPAdic for Japanese (Asahara and Matsumoto 2003),
Penn Chinese Treebank for Mandarin (Xue et al. 2005), and the Bahasa POS-tags
used by Pisceldo et al. (2009) for Indonesian. The actual POS-tags in each of these
sets are more complex than noun or verb, for example. However, for the purposes of
our experiments, where we match the POS-tags of tokens with those of ourWordNet
and OMW lemmas, we manually mapped the POS-tags in each of these sets to “noun”,
“verb”, “adjective”, “adverb”, or “other”.

Lemmatisation

Lemmatisation is the process of reducing words in text to their dictionary form,
so that text containing di↵erent inflected forms of the same word can be compared.

6The specific Wikipedia text dumps used for each language were jawiki for Japanese, itwiki
for Italian, zhwiki for Mandarin, and idwiki for Indonesian. All of these were accessed in June,
2014.

7

http://medialab.di.unipi.it/wiki/Wikipedia_Extractor
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For example, lemmatisation would reduce both throwing and threw to throw . Lem-
matisation was used in our experiments with English data, and was performed using
Morpha (Minnen et al. 2001).

Stopword Removal

In order to reduce the impact of stopwords, which are highly frequent, non con-
tent bearing words (such as and or at), we removed these from text in most of our
experiments. This process is called stopword removal, and is performed by removing
every word contained in a supplied stopword list. Stopword removal is applied to
every lemma usage and sense gloss in order to perform HDP-WSI, as described in
Section 3.2.3.

We produced stopword lists for each language by merging multiple freely available
stopword lists for each language found online, and expanding these with all words
from the respective corpora accounting for over 0.1% of the total words in the corpus.
Finally these lists were pruned manually by removing all words that we deemed to
be obviously content bearing (for example school for English). We erred on the side
of using fairly large stopword lists, because stopword removal has the added benefit
of reducing the computation time of topic modelling, which is useful given our aim
of large-scale application of sense distribution learning.

3.1.5 Crowdsourced Annotation Resources

Amazon Mechanical Turk

The main resource we used to obtain annotated data, for the purposes of evaluat-
ing our LexSemTm sense distributions in Section 5.3 and Section 5.4, was Amazon
Mechanical Turk (AMT). AMT is a platform for crowdsourcing “human intelligence”
tasks, where workers are asked to annotate some kind of data. AMT has been exten-
sively used to produce annotated data for NLP research (Callison-Burch and Dredze
2010), and previous work has demonstrated that it can be used to produce annotated
data equal in quality to that from expert human annotators, using a small number
of non-expert AMT workers per annotation item (Snow et al. 2008).

The workflow of AMT consists of providing an HTML template for the entire task,
as well as a number of batches to be annotated, where each batch consists of a set of
items to be annotated, along with the data to fill the HTML template and generate
the web form that is supplied to workers who annotate these items. An annotation
task can be customised by specifying the number of annotations required for each
batch of items, as well as minimum quality requirements of workers. In all of our
experiments using AMT, we set a minimum requirement of a 95% lifetime approval
rating for annotation tasks, in order to ensure decent quality workers.
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MACE

MACE (Hovy et al. 2013) is a tool for analysing the output of multi-item, multi-
annotator annotation tasks such as from Amazon Mechanical Turk. It assumes that
we have a pool of items to be annotated and a pool of annotators, that each item has
been annotated by one or more annotators, and that annotation values are discrete
and global (shared between all items). MACE works by providing a probabilistic
framework for modelling annotator quality and annotator bias in such a scenario,
which can be fit to data. Furthermore, it allows some of the items to be used as
controls by providing the “correct” annotations, which can help guide the fitting of
the model (in other words, it allows for semi-supervised learning).

The input of MACE consists of a matrix of annotations, where rows correspond to
items to be annotated, columns correspond to annotators, and each cell corresponds
to the annotation value of the given item by the given annotator (possibly empty).
Annotation values are assumed to be categorical (provided in the input as integers).
The output of MACE consists of its estimate of the true label of each item.8 In all
experiments where we use MACE, we run it using variational Bayes training under
otherwise default settings.

3.1.6 Cloud Computing Resources

Google Compute Engine

We used the Google Compute Engine (GCE)9 for running our large-scale, sense
distribution learning experiment to create LexSemTm (which is discussed in Sec-
tion 5.2). GCE is a cloud computing service that allows virtual machines (VMs) of
di↵erent specifications to be booted up, used for computation, and shut down on com-
mand. This service makes our large-scale learning tractable, which would otherwise
have taken several years of computation if run on a single-core machine, for example.
Sense distribution learning using GCE was done using 640 VMs,10 with a separate
batch of lemmas processed per VM.11

3.1.7 Summary

We have presented a detailed summary of the key resources and tools used in
our experiments. In the next section we present the methods from past work that

8In addition it provides estimates of the quality of each annotator, however we do not use this in
our experiments.

9

https://cloud.google.com/compute/

10These were n1-highmem-16 VMs (16 virtual cores and 104GB RAM) running Ubuntu 14.04,
with 30GB of local persistent disk (non-SSD) each.

11Computation on each VM was performed in parallel using 16 processes and a producer-consumer
architecture.
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we use, which together with these resources and tools provide the backbone of our
experimental methodology.

3.2 Methodology

3.2.1 Introduction

We now provide a detailed overview of the methodology from past work, which
provides the remaining foundation for our experimental design. We first describe the
topic modelling methods — HDP and HCA— which form the cornerstone of our sense
distribution learning. Next we build on our discussion of topic modelling to describe
the HDP-WSI method of Lau et al. (2014) for sense distribution learning, which we
extend and optimise for large-scale application in Chapter 4. Finally, we provide a
quick description of the existing evaluation metrics for sense distributions, which we
use to measure sense distribution quality in our experiments.

3.2.2 Topic Modelling

HDP

HDP (Teh et al. 2006), which was introduced in Section 2.3, is a nonparamet-
ric topic modelling method for modelling document collections. In this model each
document has its own distribution over a set of latent “topic” variables, and each
topic has its own distribution over words. Given these distributions, each word in a
given document is assumed to have been generated independently, by first sampling
a topic from the document’s distribution over topics, and then sampling a word from
that topic’s distribution over words. Because these latent topics are shared between
documents, this model could be viewed as a probabilistic mixture model. HDP is
described as nonparametric because it automatically learns the “right” number of
topics to use.12

HDP is a Bayesian model, which means it provides a probabilistic model for how
the document distributions over topics and the topic distributions over words are gen-
erated, as well as the words themselves. This model is defined in terms of Dirichlet
processes (Ferguson 1973), which can be understood as infinite dimensional ana-
logues of the Dirichlet distribution. Given a base probability distribution as input,
the Dirichlet process randomly generates a new probability distribution over the same
support as the input distribution, by sampling a countably infinite number of observa-
tions from it. Formally, HDP is based on a hierarchy of Dirichlet processes: a parent

12Technically it uses a countably infinite number of topics. However, in practice only a finite
number of these will be assigned to words during inference, and we interpret this as the number of
topics automatically learnt.
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Dirichlet process is run to generate the distributions over words for each topic,13 and
a child Dirichlet process is run for each document with the parent process as its base
distribution, to generate the distributions over topics for each document. In order to
be tractable, and overcome the fact that an infinite number of latent variables are
involved, this model based on a hierarchy of Dirichlet processes is commonly redefined
in terms of a stochastic process called the Chinese Restaurant Process (CRP: Aldous
(1985)), which is mathematically equivalent. In addition to the topic variables, the
CRP uses an additional set of latent variables called “table” variables. The exact
mathematical details of hierarchical Dirichlet processes and the CRP — including
the interpretation of the table variables and how they are used — are beyond the
scope of this thesis.

Inference is usually performed for HDP, given an input document collection, using
Gibbs sampling based on the CRP. Given an initial random assignment of topic and
table variables to the words in the document collection, Gibbs sampling continuously
re-samples the topic and table assignments of each word in the document collection.
In each iteration of the algorithm, the topic and table assignments of every word are
re-sampled one at a time, which is done using the conditional CRP-based table and
topic probabilities, given all of the other topic and table assignments and the observed
words.

The idea of Gibbs sampling is that the topic allocations at an arbitrary iteration
(after an initial burn in period) will follow their true conditional distribution, given
the observed data (the words in the corpora). Therefore we can run Gibbs sampling
for a large number of iterations, and the iteration with maximum likelihood (according
to the CRP probabilities of all topic and table assignments) will give an approximate
MAP estimate of the “true” topic allocations.

Given this process, the training time of HDP scales roughly linearly in both the
number of documents provided as input and the average document length, since the
amount of computation performed during each iteration of Gibbs sampling increases
roughly linearly in the total number of tokens across all documents. Similarly, the
training time of HDP also scales roughly linearly in the number of Gibbs sampling
iterations used.

In the workflow of HDP from our perspective, we first provide the tokens (words)
making up each document in the collection as input (the order is unimportant).
Then after training for a set number of iterations using Gibbs sampling, the output
is the final topic allocation for each word in every document, from the maximum
likelihood iteration. Topic allocation counts per document and word allocation counts
per topic14 can then be normalised to provide document distributions over topics and
topic distributions over words respectively.

13Using a Dirichlet distribution as its base distribution to generate each of these distributions over
words.

14This is the inverse of topic allocation counts per word type.
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HCA

HCA (Buntine and Mishra 2014) is a topic modelling method that is an extension
of HDP. It di↵ers from HDP in four important ways: (1) it is parametric, so the
number of topics to be used must be set as a hyperparameter; (2) it uses a much
more e�cient implementation of Gibbs sampling; (3) it uses Pitman-Yor processes
(Pitman and Yor 1997) in addition to Dirichlet processes; and (4) the model includes
a burstiness component.

HCA uses an algorithm for Gibbs sampling called “table indicator sampling” (Chen
et al. 2011) — the precise details of which are beyond the scope of this thesis — which
introduces an additional set of latent variables called “table indicator” variables. The
CRP can be represented using these variables in a way that allows Gibbs sampling
to be performed very e�ciently — topics and table indicators can be sampled simul-
taneously, without the need to sample tables — which the authors find to converge
much faster and more accurately than competing methods. However, this algorithm
requires that a fixed number of topics must be set as a hyperparameter, and its
computational complexity is roughly linear in the number of topics.

In addition, the probabilistic model of HDP is based on Dirichlet processes,
whereas the model of HCA also uses Pitman-Yor process, which are a generalisa-
tion of Dirichlet processes that are better able to model natural language phenomena
(Goldwater et al. 2011). By default HCA uses a Pitman-Yor process for its topic dis-
tributions over words (the parent process in the hierarchy), and Dirichlet processes
for its document distributions over topics (the child processes in the hierarchy), but
it can optionally be configured to use Pitman-Yor processes for both.

The probabilistic model is also extended compared to that of HDP by modelling
burstiness (Doyle and Elkan 2009), which is a phenomena where words occurring in
a discourse at least once are disproportionately more likely to occur additional times
(beyond what could be explained by the topic of discourse). This is achieved by
allowing every document to have its own specialised distribution over words for each
topic, obtained by applying a Pitman-Yor process to the general distribution over
words for each topic. Although this appears to introduce many more variables to
the model, in practice they lead to minimal overhead in Gibbs sampling using table
indicator sampling. This extension can optionally be turned either on or o↵.

However, despite these di↵erences in the underlying probabilistic model and in-
ference method, the overall workflow of HCA is the same as that of HDP from our
perspective. That is, we provide a set of unlabelled documents to train on, and obtain
document distributions over topics and topic distributions over words. Also as with
HDP, the training time of HCA scales roughly linearly in the number of documents
provided, and the number of Gibbs sampling iterations.
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Sentence
After their extensive financial reforms, the big banks had finally become
competitive. However despite this public sentiment had failed to improve.

Tokens
extensive financial reform big bank finally competitive public sentiment fail
improve financial #-3 reform #-2 big #-1 finally #1 become #2
competitive #3

Table 3.2: An example of a lemma usage document, for the lemma bank . The original
usage before processing is listed, as well as the post-processing tokens — including
local context tokens — that are used as the input document for HDP.

3.2.3 HDP-WSI

HDP-WSI is a method proposed by Lau et al. (2014) for unsupervised sense distri-
bution learning, which is built on top of the WSI method of Lau et al. (2012) (these
methods were introduced briefly in Section 2.2.1 and Section 2.2.3 respectively). The
method can be applied with any sense inventory containing glosses, and consists of
two phases: (1) WSI is performed using HDP topic modelling; and (2) the results
of WSI are aligned to the provided sense inventory. This two-step process is applied
separately for each lemma to be processed.

WSI Phase

In the WSI phase of HDP-WSI, WSI is performed using HDP topic modelling (see
Section 3.2.2). The input of this phase is a collection of usages of the target lemma,15

and the output is a set of topics represented by distributions over words, a distribution
over these topics for each document, and a global probability distribution over these
topics.

First HDP is run on the collection of lemma usages, by treating each usage as a
separate document. Each usage is processed by tokenisation, stopword removal, and
also optionally lemmatisation (see Section 3.1.4 for details on these preprocessing
steps), and extra local-context tokens are added for all tokens within a distance of 3
from the target lemma. An example of an input document is shown in Table 3.2.

Running HDP on this document collection produces a set of topics and distribu-
tions over words for each topic, which represent the automatically induced senses of
WSI. In addition, a global probability distribution over these topics is calculated by
labelling each document with a single topic (the topic with maximum probability for
the document), and applying maximum likelihood estimation to the resultant topic
counts.

15A lemma usage corresponds to the sentence containing the lemma, and the two neighbouring
sentences (without crossing paragraph or section boundaries), except where stated otherwise.
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Topic–Sense Alignment Phase

In the topic–sense alignment phase of HDP-WSI, the topics produced from the
WSI phase are aligned to the provided sense inventory. In order to do this, a dis-
tribution over words is created from the gloss of each sense. Each gloss is processed
identically to the lemma usages (by tokenisation, stopword removal, and optionally
lemmatisation), and the resultant token counts are converted into a probability distri-
bution by maximum likelihood estimation. Based on these gloss distributions and the
results of WSI, a prevalence score is calculated for each candidate sense, si, according
to:

prevalence(si) =
TX

j=1

(sim(si, tj)⇥ P (tj)) (3.1)

where T is the total number of topics, tj is the j’th topic, P (tj) is the probability
of tj according to the global distribution over topics from WSI, and sim(si, tj) is
the similarity between si and tj. Similarity between senses and topics is calculated
according to:

sim(si, tj) = 1� JSD(si||tj) (3.2)

where JSD(si||tj) is the Jensen Shannon divergence (described in Section 3.2.4) be-
tween the gloss distribution of sense si and the distribution over words of topic jj.

Finally, the prevalence scores for each candidate sense are normalised to produce
a distribution over these senses.

3.2.4 Sense Distribution Evaluation Metrics

JSD

The first metric we use for evaluating sense distribution quality is Jensen Shannon
divergence (JSD). JSD is a measure of divergence between two probability distribu-
tions, taking values between 0 (distributions are identical) and 1 (distributions have
no overlap). Given a candidate sense distribution and a gold-standard distribution
for the same lemma, this metric is equal to the JSD between the candidate and
gold-standard distributions.

The purpose of this metric is to evaluate the entire shape of the distribution
— including the ranking of senses and the entropy of the distribution — not just
the accuracy of the first sense prediction. JSD was first used for evaluating sense
distribution quality by Lau et al. (2014).
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ERR

The second metric we use for evaluating sense distribution quality is the error rate
reduction (ERR) of MFS-based WSD, as was also used by Lau et al. (2014). Given
a candidate sense distribution and a gold-standard distribution for the same lemma,
ERR is calculated according to:

ERR = 1� Acc
UB

� Acc

Acc
UB

=
Acc

Acc
UB

(3.3)

where Acc is the WSD accuracy using the MFS heuristic with the candidate sense
distribution,16 and Acc

UB

is the upper bound accuracy obtained by using the MFS
from the gold-standard distribution.

The purpose of this metric is to evaluate the quality of sense distributions for
the specific purpose of unsupervised WSD using the MFS heuristic, where all that
matters is the quality of the first sense prediction.

3.2.5 Summary

In this section we have provided a detailed description of the methods we are
adopting from past work. This includes two di↵erent methods for topic modelling
(HDP and HCA), the HDP-WSI method for sense distribution learning, and the JSD
and ERR metrics for evaluating sense distribution quality. These methods provide
the foundation for our investigation into language-wide sense distribution learning,
and in the next chapter we use and extend them in order to explore how to optimise
HDP-WSI for large-scale application.

16If there is a tie for the MFS, the first-listed tied sense in the sense inventory is chosen.
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Optimising Sense Distribution
Learning

4.1 Introduction

In Chapter 2 we explored the literature on sense distribution learning, and iden-
tified HDP-WSI as an appropriate method to build on top of. In addition, since
HDP-WSI is implemented using HDP topic modelling, we explored the literature on
topic modelling and identified HCA as a possible alternative to HDP. This was in
major part due to its computational e�ciency, which is important for large-scale ap-
plication. Then in Chapter 3 we described how these methods work in detail, and
presented a selection of resources and evaluation metrics that we can use and build
upon to experiment with these methods.

In this chapter we present a series of experiments that build on this past work,
in order to address our first core research question, regarding how to extend and
optimise HDP-WSI for application on a language-wide scale. First in Section 4.2 we
explore the convergence properties of sense distribution learning, which is necessary
for large-scale application, since we need to know how few lemma usages we can use to
achieve an optimal quality versus e�ciency tradeo↵. Next, in Section 4.3 we explore
the use of HCA rather than HDP in HDP-WSI, in order to investigate whether this
can result in an improvement in either computational e�ciency or sense distribution
quality. Finally, in Section 4.4 we explore a novel variation of HDP-WSI, which tries
to achieve computation savings — as well as potentially an improvement in sense
distribution quality due to statistical sharing — by applying the topic modelling part
of sense distribution learning to clusters of multiple lemmas at once.

35
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4.2 HDP-WSI Convergence Experiments

4.2.1 Introduction

In this section we present our experiments exploring the convergence of HDP-
WSI, with respect to the number of lemma usages. In these experiments, we are
seeking to answer two core questions: (1) how many usages are needed for HDP-WSI
to converge? and (2) does the previous answer vary systematically for di↵erent kinds
of lemmas? Because the computational complexity of topic modelling is roughly
linear in the number of documents (which corresponds to the number of usages in
our context), knowing how few usages we can get away with is important for large-
scale application. Furthermore, if there are systematic di↵erences in the quantity of
training data needed for di↵erent kinds of lemmas, we could take advantage of this
to further optimise large-scale learning.

In exploring the convergence of HDP-WSI, we are interested in the convergence of
both the mean and variance of sense distribution quality; we want our optimised sense
distribution learning method to be able to produce stable results that have converged
in expectation, and also have little volatility. In addition to this, we are interested in
exploring the convergence in terms of the number of topics produced by HDP, as this
will inform our experiments with HCA (which uses a fixed number of topics).

4.2.2 Experimental Setup

In order to explore HDP-WSI convergence with respect to the number of lemma
usages, we ran HDP-WSI on a large number of random subsets of the usages from
the BNC corpus of the corresponding L

bnc

lemmas (see Section 3.1.3). For each
of the 40 lemmas in L

bnc

, we created a large number of sense distributions using
random subsets of the lemma’s usages.1 Each distribution was generated by first
randomly choosing a number of usages to train on,2 and randomly sampling that
many usages without replacement. Then each distribution was created by running
HDP-WSI on the sampled usages, and was evaluated relative to the lemma’s gold-
standard sense distribution from the BNC corpus, using the JSD and ERR metrics
(see Section 3.2.4). Finally, the overall results for each lemma were partitioned into
40 bins of approximately equal size, according to the number of usages sampled.

By applying HDP-WSI to a large number of random subsets of the usages for each
lemma, we have produced bootstrapped data that allows the mean and standard
deviation of the evaluation metrics to be measured as a function of the number of
usages, by calculating these metrics within each bin. Although this is non-standard
bootstrapping because we sampled usages without replacement, we did this because:
(1) it reflects the actual application scenario of sense distribution learning, where we

1Approximately 810 random sense distributions were created per lemma.
2Between 500 and the maximum number of usages available, sampled uniformly.
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have to sample from a finite set of available usages (from some corpora); and (2)
it produces more precise estimates of the mean metric values due to lower variance.
In addition to allowing us to measure the convergence of the mean and standard
deviation of our evaluation metrics, this bootstrapped data allows us to produce
statistics on the number of topics produced by HDP, and how this varies as a function
of the number of lemma usages.

4.2.3 Results

Given the two sense distribution quality metrics (JSD and ERR), and the two
statistics of these metrics in each bin (mean and standard deviation), we have four sets
of core results. These results are displayed in Figure 4.1, wherein for each combination
of metric and bin statistic we plot one line per lemma (from one data point per bin).

In addition, results in terms of the number of HDP topics are displayed in Fig-
ure 4.2 and Figure 4.3. The former figure was created by binning all HDP topic
models encountered during bootstrapping, according to the number of lemma usages
(pooling all lemmas together): for each bin we created a boxplot, based on the dis-
tribution of the number of HDP topics for the topic models in the bin. The latter
figure was created by plotting the convergence of the number of HDP topics on a
per lemma basis: we used the same binning strategy as for JSD and ERR, and the
average number of topics in each bin was plotted. In order to make these results
readable, we plotted separate results for lemmas with fewer than 5,000 usages, and
those with at least 5,000 usages.

4.2.4 Discussion

First looking at the results in terms of JSD in Figure 4.1, there is an apparent
overall trend that around 5,000 to 10,000 usages are necessary for results to be stable
and converged. This is true both in terms of the mean and standard deviation of
JSD. In addition, we inspected the data manually on a per-lemma basis and found
no outliers.

From the point of view of ERR, the results are messy and less clear. This is likely
because ERR is a very discontinuous metric; its value changes when the mode of
the sense distribution changes, and therefore it can change substantially from minor
changes in the sense distribution, or can fail to change at all from large changes in
the sense distribution. As with JSD it appears that the results become much more
stable after around 5,000 to 10,000 usages, and furthermore in the case of ERR all
variance disappears after approximately 15,000 usages.

In terms of the number of topics, it is clear from Figure 4.2 that although there
is high variance when fewer than 5,000 usages are used (with up to 17 topics created
in a small number of instances), the number of topics used quickly decreases as the
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Figure 4.1: Results from our HDP-WSI convergence experiment in terms of sense
distribution quality. For each lemma in L

bnc

(using the BNC corpus), we split the
bootstrapped sense distributions into 40 bins of approximately equal size (roughly 20
distributions per bin), and calculated the JSD and ERR for each sense distribution.
For each combination of statistic (mean and standard deviation) and metric (JSD and
ERR), we plot one line per lemma from one data point per bin, based on the statistic
of the metric values in the bin. Note that for the plots using the mean statistic, the
y axis measures the di↵erence between the mean metric in each bin and the mean
metric in the final bin for the same lemma.

quantity of usages is increased. We observe that when we have more than 5,000
lemma usages, the number of topics used is almost never above 10.
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Figure 4.2: Results from our HDP-WSI convergence experiment in terms of the number
of HDP topics, for all lemmas in L

bnc

pooled together (using the BNC corpus). We
binned all HDP topic models created during the experiment based on the number
of lemma usages they were trained on, with a width of 5,000 usages per bin, and
produced a boxplot of the number of HDP topics for each bin. Note that this means
each bin contains an unequal number of models, and that the results for most lemmas
are split between multiple boxplots.

A possible explanation for the previous result is that some of the lemmas in L
bnc

with fewer available usages inherently produce a greater number of topics; indeed 18
of the 40 lemmas have fewer than 5,000 usages available in total. In other words, the
number of topics may decrease as the number of usages is increased because we are
looking at a progressively smaller set of lemmas. If this were true, it could contradict
our conclusion that HDP almost never needs more than 10 topics when enough data
is present. However, Figure 4.3 contradicts this hypothesis; it clearly shows that for
most lemmas, the average number of topics produced decreases as the number of
usages is increased. Furthermore, we can see that every lemma needs at most around
10 topics on average at convergence. We speculate that the decrease in the number of
topics with more lemma usages occurs because the patterns in lemma usages become
clearer with more data, so fewer topics are needed to explain them.

Based on these results, we can conclude by answering our initial questions. It
appears that around 5,000 to 10,000 usages are required for stable results, and this
number does not appear to vary significantly between lemmas. Furthermore, it ap-
pears that when we have enough data for stable results, the number of topics required
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Figure 4.3: Results from our HDP-WSI convergence experiment in terms of the number
of HDP topics, for each lemmas in L

bnc

individually (using the BNC corpus). We
partitioned the HDP models for each lemma into 40 bins of approximately equal size
based on the number of lemma usages used for training. A separate line is plotted
per lemma, with one data point per bin, based on the average number of HDP topics
in the bin. Separate plots are provided for low frequency lemmas (those with fewer
than 5,000 usages) and high frequency lemmas (those with at least 5,000 usages).
Note that the x axis scales di↵er significantly between these plots.
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Hyperparameter Values Description

T 10 or 20 Number of HCA topics.

hyp True or False
Whether the Pitman-Yor Process extension of HCA is
turned on for creating document distributions over
topics.

burst True or False Whether the burstiness extension of HCA is turned on.

Table 4.1: Summary of the HCA hyperparameter settings we chose to experiment with
in our HCA-WSI hyperparameter optimisation experiment. For each hyperparameter,
the possible values are provided, along with a short description.

is almost never more than 10. This latter result in particular will guide our experi-
ments with HCA topic modelling, which we describe next.

4.3 HCA Experiments

4.3.1 Introduction

Now that we have explored the convergence properties of HDP-WSI, in terms of
both sense distribution quality and the number of HDP topics produced, we turn to
our experiments trying to improve the HDP-WSI method. Since the core of HDP-WSI
involves HDP topic modelling, the method can easily be customised by changing the
topic modelling method.

In Section 2.3 we identified HCA (described in detail in Section 3.2.2) as an appro-
priate alternative topic modelling method. This was due to its similarity with HDP in
terms of the structure of the underlying model, the very e�cient inference algorithm
used, and the refinements of its underlying probabilistic model. In addition, although
this method requires a fixed number of topics to be used (unlike HDP), we found in
Section 4.2 that HDP almost never used more than 10 topics when enough training
data was provided for stable results.

Given these reasons, we proceed with a series to experiments exploring whether
HDP-WSI can be extended by replacing HDP with HCA. In particular, we wish to
discover whether using HCA results in an improvement in either training time or
sense distribution quality that isn’t at the expense of the other.

4.3.2 Experimental Setup

Because the only dependence of HDP-WSI on the output of HDP is via the topic
distributions over words and the document distributions over topics generated by
HDP, substituting HDP for HCA is straightforward: we simply run HCA instead of
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HDP, and use the corresponding topic and document distributions output by HCA.
We refer to this extension of HDP-WSI as HCA-WSI.

First we experimented with the e↵ects of HCA hyperparameter settings on HCA-
WSI. There are a large number of possible hyperparameter options, so we limited
our analysis to a small number of key settings, which are summarised in Table 4.1.
In Section 4.2 we found that the number of topics used was always less than 20, so
we trial 20 as a conservative number of topics. However, because the computation of
HCA increases with the number of topics used we want to use as few topics as possible.
Therefore, given that we also concluded from Section 4.2 that we can probably get
away with using 10 topics, we also trial this value. The other two hyperparameter
options relate to the configuration of the underlying probabilistic model. By default
the Pitman-Yor extension of HCA is only applied to the creation of topic distributions
over words, so we experiment with extending this to the document distributions over
topics as well.3 In addition, we experiment with whether the burstiness extension
of HCA is enabled or not.4 Our default setup was to use 10 topics (using as few as
possible), and turning the Pitman-Yor extension for topic distributions over words o↵
and the burstiness extension on (as recommended in the HCA documentation). We
evaluated each hyperparameter setup for all L

bnc

lemmas on the BNC corpus (see
Section 3.1.3) using 300 Gibbs sampling iterations,5 in order to decide on an optimal
setup.

Next, we experimented with the number of Gibbs sampling iterations separately
and in more detail. This choice is particularly important to us, because the running
time of HCA is roughly linear in the number of Gibbs sampling iterations. We ran
HCA-WSI multiple times for each lemma in L

bnc

on the BNC corpus, using our
optimised hyperparameter settings. For each lemma we varied the number of Gibbs
sampling iterations from 20 to 1000 in increments of 20: in each instance we calculated
the perplexity,6 and evaluated the resulting sense distribution using JSD. From this
we could determine the minimum number of Gibbs sampling iterations needed for
HCA-WSI to consistently converge.

Given our choices of hyperparameters and the number of Gibbs sampling itera-
tions, we compared the performance of HCA-WSI to HDP-WSI. We did this compar-
ison on the BNC corpus for all lemmas in L

bnc

, as with the previous experiments.

3We enable the Pitman-Yor extension for the document distributions over topics by setting the
initial values of the corresponding discount hyperparameters to 0.05.

4We enable burstiness by setting the initial values of the concentration and discount parameters
for burstiness to 100 and 0.5 respectively, as is recommended in the HCA documentation.

5This was the number of iterations used for HDP in previous experiments in Section 4.2 and by
Lau et al. (2014). We justify using the same number here because the inference algorithm used by
HCA has been found to converge more quickly than that used by HDP (Chen et al. 2011).

6Perplexity in this instance is a measurement of how well the model fits the data it was trained
on. It is calculated as a function of the log-likelihood of the topic model on the training data, which
is normalised by the total number of tokens in all documents (this means that perplexity values for
di↵erent lemmas are comparable).
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Setup
JSD ERR

Mean JSD p Mean ERR p
T10-burst .211±.117 - .635±.402 -

T10 .212±.117 .175 .635±.402 1.000
T10-py .212±.116 .162 .635±.402 1.000

T10-py-burst .211±.116 .778 .652±.395 .317
T20 .212±.115 .979 .635±.402 1.000

T20-py .212±.116 .122 .635±.402 1.000
T20-burst .212±.117 .129 .652±.395 .317

T20-py-burst .213±.116 .013 .635±.402 1.000

Table 4.2: Results of our HCA-WSI hyperparameter optimisation experiment. For
each hyperparameter setup, we list the average JSD and ERR values for the lemmas
in L

bnc

(using the BNC corpus). In the name of each hyperparameter setup, the
prefix indicates how many topics were used, the su�x “py” is present if the Pitman-
Yor extension for document distributions over topics was turned on, and the su�x
“burst” is present if the burstiness extension was turned on. For each setup and
evaluation metric, a p value is provided comparing the metric values pairwise to those
from the default setup (T10-burst), using two-sided Wilcoxon signed rank tests.

However, since replacing HDP with HCA is a significant change and we want to be as
sure as possible that it won’t negatively a↵ect performance, we repeated this experi-
ment with the Sports and Finance corpora (see Section 3.1.3), again for all lemmas
L
bnc

. For each lemma and each corpus, we evaluated the sense distributions from each
method using JSD and ERR, and also the time taken to train the respective topic
model.7

Finally, we repeated the experiments from Section 4.2 exploring the convergence of
sense distribution quality with HCA-WSI instead of HDP-WSI,8 in order to determine
whether the previous conclusions about the minimum number of usages required still
hold for HCA-WSI.

4.3.3 Results

The results of our hyperparameter optimisation experiment are presented in Ta-
ble 4.2. We list the average JSD and average ERR for each hyperparameter setup,
as well as the p-values comparing the JSD and ERR values pairwise with those from

7We measure this time since it accounts for the majority of the computation time of HDP-WSI
and HCA-WSI. These experiments where we measured computation time were run using separate
cores on Intel Xeon CPU E5-4650L processors, on a Dell R820 server with 503GiB of main memory.

8This was performed identically to Section 4.2, except that approximately 580 sense distributions
were created per lemma, as opposed to 810 in the previous experiment.
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Figure 4.4: Results of our HCA-WSI Gibbs sampling convergence experiment. The
results from independent runs of HCA-WSI for each lemma in L

bnc

(using the BNC
corpus) were binned, based on the number of Gibbs sampling iterations (giving 20
bins per lemma, with on average 2.5 runs per bin). For each lemma, we plot the
average JSD and perplexity for each bin, plotting one line per lemma, and one data
point per bin. Note that for the JSD plot, the y axis measures the di↵erence between
the mean JSD in each bin and the mean JSD in the final bin for the same lemma.

Dataset
JSD ERR

HCA-WSI HDP-WSI p HCA-WSI HDP-WSI p
BNC .211±.117 .209±.116 .221 .635±.116 .633±.406 .715

Sports .318±.212 .318±.212 .645 .534±.434 .553±.437 .317
Finance .345±.148 .342±.146 .485 .604±.456 .630±.451 .285

Table 4.3: Results of our comparison of HCA-WSI and HDP-WSI in terms of sense
distribution quality. For each combination of corpus (BNC, Sports, and Finance)
and evaluation metric (JSD and ERR), we list the average metric value from both
methods, and a p value comparing these values pairwise (using two-sided Wilcoxon
signed rank tests).

the default setup (using two-sided Wilcoxon signed rank tests). Since no setup pro-
vided performance that was statistically significantly di↵erent than that of the default
setup, we chose to use the default setup in subsequent experiments.

Next, the results of our experiments exploring the number of Gibbs sampling
iterations are shown in Figure 4.4. There we display the convergence of the average
JSD and average perplexity as the number of Gibbs sampling iterations is increased.
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HCA.
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Figure 4.6: Results from repeating our convergence experiment in terms of JSD from
Section 4.2 with HCA-WSI. For each lemma in L

bnc

(using the BNC corpus), we split
the bootstrapped sense distributions into 40 bins of approximately equal size (roughly
15 distributions per bin), and calculated the JSD for each sense distribution. For each
statistic (mean and standard deviation), we plot one line per lemma from one data
point per bin, based on the statistic of the JSD values in the bin. Note that for the
mean JSD plot, the y axis measures the di↵erence between the mean JSD in each bin
and the mean JSD in the final bin for the same lemma.

In each case the graphs were created by grouping all data points into 20 bins of
approximately equal size (based on the number of Gibbs sampling iterations), and
the average JSD or perplexity is plotted for each bin. From these results we decided
that the 300 iterations previously used with HDP seems about right for HCA as well,
since both JSD and perplexity seem mostly converged around this point. Therefore
we continued to use 300 iterations in subsequent experiments.

Finally, given our choice of hyperparameter setup and number of Gibbs sampling
iterations, we present our results comparing HCA-WSI to HDP-WSI and repeating
the number of usages convergence experiment for HCA-WSI. We compare the quality
of sense distributions from the two methods using JSD and ERR in Table 4.3, and
for each combination of corpus and quality metric we list the p-value comparing the
quality values pairwise (using two-sided Wilcoxon signed rank tests). The comparison
of time taken by HCA versus HDP is plotted in Figure 4.5, over all lemmas in L

bnc

for all three corpora. For the sake of brevity we only present results in terms of JSD
for the convergence of HCA-WSI over varying numbers of usages (ERR results were
not significantly di↵erent), which are displayed in Figure 4.6.
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4.3.4 Discussion

The first observation we can make from the above results is that HCA-WSI seems
to be very robust to hyperparameter settings. Indeed, none of the hyperparameter
setups we tried gave results that were distinguishable from the others at a level of
statistical significance. This is perhaps not surprising, given that: (1) the input
documents (lemma usages) are very short,9 meaning that burstiness in unlikely to
be significant; (2) given the conclusions of Section 4.2 we would expect any topics
used above 10 to be unimportant; and (3) unlike the topic distributions over words,
there is not as clear a basis for using Pitman-Yor processes for creating the document
distributions over topics.10 Furthermore, HCA-WSI does not seem to be very sensitive
to the number of Gibbs sampling iterations; after around 300 iterations perplexity
has mostly converged, and JSD does not appear to change significantly compared to
its overall variance. These findings are encouraging, since it suggests we can easily
apply HCA-WSI on a large scale without worrying about biased results due to bad
hyperparameter settings.

Next, we can observe from Table 4.3 that the performance of HDP-WSI and HCA-
WSI in terms of sense distribution quality are comparable, and the methods cannot be
distinguished at any reasonable level of statistical significance with either evaluation
metric on any of our corpora (p > 0.2 in all cases). We can conclude from this that
the extensions to the HDP probabilistic model implemented by HCA do not seem to
o↵er any significant improvements on average, and also that the use of a fixed number
of topics does not seem to harm performance noticeably.

However, we can observe from the bootstrapping results in Figure 4.6 that the
overall variance in JSD as the number of usages is decreased is lower using HCA-
WSI compared to what was previously observed for HDP-WSI (as is displayed in
Figure 4.1). For HCA-WSI, we can see that the mean change in JSD for each lemma
as the number of usages is decreased is almost always less than 0.02, and never greater
than 0.04, and similarly the standard deviation of the change in JSD is almost always
always less than 0.02, and never greater than 0.05. In contrast to this for HDP-WSI,
we can see that for many lemmas, both the mean and standard deviation of the
change in JSD as the number of usages is decreased is above 0.1. This suggests that
HCA-WSI is more robust than HDP-WSI overall, with less variation in output.

Furthermore, it is clear from Figure 4.5 that HCA-WSI is significantly better than
HDP-WSI in terms of training time. Indeed, in our experiment HCA was consistently
at least an order of magnitude faster than of HDP. Given this and the previous
findings, we can conclude that there appears no good reason to use HDP-WSI for

9They are a maximum of three sentences: the sentence containing the lemma, and its neighbours
(if available).

10This is because for topic distributions over words we would theoretically expect Zipfian dis-
tributions (Piantadosi 2014), whereas we don’t have a clear theoretical expectation for document
distributions over topics (especially given that the topic variables are artificial).
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sense distribution learning rather than HCA-WSI.
Finally, the general trend in HDP-WSI convergence with respect to the number

of lemma usages displayed in Figure 4.6 is consistent with the trend for HDP-WSI
found in Section 4.2. In both cases, it appears that around 5,000 to 10,000 usages are
required for stable results.

Now that we have explored how to use more e�cient topic modelling to optimise
and extend HDP-WSI sense distribution learning to HCA-WSI, we can explore whether
there are any further extensions of HCA-WSI that can make it even more e�cient or
improve its performance. In the next and final section of this chapter, we explore one
such possible extension.

4.4 Multi Lemma Topic Modelling Experiments

4.4.1 Introduction

In Section 4.2 we explored the convergence of HDP-WSI with respect to the quan-
tity of training data to find out how little data we could use and still obtain optimal
performance, and subsequently in Section 4.3 we extended HDP-WSI to HCA-WSI by
replacing HDP topic modelling with HCA, which we found to perform comparably to
HDP-WSI in terms of sense distribution quality and the quantity of data required,
but was at least an order of magnitude faster in terms of training time and more ro-
bust. We now explore whether this improvement can be extended further by applying
HCA-WSI to multiple lemmas at once.

Previously, HDP-WSI and HCA-WSI had been applied individually to every lemma
by learning a separate topic model for each. However, it is possible that related
lemmas whose underlying topics are similar could make use of a common set of usages,
allowing one topic model to be trained per cluster of lemmas. Alternatively, it is
possible that relatively dissimilar lemmas could benefit from pooling their usages to
train a common topic model, by providing a more diverse selection of topics and
facilitating statistical sharing.

If we could get away with training only one topic model per group of lemmas
the training time of sense distribution learning could be reduced dramatically, and it
is also possible that the associated statistical sharing could result in higher quality
sense distributions. Therefore, we perform a pilot experiment exploring a variant
of HCA-WSI (respectively HDP-WSI) that performs topic modelling on clusters of
lemmas, which we name ML-HCA-WSI (respectively ML-HDP-WSI). The main aim
of this pilot experiment is to determine whether ML-HDP-WSI or ML-HCA-WSI have
merit, in which case we could optimise them to provide a more e�cient method for
language-wide sense distribution learning.
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4.4.2 Experimental Setup

In order to apply ML-HCA-WSI to a cluster of lemmas, we provide it with a set
of usages of all lemmas in the cluster, and it produces a separate sense distribution
for each lemma. As with HCA-WSI, ML-HCA-WSI has a WSI phase and a topic–sense
alignment phase. In the WSI phase we run HCA on the pooled set of usages of all
lemmas in the cluster, in order to produce a common topic model. The corresponding
topics represent a common set of induced senses for the lemmas in the cluster. How-
ever, a separate global distribution over these topics is created for each lemma, which
is done almost identically to HCA-WSI, except that we only count topic allocations for
documents that are usages of that lemma. Then in the topic–sense alignment phase
we perform alignment separately for each lemma, using the common set of topics and
the lemma’s global distribution over topics, which is done identically to HCA-WSI.
ML-HDP-WSI is defined analogously, using HDP instead of HCA.

We first experimented with ML-HDP-WSI in order to obtain statistics on the num-
ber of HDP topics required. As with our prior experiments on optimising sense distri-
bution learning, this was performed using the L

bnc

lemmas and the BNC corpus. We
ran ML-HDP-WSI on a large number of random subsets of L

bnc

(223 subsets in total),
in each case pooling all available usages of each lemma in the cluster. Our configura-
tion of HDP was the same as in previous experiments, except that we conservatively
increased the number of Gibbs sampling iterations from 300 to 1,000 since we were
operating on a larger quantity of data on average. Each of these random lemma clus-
ters was sampled by selecting a number of lemmas between 2 and 40 (from a uniform
distribution), and then selecting that many lemmas from L

bnc

without replacement.
These results were used to decide how many topics were required for ML-HCA-WSI.

Given these results, we then repeated the previous experiment with ML-HCA-WSI.
We used the same HCA setup from Section 4.3, except we conservatively increased
the number of Gibbs sampling iterations to 1,000 again. In total we ran ML-HCA-WSI
on 452 random lemma clusters.

The idea behind running these methods on a large number of random lemma
clusters is that we can measure the quality of output for each cluster, and search
for any correlations between high quality outputs and cluster features. In order
to produce quality scores for the sense distribution output of lemma clusters that
can be compared between di↵erent clusters, we defined two new metrics for this
experiment: JSD Gain and ERR Gain. JSD Gain (respectively ERR Gain) is defined
as the di↵erence between the JSD (respectively ERR) of a sense distribution created
using this method, and that of the corresponding benchmark distribution obtained
using HCA-WSI or HDP-WSI on the BNC corpus (as was obtained in Section 4.3).
Therefore, the sense distribution quality of di↵erent lemma clusters can be compared
by calculating the average JSD Gain (respectively ERR Gain) of each cluster. A
negative JSD Gain or positive ERR Gain indicates that the quality of output fromML-
HCA-WSI (respectively ML-HDP-WSI) is better than that from HCA-WSI (respectively
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HDP-WSI), and vice versa for positive JSD Gain or negative ERR Gain.
In order to search for correlations with the sense distribution quality of lemma

clusters, we experimented with two simple lemma cluster features. The first is simply
the number of lemmas in the cluster. The motivation behind this feature is that
ML-HCA-WSI may only work well on clusters of a certain size (for example, it may
only work well on small clusters). The second feature we experimented with is the
average WordNet similarity between all distinct pairs of lemmas in the cluster.
The WordNet similarity function we used for this feature is the method of Jiang
and Conrath (1997) — this method was introduced briefly in Section 2.2.2 — which
we refer to as JCN.11 This feature is intended to measure how cohesive a cluster is;
we hypothesise that clusters containing either very similar or dissimilar lemmas may
particularly benefit from ML-HCA-WSI.

Since we are using all available usages of every lemma in each cluster, we are not
achieving any savings in computation time compared to running sense distribution
learning on each lemma individually;12 in practice, if we were to useML-HCA-WSI and
achieve any savings we would need to use relatively fewer usages of each individual
lemma. Therefore this experiment is intended to provide an upper bound of the
sense distribution quality from ML-HCA-WSI. Unless it is capable of producing sense
distributions of at least similar quality to those from HCA-WSI, at least for some
subset of lemma clusters that can be separated based on cluster features, it is not
worth exploring further.

4.4.3 Results

Of the 223 HDP models trained on random L
bnc

lemma clusters from our ML-
HDP-WSI experiment, we found that in approximately 93% of instances the number
of topics used was 10 or less. In addition, the number of topics used was never greater
than 12.

As a result of this, we decided that it was appropriate to use 10 topics in our
subsequent experiment withML-HCA-WSI, as was used to create our benchmark HCA-
WSI sense distributions in Section 4.3. A summary of the results from this experiment,
in terms of sense distribution quality versus lemma cluster features, is displayed in
Figure 4.7. We plot results using our two lemma cluster features (number of lemmas
and average JCN similarity), and our two quality measures (Average JSD Gain and
Average ERR Gain).13

11Technically Jiang and Conrath’s (1997) method works on synsets, not lemmas. We calculated
the JCN similarity of a given pair of lemmas by the maximum JCN similarity between any pair of
synsets of the two lemmas from WordNet.

12This is because the running time of topic modelling is at least linear in quantity of training data.
13We chose not to plot corresponding results for ML-HDP-WSI, for the sake of brevity. However,

these results were almost identical to those for ML-HCA-WSI.
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Figure 4.7: Results of our experiment with ML-HCA-WSI, comparing the sense dis-
tribution quality of random lemma clusters (from lemmas in L

bnc

, using the BNC
corpus) to cluster features. For each combination of quality metric (average JSD
Gain and average ERR Gain) and cluster feature (number of lemmas and average
JCN similarity) we plot a scatterplot of results, where each data point corresponds
to a single lemma cluster.

4.4.4 Discussion

We can observe in Figure 4.7 that according to both quality metrics, the perfor-
mance of ML-HCA-WSI is almost always worse than that of HCA-WSI, except in a
small handful of cases. Furthermore, it is also clear that this small handful of cases
are not separable from the vast majority of cases where performance is worse, using
either lemma cluster feature.14

14We also experimented briefly with using both features together. However, there was no combi-
nation of the two features where the sense distribution quality of ML-HCA-WSI wasn’t significantly
worse on average. These results are not shown for the sake of brevity.
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This experiment was run under very generous conditions: all available usages of
each lemma were pooled together, and a very large number of Gibbs sampling itera-
tions were used. However, despite this the results fail to demonstrate that ML-HCA-
WSI is capable of producing sense distributions whose quality is not worse on average
than those from HCA-WSI. This holds even if we attempt to control for lemma cluster
features, such as the number of lemmas in the cluster or the similarity of lemmas
in the cluster. Indeed, we found that according to either sense distribution quality
metric, the ML-HCA-WSI sense distributions were worse than those from HCA-WSI
in over 95% of instances. Therefore, we conclude that performing topic modelling on
multiple lemmas at once is not worthwhile, and that we would be better o↵ performing
HCA-WSI on each lemma individually.

4.5 Conclusion

In Section 4.2 we concluded that around 5,000 to 10,000 lemma usages are required
to achieve stable results with HDP-WSI. We found this number to be very consistent
over a range of lemmas, and that there was little benefit to be gained by using more
training data than this. This is an important result for applying HDP-WSI in settings
where a potentially unbound quantity of lemma usages are available.

Then in Section 4.3 we experimented with the use of HCA instead of HDP in
sense distribution learning. We thus extended HDP-WSI to HCA-WSI, which we found
to perform almost identically in terms of sense distribution quality over a range of
lemmas and corpora. However, we found that HCA-WSI is consistently at least an
order of a magnitude faster than HDP-WSI, and is more robust than HDP-WSI, with
significantly less variation in sense distribution quality when trained on random sets
of usages. In addition, we found that the previous result for HDP-WSI regarding the
number of lemma usages required also applies to HCA-WSI, and also that HCA-WSI
does not appear to be sensitive to the hyperparameter settings used.

Finally, in Section 4.4 we experimented with ML-HCA-WSI, which is an extension
of HCA-WSI that tries to be more e�cient by running topic modelling on clusters of
multiple lemmas at once. However, we found that this extension significantly hurt the
average quality of sense distributions produced, and we failed to discover any lemma
cluster features that could be used to identify clusters where ML-HCA-WSI performs
as well as HCA-WSI.

The main outcome of this chapter is a clear blueprint for performing cost-e�cient,
language-wide sense distribution learning: HCA-WSI should be used as the sense
distribution learning method, around 5,000 to 10,000 usages of each lemma should be
used if available, at minimum around 300 Gibbs sampling iterations should be used
by HCA, and around 10 topics for HCA should be su�cient. Other HCA settings were
found to be relatively unimportant, though we can recommend using the default HCA
settings with burstiness turned on (as described in Section 4.3) as a safe setup.
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While most of these results were only obtained using the BNC corpus — except
for our experiments comparing HDP-WSI to HCA-WSI, which also used the Sports
and Finance corpora — this corpus is domain-independent, and we evaluated over
a diverse set of lemmas. Therefore, it is reasonable to believe that these results will
hold for other domain-independent corpora, which we may use to produce language-
wide sense frequencies. In addition, given that — as was decided in Section 1.2 — we
restricted our scope to English nouns, we need to hedge our conclusions accordingly,
noting that we can only make strong conclusions about this class of lemmas.

Now that we have built a clear blueprint for performing e�cient language-wide
sense distribution learning, we have addressed our first core research question, re-
garding how to optimise sense distribution learning for large-scale application. In
the next chapter we take this blueprint and apply it on a language-wide scale, in
order to address the remaining questions regarding replacing existing sense frequency
resources, and MWE sense distribution learning.



Chapter 5

Application of Unsupervised
All-words Sense Distribution
Learning

5.1 Introduction

In Chapter 4 we provided a template for e�cient large-scale sense distribution
learning. In doing so we addressed our first research question, regarding how to
optimise sense distribution learning for language-wide application. Now we apply our
optimised method in order to address the follow up questions: (1) can unsupervised
all-words sense distribution learning be used to replace or supplement existing sense
frequency resources such as SemCor? and (2) can this sense distribution learning be
applied to multiword expressions (MWEs) as well as simplex lemmas? In addition,
we address our secondary research aim of actually creating a new language-wide sense
frequency resource, using our sense distribution learning method.

First in Section 5.2 we describe the creation of LexSemTm, which is a sense
frequency dataset containing the output of HCA-WSI— including distributions over
WordNet senses for English lemmas, and the WSI output from HCA-WSI for all
lemmas, which can easily be aligned to any sense inventory with glosses — over the
vocabularies of several languages (English, Japanese, Italian, Mandarin, and Indone-
sian). We describe not only the creation of the dataset for simplex lemmas, but how
we extend HCA-WSI to MWEs. This involves proposing two simple but novel meth-
ods for identifying MWE usages, which are used to add two sets of WSI and sense
distribution data to LexSemTm for MWE lemmas.

In the subsequent sections of this chapter, we use LexSemTm in order to answer
our remaining research questions. In Section 5.3 we address the question of whether
LexSemTm can be used to supplement or replace the existing sense frequency data in
SemCor. We describe the creation of a new gold-standard evaluation dataset, which

54
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we use to answer this question in the a�rmative. Then in Section 5.4 we address the
question of sense distribution learning for MWEs. We create a new gold-standard
dataset for evaluating MWE sense distribution learning, which we use to provide a
thorough exploration of the novel tasks of MWE sense distribution and first sense
learning. In the course of this analysis we demonstrate that MWE sense distribution
learning is indeed possible, and that similar results can be obtained for this task as
for simplex lemmas.

5.2 LexSemTm Creation

5.2.1 Introduction

Throughout Chapter 4 we explored how to optimise sense distribution learning
for large-scale application. By the end of the chapter we had constructed a blueprint
for doing this, based on extending the HDP-WSI method of Lau et al. (2014) (see
Section 3.2.3) to HCA-WSI by replacing HDP with HCA (see Section 3.2.2), together
with some guidelines for applying HCA-WSI e�ciently. Most importantly we found
that: (1) around 5,000 to 10,000 lemma usages are required to be confident of stable
results; (2) around 300 Gibbs sampling iterations are required for HCA to converge;
and (3) around 10 topics is generally su�cient for HCA. In addition, we concluded
that our default HCA setup — turning on the burstiness extension of HCA, using
the numbers of Gibbs sampling iterations and topics described above, and using
otherwise default settings — was appropriate for sense distribution learning, and
that our method is robust to variations in this setup.

We now take that blueprint, and apply it language-wide across several languages
(English, Japanese, Italian, Mandarin, and Indonesian) in order to create a new
sense frequency resource: LexSemTm. In this section we detail the construction of
LexSemTm, focussing on: (1) how usages of simplex lemmas from each language
were obtained; (2) how simplex lemmas from each language were selected for sense
distribution learning; (3) how HCA-WSI was run on the simplex lemmas from each
language; and (4) how the previous steps were extended to MWEs. We only provide
a brief, qualitative evaluation of LexSemTm in this section, and leave more detailed
analysis of the dataset to subsequent sections.

5.2.2 Creation of LexSemTm for Simplex Lemmas

Obtaining Simplex Lemma Usages

The corpora we used for creating LexSemTm were EnWiki for English lemmas,
and MultiLingualWiki for non-English lemmas (see Section 3.1.3). In both cases,
we identified usages of simplex lemmas by searching through the respective corpora
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for all sentences containing the lemma with a matching POS tag.1 In addition, in
the case of English where we had a lemmatised and unlemmatised version of each
sentence, we selected all sentences where either the lemmatised or surface form con-
tained the lemma. In the case that a sentence contained more than one usage of
the target lemma, we treated each occurrence in the sentence as a separate usage,
which are distinct because they have di↵erent words neighbouring the target lemma
(and therefore di↵erent local-context tokens in the usage document that is part of the
input of HCA).

As with previous work on HDP-WSI by Lau et al. (2014), as well as our exper-
iments in Chapter 4, we included the immediately neighbouring sentences in each
usage (without crossing paragraph or section boundaries). However, we found that
the sentences in EnWiki were somewhat shorter on average than those in BNC
or MultiLingualWiki, giving usages for English lemmas containing substantially
fewer tokens on average. Therefore for English lemmas only, we included up to one
additional neighbouring sentence on either side.2

Selection of Simplex Lemmas

In order to obtain a set of simplex lemmas to process, we started o↵ with a list of
all possible simplex lemmas for each language. For English we obtained a list of all
simplex lemmas in Princeton WordNet, and for other languages we obtained a list
of all simplex lemmas from their respective WordNet in OMW (see Section 3.1.2
for details).3

For each simplex lemma of every language, we obtained the set of all usages of
the lemma from the respective corpora using the procedure described above, and
discarded all lemmas with fewer than 20 usages available. This gave us our final set
of simplex lemmas to be included in LexSemTm.

Configuration of HCA-WSI

Our configuration for performing HCA-WSI on simplex lemmas was almost iden-
tical to the recommended setup from the conclusion of Chapter 4, which was sum-

1Both corpora had previously been POS tagged. As described in Section 3.1.4, we manually
mapped all POS tag types in the corpora to “noun”, “verb”, “adjective”, “adverb”, or “other”.

2To be more specific, for the non-English lemmas we included up to one neighbouring sentence on
either side of the lemma occurrence, allowing up to two neighbouring sentences in total. However,
for the English lemmas we included up to two neighbouring sentences on either side, allowing up
to four neighbouring sentences in total. In both cases this is a maximum number of neighbouring
sentences, because we do not cross paragraph or section boundaries.

3We defined lemmas in each WordNet as simplex if they did not contain any underscores in
them. It should be noted that this is a somewhat naive definition for Mandarin and Japanese,
however our aim as set out in Section 1.2 was to devise a sense distribution learning methodology
that is language-independent. Furthermore, dealing with complex issues of tokenisation and the
definition of words in these languages is well beyond the scope of this thesis.
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marised in the introduction of this section. However, we had su�cient computational
resources available to be slightly more conservative in the hyperparameter settings,
compared to these lower-bound recommendations.

Therefore in order to be safe, since we are applying HCA-WSI over a much larger
range of data than previously, we increased the number of Gibbs sampling iterations
from 300 to 1,000, and we increased the number of topics used from 10 to 20. In
addition, we sampled up to 40,000 usages of each lemma (if available), rather than
5,000 or 10,000. It should be noted that the results of Section 4.3 indicate that
these changes should be unlikely to have any adverse e↵ect. Indeed, we found in a
preliminary experiment, where we calculated sense distributions for the lemmas in
L
bnc

using the BNC, Sports, and Finance corpora, that these changes did not
have a statistically significant impact on sense distribution quality according to the
JSD or ERR metrics.4

Other than these more conservative hyperparameters and the increase in the
maximum number of usages, HCA-WSI was set up identically as in the conclusions
of Chapter 4. The actual execution of HCA-WSI for each lemma in order to pro-
duce LexSemTm was done using the Google Compute Engine, as described in Sec-
tion 3.1.6.5

5.2.3 Creation of LexSemTm for MWEs

In order to add MWE data to LexSemTm, we followed the same procedure as
was used for simplex lemmas (described in Section 5.2.2) except for the identification
of lemma usages. Clearly, given a set of usages for each MWE from WordNet and
OMW, we can still select those MWE lemmas with at least 20 usages, and apply
HCA-WSI to the usage documents as above. However, identifying MWE usages in
the input corpora introduces some additional challenges. Some of the key problems
introduced include: (1) the presence of extra words within MWE usages; (2) dealing
with morphological variants of individual words within the MWE; and (3) identifying
MWE usages with the correct part of speech (POS).

We can see an example of the first problem in the sentence we threw Dustin
to the lions , which contains the noun phrase Dustin within the MWE throw to the
lions . Clearly in this case, identifying usages of the MWE by searching for contiguous
usages of the component words would not be su�cient. While this may be a particular
problem for certain kinds of MWEs such as verb–prepositional phrase combinations
(as in the previous example), this could also be a problem for senses of nouns that
are more compositional. For example an old wise man could be considered a valid
usage of the elderly man sense of old man. Unfortunately, allowing such insertions

4p > 0.05 in all cases, according to two-sided Wilcoxon signed rank tests.
5For English lemmas these results are aligned to the senses in WordNet, whereas for non-

English lemmas we only produced the WSI output, since we did not perform any evaluation over
these lemmas. However, aligning these to any sense inventory with glosses is trivial.
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would likely introduce false positives; for example the sentence every Friday he went
to football training after school is obviously not a usage of the noun training school .

The first example above also highlights the second problem. In this case one of
the words in the usage is a morphological variant (throw changed to threw). However,
if we were to simply lemmatise the entire sentence before searching, we would also
likely transform lions to lion, so we still wouldn’t have an exact match.

The third problem is that unlike for simplex lemmas, the use of POS tags to
ensure we are identifying MWE usages with the correct POS is non-trivial. While we
could perform parsing of each sentence and make use of the full parse-tree structure
to help address this problem, this would be complex and computationally expensive,
and our method would no longer be language-independent.6 Therefore, we would
prefer a simple approach that can be applied to existing POS-tagged corpora lacking
parse-tree information.

Unfortunately, as noted in Section 2.4, to the best of our knowledge there are
no existing methods to do this. Therefore, balancing the above concerns, we propose
two di↵erent methods for identifying MWE usages from the EnWiki and MultiLin-
gualWiki corpora, and we add MWE data to LexSemTm for all languages using
each of these methods. As with our method for identifying simplex lemma usages,
these methods are applied to each sentence in the corpora individually.7

High Precision Identification Method

For our high-precision identification method, we require all words in the MWE to
appear contiguously in the sentence we are searching. In the case of English where
we have surface and lemmatised forms of each sentence, we deal with morphological
variations by allowing each word in the MWE to independently match either the
surface or lemmatised form in the sentence. In addition, for all languages we require
that at least one of the corresponding words in the sentence has a matching POS tag
to that of the MWE lemma we are searching for. Using this method, the sentence
Dustin was thrown to the lions would be identified as a valid usage of the verb throw
to the lions , as long as thrown is correctly tagged as a verb: throw would match
the lemmatised form, lions would match the unlemmatised form, and the remaining
words would match both forms. However, we threw Dustin to the lions would not be
identified, as the four words do not appear contiguously.

6This is because parsing is not available to all languages, and also because the way syntactic
structure can be used will vary a lot between languages.

7Note that in both cases, we add the extra local-context tokens to the usage document based on
the relative position of the remaining words in the sentence to the match of the first word in the
MWE, after removing the remaining matched MWE words from the sentence.
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Language POS
Simplex High Recall MWE High Precision MWE

All � 5,000 All � 5,000 All � 5,000

English

noun 36,383 4,664 31,175 975 22,254 316
verb 10,457 2,303 2,434 414 2,093 243

adjective 13,533 1,457 412 82 186 13
adverb 2,348 377 653 181 209 32

Japanese

noun 27,766 3,120 90 9 84 5
verb 2,227 118 21 1 17 1

adjective 415 37 32 7 4 1
adverb 604 64 87 36 5 1

Italian

noun 13,665 1,589 2,119 20 1,902 15
verb 2,486 173 76 0 67 0

adjective 3,148 326 107 8 42 0
adverb 882 168 94 15 16 4

Mandarin

noun 5,625 848 0 0 0 0
verb 3,005 442 0 0 0 0

adjective 1,340 109 0 0 0 0
adverb 739 174 0 0 0 0

Indonesian

noun 10,032 421 3,734 15 2,999 6
verb 490 88 614 8 275 4

adjective 124 48 844 12 156 1
adverb 42 27 293 15 35 1

Table 5.1: Summary of the number of lemmas included in LexSemTm. Lemma
counts are provided separately for each class of lemma, and are split by language and
POS. In addition, separate counts are provided for all lemmas, and lemmas with a
LexSemTm frequency of at least 5,000.

High Recall Identification Method

Our second identification method instead aims for high recall, with a bias towards
identifying as many usages as possible. We achieve this via two changes to the high
precision method: (1) we allow the insertion of up to 3 extra words between the
MWE components; and (2) we completely ignore POS tags in the sentence. Given
these changes, we threw Dustin to the lions would now successfully be identified as a
usage of throw to the lions .

Given that we are simply obtaining data to train a statistical model, we hypoth-
esise that the noise introduced by this high recall method may be outweighed by the
greater volume of data.

5.2.4 Results

We now provide some summary statistics of the data contained in LexSemTm.
In these results we divide the lemmas contained in LexSemTm into three categories:
(1) simplex lemmas; (2) MWE lemmas identified using our high recall method; and
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Language Lemma Class WordNet count
Coverage

All � 5,000

English
Simplex 28,429 88.3% 24.0%

High Recall MWE 2,731 80.9% 13.4%
High Precision MWE 2,731 67.3% 6.3%

Japanese
Simplex 30,070 45.2% 7.8%

High Recall MWE 0 — —
High Precision MWE 0 — —

Italian
Simplex 9,651 80.1% 17.5%

High Recall MWE 179 66.5% 1.7%
High Precision MWE 179 59.8% 1.7%

Mandarin
Simplex 1,808 42.8% 8.8%

High Recall MWE 0 — —
High Precision MWE 0 — —

Indonesian
Simplex 13,923 36.0% 3.2%

High Recall MWE 3,344 36.3% 5.1%
High Precision MWE 3,344 23.8% 1.5%

Table 5.2: Summary of the coverage of polysemous WordNet and OMW lemmas
in LexSemTm. Coverage statistics are provided separately for each combination of
language and lemma class, and for each combination we list the number of poly-
semous lemmas in the respective WordNet, and the percentage of these covered
by LexSemTm. Coverage percentages are provided separately for all lemmas, and
lemmas with a LexSemTm frequency of at least 5,000.



Chapter 5: Application of Unsupervised All-words Sense Distribution Learning 61

(3) MWE lemmas identified using our high precision method.8

Firstly, in Table 5.1 we provide a summary of the number of lemmas of each
class contained in LexSemTm. These lemma counts for each class are split by lan-
guage and POS, and we provide separate counts for all lemmas, and lemmas with
a LexSemTm frequency9 of at least 5,000 (for which we are more confident of the
stability of their sense distributions, given the findings of Chapter 4).

Secondly, in Table 5.2 we provide a summary of the coverage of polysemous lemmas
in each language’s WordNet, for lemmas of each class. For each combination of
language and lemma class, we list the total number of polysemous lemmas in the
respectiveWordNet corresponding to that class,10 as well as the percentage coverage
of these lemmas by LexSemTm. Again, we provide separate statistics for all lemmas,
and for lemmas with a LexSemTm frequency of at least 5,000.

5.2.5 Discussion

We can observe from Table 5.1 that the quantity of data in LexSemTm varies
wildly between languages. This is because the corpora for each language vary sub-
stantially in size, and also because the number of lemmas in each WordNet varies
significantly.11 In addition, because of how we defined lemmas as simplex versus
MWE (based on whether the lemma string in the respective WordNet contained
an underscore), almost all lemmas in Japanese and Mandarin are defined as simplex,
which is why the MWE counts for these languages are so low.12 Unfortunately, this
is the only MWE information available in the Chinese and Japanese OMW Word-
Net’s, and we consider extracting MWEs from these languages for sense learning to
be beyond the scope of this thesis.

In terms of the coverage of polysemous lemmas, our results are encouraging, partic-
ularly for English. In LexSemTm we have coverage of 88.3% of polysemous simplex
lemmas from Princeton WordNet overall, which is very high compared to the cor-
responding coverage by SemCor (see Section 3.1.2); only 39.2% of these polysemous
lemmas have at least one occurrence in SemCor. While the coverage of LexSemTm
is much lower if we restrict it to lemmas with a LexSemTm frequency of at least
5,000 (24.0% for English), this is still a strong result if we consider that most lemmas

8Note that the two MWE categories overlap, since many MWE lemmas are identified using both
methods. Indeed, every MWE usage that can be identified using the high precision method can also
be identified using the high recall method, so the second category is a superset of the third.

9We use “LexSemTm frequency” to refer to the number of usages a lemma in LexSemTm was
trained on.

10That is, either the number of polysemous simplex or MWE lemmas.
11In both cases, this is most likely due to some languages being better resourced than others, with

more thorough e↵orts to populate their respective WordNet vocabularies and more Wikipedia
pages. This is especially true for English.

12The counts for Japanese are only non-zero because of the presence of some English words in the
Japanese WordNet.
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covered by SemCor have a very low frequency in SemCor; the SemCor coverage
drops to 17.2% if we require at least 5 occurrences in SemCor, or to 6.4% if we
require at least 20 occurrences. Furthermore, of the 6,815 polysemous simplex lem-
mas in LexSemTm with a frequency of at least 5,000, 1,564 of them do not occur
in SemCor at all, which accounts for over 5% of all polysemous simplex lemmas!
Again, the lower coverage for other languages is likely due to the relative size of the
English and non-English corpora.

In conclusion, we have described the creation of LexSemTm, which contains
sense frequency information for a large proportion of the vocabulary of multiple lan-
guages. This dataset contains HCA-based WSI output for all of its lemmas, which can
be aligned to any sense inventory with glosses, as well as distributions over Prince-
ton WordNet senses. In addition to simplex lemmas, the dataset contains MWE
lemmas, and in the process of creating the dataset we proposed two simple but novel
methods for the general-purpose unsupervised identification of MWE usages. Finally,
we have shown that the coverage of this dataset is far greater than that of SemCor,
the de facto source of domain-independent sense frequencies for WordNet.

However, we have not yet investigated how the quality of the sense frequency data
in LexSemTm compares to that of SemCor. In the next section we address this by
providing a thorough investigation into whether LexSemTm sense frequencies can
be used in place of SemCor, and if so whether they are superior to SemCor sense
frequencies for lemmas with few occurrences in SemCor.

5.3 Replacing SemCor Sense Frequencies

5.3.1 Introduction

Now that we have described the creation of LexSemTm, we proceed with our
experiments using this dataset to address our remaining research questions. The
first such question is in regards to whether unsupervised all-words sense distribution
learning can be used to replace existing sense resources such as SemCor. We have
already shown in Section 5.2 that LexSemTm has greater coverage over polysemous
WordNet lemmas than SemCor, however we have yet to establish whether the
quality of data in LexSemTm is at least on par with SemCor, or possibly even
superior to SemCor.

In order to address this general question relating to replacing sense frequency
resources, we ask two specific questions about LexSemTm and SemCor: (1) can
sense frequency data from LexSemTm be used in place of SemCor? and (2) if
LexSemTm can be used in place of SemCor, is there a threshold such that the
data from LexSemTm is clearly superior to SemCor for lemmas with a frequency
in SemCor less than that threshold?

As discussed in Section 1.1, we are mostly limiting our scope in this investigation
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Lemma Set Set Size SemCor Frequencies

L(1)

gsc

10 0

L(2)

gsc

10 1–3

L(3)

gsc

10 4–8

L(4)

gsc

10 9–20

L(5)

gsc

10 21+

L
gsc

50 0+

L(2–5)

gsc

40 1+

Table 5.3: Summary of the size and the range of SemCor frequencies covered by each
subset of L

gsc

. These are the lemmas inGoldSemCor: our gold-standard dataset for
evaluating the quality of simplex lemma sense distributions in LexSemTm relative
to SemCor.

to English nouns, in order to make the analysis and cost of gathering labelled data
manageable. Similarly, we further narrow our scope in this section to simplex lemmas,
in order to avoid dealing with possible confounding factors due to MWEs (which are
analysed separately in Section 5.4). We leave addressing these questions for other
classes of lemmas to future work.

5.3.2 Experimental Setup

Creation of GoldSemCor

In order to be able to answer our two questions regarding how LexSemTm com-
pares to SemCor, we created a gold-standard evaluation dataset containing lemmas
with a range of frequencies in SemCor. We refer to this gold-standard dataset as
GoldSemCor, and the set of lemmas it contains as L

gsc

. For each lemma in L
gsc

,
the dataset contains 100 usage sentences from EnWiki annotated with WordNet
senses, and a sense distribution corresponding to these annotations.

In order to create L
gsc

, which we desire to be a diverse set of lemmas covering
a range of SemCor frequencies, we first obtained a list of all polysemous, simplex
nouns in WordNet. In order to reduce the cost of obtaining labelled data and avoid
needing to control for LexSemTm frequency, we then filtered out all lemmas with a
LexSemTm frequency less than 5,000. This allows us to focus our analysis on the
part of LexSemTm where we are most confident of sense distribution quality. Next
we split the remaining lemmas into 5 groups of approximately equal size based on
SemCor frequency. We randomly sampled 10 lemmas from each group, giving us
the lemma sets L(1)

gsc

through to L(5)

gsc

. Finally, L
gsc

was obtained by taking the union
of these sets, giving 50 lemmas in total. In addition, we define the set of all lemmas
except from the first group as L(2–5)

gsc

(those lemmas in L
gsc

with at least one occurrence
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in SemCor). These sets, and their SemCor frequency ranges, are summarised in
Table 5.3.

For each lemma in L
gsc

we then randomly sampled 100 sentences containing the
lemma from EnWiki, as in Section 5.2.2. These were annotated using Amazon
Mechanical Turk (AMT), as described in Section 3.1.5. This was done by splitting
the 100 sentences of each lemma in L

gsc

into 4 batches to be annotated. In addition,
we created 2 control sentences for each lemma, and added them to all batches of
that lemma. These control sentences were created manually such that they had a
relatively clear correct sense (to the extent that this was possible), and are listed in
Appendix A.13 Therefore, in total we had 200 batches each consisting of 27 items,
and every batch was annotated by 10 separate workers.

For each sentence to be annotated, workers were asked to select exactly one sense,
and for each sense they were provided with the sense gloss from WordNet,14 along
with a list of hypernyms and synonyms of the sense from WordNet. Workers were
instructed to select the sense they believed was most likely, if they thought a sentence
was ambiguous. We did this, rather than allowing workers to select an “invalid” option
or to select multiple senses, since our aim is to estimate sense frequencies; having an
“invalid” option would make interpretation of the results more di�cult, and we believe
forcing workers to annotate completely ambiguous sentences with their most likely
sense will still provide useful information, based on their belief of how frequent each
sense is in general. For more details on the exact interface provided to workers, see
Appendix A.

For each lemma we then inferred a single annotation for each sentence based on
the output of AMT, using MACE (see Section 3.1.5). We ran MACE separately for
each lemma using the AMT output of its batches, with the control sentences and
their “correct” labels included to guide MACE.15 Finally, for each lemma we took the
MACE output labels for each of its 100 EnWiki sentences, and from these produced
a gold-standard sense distribution using maximum likelihood estimation.

Evaluation of LexSemTm against SemCor

Given our GoldSemCor gold-standard evaluation dataset, we now describe our
evaluation of LexSemTm against SemCor. First we generated a SemCor-based

13Note that in a small number of cases this was not completely possible. For example, the
two senses for flora in WordNet have the glosses all the plant life in a particular region and a

living organism lacking the power of locomotion; these are similar enough that even our carefully
constructed control sentences were still ambiguous to annotators.

14Example sentences from WordNet were included with the gloss only when the example con-
tained the target lemma, rather than a di↵erent lemma in the synset.

15In a small number of cases where we decided that a control sentence was too ambiguous, we
excluded it. In addition, in a small number of cases where the same worker annotated a control
sentence with more than one sense over multiple batches, we set their annotation of the control
sentence to an extra “invalid” value in the MACE input.
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sense distribution for each lemma in L
gsc

. For those with at least one occurrence in
SemCor (those in L(2–5)

gsc

), these were obtained by normalising the SemCor count for
each WordNet sense. On the other hand, for lemmas with no occurrences in Sem-
Cor (those in L(1)

gsc

), we first assigned one count to its first-listed sense in WordNet,
and then applied the same procedure as for the other lemmas. Finally, we evaluated
the LexSemTm and SemCor-based sense distributions for each lemma in L

gsc

using
the JSD and ERR metrics. These metrics were calculated using the GoldSemCor
gold-standard sense distributions. These sense distribution quality scores can be used
to address our two questions relating to whether LexSemTm can replace SemCor,
by analysing how the LexSemTm and SemCor-based distributions compare as a
function of SemCor frequency.

Because this evaluation based on GoldSemCor can only provide answers for a
limited set of lemmas in LexSemTm— namely, English nouns with a LexSemTm
frequency of at least 5,000 — we performed a second, broader evaluation. This second
evaluation was performed on all polysemous, English simplex lemmas in LexSemTm
with at least one occurrence in SemCor. Firstly, in order to control for polysemy
(which varies significantly for common versus rare lemmas), we split these lemmas
into three sets based on polysemy: (1) lemmas with low polysemy (polysemy 2 or
3); (2) lemmas with medium polysemy (polysemy 4 to 6); and (3) lemmas with high
polysemy (polysemy 7 and above). Then we partitioned each of these sets into 10
bins based on LexSemTm frequency, by rounding the frequency to the nearest 1,000,
up to a maximum of 10,000.16 Finally, we calculated the JSD of the LexSemTm
distributions for all lemmas in each bin, using the corresponding SemCor-based
distributions (calculated as in the previous evaluation) as proxy gold-standards. The
results from this secondary evaluation allow us to investigate how the quality of
LexSemTm sense distributions varies based on LexSemTm frequency.

5.3.3 Results

The results of our comparison of LexSemTm and SemCor-based distributions
over the lemmas in L

gsc

are listed in Table 5.4. For each subset of the L
gsc

lemmas
listed in Table 5.3, we list the average JSD and ERR from both methods, which
we compare pairwise (using two-sided Wilcoxon signed rank tests) in order to test
whether there is a statistically significant di↵erence.

In addition, the results of our secondary evaluation over all polysemous, English
simplex lemmas in LexSemTm with at least one SemCor occurrence are displayed
in Figure 5.1. For each polysemy-based partition, and each corresponding bin, we
provide a boxplot of the JSD values (relative to the SemCor-based proxy gold-
standards) of the lemmas in the bin.

16This means that the first bin contained all lemmas trained on fewer than 500 usages, the second
bin contained all lemmas trained on between 500 and 1,500 usages, and so on up to the final bin,
which contained all lemmas trained on at least 9,500 usages.
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Lemma
JSD ERR

LexSemTm SemCor LexSemTm SemCor

L(1)

gsc

.100±.080 .615±.407 (p = .013) .902±.271 .406±.470 (p = .027)

L(2)

gsc

.203±.169 .214±.250 (p = .959) .592±.432 .735±.367 (p = .465)

L(3)

gsc

.100±.049 .103±.133 (p = .878) .699±.379 .847±.275 (p = .225)

L(4)

gsc

.148±.069 .235±.166 (p = .114) .694±.394 .711±.382 (p = .917)

L(5)

gsc

.162±.121 .156±.131 (p = .721) .756±.352 .904±.246 (p = .285)

L
gsc

.142±.113 .265±.301 (p = .046) .728±.383 .720±.397 (p = .587)

L(2–5)

gsc

.153±.118 .177±.184 (p = .591) .685±.395 .799±.332 (p = .145)

Table 5.4: Evaluation of LexSemTm versus SemCor sense distributions over various
subsets of L

gsc

. All JSD and ERR metric values were calculated relative to the gold-
standard sense distributions inGoldSemCor. For each subset of L

gsc

we list average
metric values for the sense distributions from each method, as well as p values from
comparing the metric values using two-sided Wilcoxon signed-rank tests.
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Figure 5.1: Boxplots of the distributions of JSD values of English simplex LexSemTm
sense distributions, using SemCor as a proxy gold-standard. The data was split by
polysemy, as well as LexSemTm frequency (the number of usages that LexSemTm
was trained on). For each polysemy range in the figure, lemmas were binned by their
LexSemTm frequency to the nearest 1,000 (so for example, the first bin contains
lemmas with frequency less than 500, and the second bin contains lemmas with fre-
quency between 500 and 1,500), and all lemmas with frequency greater than 9,500
were placed in the final bin.
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5.3.4 Discussion

Firstly, we can observe from the results in Table 5.4 that LexSemTm distributions
strongly outperform SemCor-based ones for lemmas with no occurrences in SemCor
(those in L(1)

gsc

). This is exactly what we would be expect, given that the SemCor-
based distributions for these lemmas are somewhat arbitrary (they are determined
by which sense is listed first in WordNet), and this result holds true according to
both JSD and ERR metrics (p < 0.05 in both cases). This is very encouraging, given
the approximately 1,564 high frequency (trained on at least 5,000 usages) polysemous
simplex lemmas in LexSemTm that do not occur at all in SemCor; we now have
strong evidence that LexSemTm provides more accurate sense frequency data for
this large set of lemmas.

On the other hand, for the lemmas in L
gsc

that occur in SemCor (those in L(2–5)

gsc

),
we do not have clear evidence that their LexSemTm sense distributions di↵er in qual-
ity compared to SemCor-based ones. None of the comparisons between LexSemTm
and SemCor for the lemmas in L(2–5)

gsc

(as well as the corresponding subsets) were
found to be statistically significant (p > 0.1 in all cases). Given the mean values of the
sense distribution quality metrics listed in Table 5.4, it seems that the LexSemTm
distributions may be slightly better in terms of overall distribution shape (measured
by JSD), and the SemCor distributions may be slightly better in terms of the first
sense (measured by ERR). However, even assuming that this is the case, these dif-
ference are extremely small compared to the variance in both metrics, and do not
appear to be statistically significant.

Adding to this, it appears from the results of our secondary evaluation in Fig-
ure 5.1 that the LexSemTm distributions are fairly similar in quality for lemmas
with LexSemTm frequency less than 5,000 compared to lemmas with frequency at
least 5,000. On the one hand, we can see from the boxplots that for each poly-
semy range, the average JSD tends to increase slightly as the number of usages is
decreased. However, this increase is small compared to the variance in each bin. In
particular, even if we compare the JSD values of lemmas trained on the fewest usages
to those trained on the most usages, in most cases the median of the former lies
within the standard range (within the second or third quartiles) of the latter. This
is true even for the bins of lemmas trained on fewer than 500 usages.17 Furthermore,
the di↵erence in median JSD between the first and last bins for each polysemy range
(ranging from 0.1 to 0.2) is small compared to the average di↵erence in JSD between
LexSemTm and SemCor-based distributions for the lemmas in L(1)

gsc

(those missing
from SemCor).

This conclusion is corroborated by the results of our bootstrapping experiment
with HCA-WSI on the lemmas in L

bnc

(from Section 4.3), which were previously

17Except arguably for the lemmas with polysemy 7 and above. However the variance is very
large in this case, because most of these bins contain relatively few lemmas; each of the bins in this
partition (except for the last) contain only around 20 lemmas on average.
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displayed in Figure 4.6. In these results, we observed that when the number of usages
of each lemma in L

bnc

was reduced to 500, the mean change in JSD was almost always
less than 0.02, and never greater than 0.04, and the standard deviation of the change in
JSD was almost always less than 0.02, and never greater than 0.05. These changes in
JSD are small compared to the di↵erence in JSD between LexSemTm and SemCor
for every subset of L

gsc

, except L(3)

gsc

. This observation, together with the results of our
secondary evaluation in Figure 5.1, strongly suggest that our conclusions regarding
how LexSemTm and SemCor compare can safely be extended at least to lemmas
with LexSemTm frequency greater than 500, if not to all lemmas in LexSemTm.

Returning to the questions posed in the introduction of this section, we can answer
the first by concluding that it seems reasonable to replace SemCor sense frequencies
with LexSemTm in general. Firstly, the primary results in Table 5.4 suggest that
the sense distributions in LexSemTm are always at least on-par with those based
on SemCor for lemmas with LexSemTm frequency at least 5,000. Or at the very
least, there is insu�cient evidence to believe that they are worse. Secondly, based
on the previous results contained in Figure 4.6, the variation in sense distribution
quality when the number of usages is reduced as low as 500 is not significant enough
to change this conclusion. Finally, the results in Figure 5.1 strongly suggest that
sense distribution quality for lemmas trained on fewer than 500 usages (first bin in
each partition) is not significantly di↵erent than for lemmas trained on between 500
and 1,500 usages (second bin in each partition). Given this, it seems reasonable to
conclude that LexSemTm sense distributions are at least on-par with SemCor-based
distributions over all LexSemTm frequencies.

Regarding the second question, which asked whether LexSemTm sense distribu-
tions are ever superior to SemCor-based ones, it appears that this is only clearly the
case for lemmas missing from SemCor. As for the previous question, given the mul-
tiple sources of evidence indicating that sense distribution quality is comparable for
lemmas with low versus high LexSemTm frequency, it seems reasonable to conclude
that this result holds across all LexSemTm frequencies. Furthermore, given the very
significant JSD di↵erence between LexSemTm and SemCor-based distributions in
L(1)

gsc

(on average over 0.5), extending the conclusion to all lemmas seems particularly
justified in this case. This is very significant, because there are approximately 14,000
polysemous simplex lemmas in LexSemTm that are missing from SemCor, which
accounts for approximately half of all polysemous simplex lemmas in WordNet!

It should be noted that our secondary evaluation is fairly rough, since we are using
SemCor as a proxy gold-standard. This is methodologically questionable, due to the
limitations of SemCor discussed in Section 3.1.2. However, we justify this by the
fact that we are evaluating over a very large number of lemmas, so the resulting noise
can likely be safely ignored. It would be better to obtain gold-standard annotated
data for lemmas with fewer than 5,000 usages, although we have chosen not to do
this due to the annotation cost. We leave this more thorough analysis to future work.

Now that we have argued that LexSemTm can be used in place of SemCor, that
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they are roughly on-par for lemmas in SemCor, and that LexSemTm distributions
are strongly superior to SemCor-based distributions for lemmas missing from Sem-
Cor, we have confirmation that unsupervised all-words sense distribution learning
can successfully be used to supplement existing sense resources. This answers our
second core research question. Now we turn to answering our final research question,
regarding whether sense distribution learning can also be applied to MWEs.

5.4 Evaluating Multiword Expression Sense Dis-
tributions

5.4.1 Introduction

We have one remaining core research question unanswered, which is whether sense
distribution learning can also be applied to MWEs, and if so how does this compare
to simplex sense distribution learning? In Section 5.2 we described the creation of our
LexSemTm dataset, containing WSI and sense distribution information over a large
number of lemmas, including MWEs, from the WordNet’s of multiple languages.
In this process, we proposed two methods for extending HCA-WSI sense distribution
learning to MWEs, which we used to add two corresponding sets of MWE sense
distributions to LexSemTm. These extensions were categorised by two simple but
novel general-purpose, unsupervised methods for identifying usages of known MWEs.

In this section we use these two sets of MWE sense distributions in the English
section of LexSemTm to address this remaining question, which we break down into
three smaller questions: (1) what is the impact of our di↵erent MWE usage identifi-
cation methods? (2) how do the quality of our LexSemTm MWE sense distributions
compare to those obtained from simple baseline and benchmark approaches (such as
using SemCor data)? and (3) how do the MWE and simplex sense distributions in
LexSemTm compare, both in terms of sense distribution quality and the shapes of
the distributions?

It should be noted that we narrow our scope in this investigation to English nouns,
for the same reasons again as outlined in Section 1.1 (due to the cost of obtaining
labelled data, and ease of analysis). In addition, it should be observed that, as far as
we are aware, general purpose sense learning on MWEs, including WSD, WSI, first
sense learning, and sense distribution learning, are all novel tasks.18

18There are some minor and very specific exceptions to this that were outlined in Section 2.4,
including named entity recognition, supersense tagging, and disambiguating between literal and
idiomatic interpretations of MWEs.
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Lemmas Set Size Description

L
re

46 High recall-identified MWE lemmas with at least 5,000 usages

L
pr

22 High precision-identified MWE lemmas with at least 5,000 usages

L
gsc

50 Simplex lemmas from Section 5.3

L
int

22 L
re

\ L
pr

L
di↵

24 L
re

\ L
pr

L
union

46 L
re

[ L
pr

Llp

union

44 Lemmas in L
union

with polysemy 2 or 3

Llp

gsc

28 Lemmas in L
gsc

with polysemy 2 or 3

Lsc

int

13 Lemmas in L
int

present in SemCor

Lsc

di↵

5 Lemmas in L
di↵

present in SemCor

Lsc

union

18 Lemmas in L
union

present in SemCor

Lsc*

int

9 Lemmas in L
int

missing from SemCor

Lsc*

di↵

19 Lemmas in L
di↵

missing from SemCor

Lsc*

union

28 Lemmas in L
union

missing from SemCor

Table 5.5: Summary of the di↵erent sets of lemmas used in our MWE evaluation
experiments. Note that L

int

= L
pr

and L
union

= L
re

; these sets are named apart for
clarity.

5.4.2 Experimental Setup

Creation of GoldMWE

As in Section 5.3, we require the use of additional gold-standard evaluation data
to perform our evaluations in this section. In this case, since we are evaluating
MWE sense distributions, we require gold-standard annotated data for MWE lemmas.
In addition, because we are evaluating sense distributions based on two di↵erent
MWE identification methods, we require gold-standard data corresponding to usages
sampled based on both methods. We refer to this MWE gold-standard dataset as
GoldMWE.

In order to create this dataset, we first obtained a list of all polysemous MWE
nouns from WordNet with a LexSemTm frequency of at least 5,000 from either
identification method. In doing this we obtained separate lists of high recall- and high
precision-sampled lemmas from LexSemTm. In total this gave us 46 (respectively
22) high recall-sampled (respectively high precision-sampled) MWE lemmas. These
lemma sets, which we name L

re

(respectively L
pr

), and others based on these that we
refer to below, are summarised in Table 5.5. It should be noted that, because all high
precision-identified lemmas can also be identified using the high recall method, L

pr

is
a subset of L

re

.
Next, we produced our gold-standard annotated data for lemmas in both L

pr

and
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L
re

, based on usages identified with the respective methods, using Amazon Mechanical
Turk (AMT: see Section 3.1.5). This was done almost identically to Section 5.3: for
each lemma in L

re

(respectively L
pr

), we randomly sampled 100 high recall-identified
(respectively high precision-identified) sentences from EnWiki, and created a set of
control sentences. However unlike Section 5.3, we provided two additional annotation
options for each sentence: (1) annotators could label sentences as having a meaning
that was “clearly separate” from all those listed if the sentence was a usage of the
MWE and the meaning was clear, but completely distinct from all of the WordNet
senses; or (2) annotators could label sentences as “not a valid usage” if the sentence
was not a usage of the MWE. The first option was included to deal with cases where
the usage was simply compositional and therefore not covered by WordNet (for
example a usage of red tape that literally referred to red-coloured tape). The second
option was included to deal with false positives from our MWE usage identification
methods (for instance, refer to the training school example in Section 5.2.3). In
addition, we included three control sentences for each lemma rather than two: the
first two control sentences were clear usages of specific senses (as in Section 5.3), and
the third control sentence was an artificial MWE identification false positive (as in
the training school example). These control sentences are listed in Appendix A.

As in Section 5.2, we split the 100 sentences for each lemma into 4 batches to
be annotated and added the control sentences to each. In this case that meant 272
batches in total (since the lemmas in L

int

were annotated twice), each consisting of 28
items, and again every batch was annotated by 10 separate workers. For more details
on the exact interface provided to workers, see Appendix A.

The output from AMT was processed using MACE (see Section 3.1.5) almost
identically to Section 5.3. However, in this case we have the complication of the
extra “clearly separate” and “not a valid usage” labels. In practice we found that
despite our instructions, AMT workers used these labels interchangeably (based on the
annotations of our false positive control sentences). Therefore before we ran MACE
on the AMT output, we merged these two labels together into a single “invalid” label.
All other details in running MACE, including the use of the control sentences, were
identical to Section 5.3.

Finally, the sense labels of the EnWiki sentences for each lemma were converted
into gold-standard sense distributions. In order to do this we first removed the sen-
tences labelled by MACE as “invalid”, and then performed maximum likelihood esti-
mation on the remaining sense label counts. In addition, we recorded which sentences
were labelled as “invalid” for each lemma, which we include in GoldMWE in order
to facilitate our evaluation of MWE sense distributions. In total, this gave us 68
gold-standard sense distributions: one for each lemma in L

di↵

(based on high recall
identification), and two for each lemma in L

int

(based on both identification methods).
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Evaluation of MWE Identification Methods

In order to answer our first question, relating to the impact of the two MWE
identification methods, we performed two di↵erent comparisons. Firstly, we compared
the proportion of usages labelled as “invalid” for the lemmas in L

int

and L
di↵

, based
on both identification methods. This allows us to measure the impact of the methods
in terms of how much noise they introduce in the form of false positives. Secondly, we
directly compared the sense distributions resulting from each identification method.
We not only compared the two sets of gold-standard sense distributions for the lemmas
in L

int

, but we also compared the two sets of sense distributions from LexSemTm over
all of L

union

.19 All of these sense distribution comparisons were done by calculating
the JSD (see Section 3.2.4) between each pair of distributions.

However, we have no point of reference for these comparison JSD values; we have
no idea how low we would expect these values to be by chance, for example if we were
comparing distributions of di↵erent lemmas. Therefore, we also calculated a set of
comparison JSD values, by comparing the gold-standard distributions of all pairs of
lemmas in L

union

with equal polysemy.20

Evaluation of MWE LexSemTm Sense Distributions

Next we turn to the second question, which asked how the sense distributions for
MWE lemmas from LexSemTm compare to available benchmarks and baselines. In
this evaluation we used one benchmark and one baseline distribution for each lemma
in L

union

. The benchmark we used was based on SemCor counts: we calculated
SemCor-based sense distributions for all lemmas in L

union

identically to Section 5.3.
Our baselines were simple uniform distributions over all available WordNet senses
for each lemma. We used this baseline because we found that our automatically learnt
distributions were very flat on average (this result is discussed in Section 5.4.4), so
we suspected that the strong performance of our distributions in terms of JSD may
have simply been due to them being close to uniform.

It should be noted that of the 46 lemmas in L
union

, 28 of them have no occurrences
in SemCor. This is significant because we found in Section 5.3 that the SemCor
benchmark is very weak for such lemmas (as would be expected). Therefore, we
controlled for this by also performing this evaluation separately on the subsets of
L
union

, L
int

, and L
di↵

with SemCor frequency greater than zero, and with SemCor
frequency zero. (these restricted sets are summarised in Table 5.5).

For all three kinds of candidate sense distributions (LexSemTm, SemCor bench-
mark, and uniform baseline), we evaluated quality using both JSD and ERR metrics,

19This is possible because all but one of the lemmas in L
di↵

is present in the high precision subset
of LexSemTm, where they were trained on 2878.8±1344.4 usages on average. Note that the missing
lemma was excluded from the comparison.

20More specifically, we calculated the JSD between the high recall gold-standard distributions of
all distinct pairs of lemmas la and lb in L

union

such that la 6= lb and polysemy(la) = polysemy(lb).
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relative to the gold-standard distributions in GoldMWE. Because the results from
our high recall versus high precision identification methods were found to be extremely
similar (discussed in Section 5.4.4), we only used our high recall-based LexSemTm
and gold-standard distributions in this evaluation.

Comparison of Simplex and MWE Sense Distributions

Finally we address the third question, which asked how the LexSemTm sense
distributions for MWE lemmas compare to those for simplex lemmas. We approached
this from two perspectives. First we compared the absolute values of the quality score
metrics (JSD and ERR) obtained for simplex versus MWE lemmas. We compared the
quality scores of the MWE lemmas in L

union

(evaluated against GoldMWE) with
the quality scores of the simplex lemmas in L

gsc

(evaluated against GoldSemCor,
as in Section 5.3). This allows us to investigate whether MWE sense distribution
learning achieves either higher or lower performance in absolute terms than simplex
sense distribution learning, which would suggest that one task is inherently more
di�cult than the other.

Secondly, we compared the shapes of the LexSemTm and gold-standard (from
GoldSemCor and GoldMWE) sense distributions for the lemmas in L

gsc

to those
lemmas in L

union

. In this evaluation, sense distribution shape was measured using
entropy. The purpose of this secondary evaluation is to investigate whether MWE
sense distributions are any di↵erent in shape on average compared to simplex sense
distributions. If they were systematically di↵erent in shape, this would suggest that
the two tasks are di↵erent enough to possibly warrant separate methodology.

In both of these evaluations, we need to control for polysemy, because the lemmas
in L

gsc

are on average much more polysemous than the lemmas in L
union

.21 We do
this by performing these evaluations in addition only on the lemmas in L

gsc

and L
union

with low polysemy (polysemy of 2 or 3). We refer to these restricted sets as Llp

gsc

and

Llp

union

respectively.
As in the previous evaluation, only high recall-based MWE distributions from

LexSemTm were used.

5.4.3 Results

First we list the results of our evaluation of the high recall versus high precision
MWE usage identification methods. In Table 5.6 we list the proportion of sentences
labelled as “invalid” by MACE that were sampled using our high recall and high
precision methods, and then in Table 5.7 we list the average JSD values from com-
paring the high recall versus high precision sense distributions. As a reference for

21The average polysemy of the lemmas in L
gsc

is 4.42±3.18, compared to 2.24±0.60 for the lemmas
in L

union

.
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Lemmas High Recall High Precision
L
int

.068±.075 .018±.043 (p = .0003)
L
di↵

.221±.220 —

Table 5.6: Results of our comparison of high recall versus high precision MWE iden-
tification methods, in terms of the proportion of high recall- versus high precision-
identified sentences labelled as “invalid” usages. The average proportion of usages
labelled as “invalid” is listed for the lemmas in L

int

and L
di↵

.

Lemmas LexSemTm Gold-Standard
L
int

.00008±.0002 .007±.017
L
di↵

.0004±.0006 —

Table 5.7: Results of our comparison of high recall versus high precision MWE iden-
tification methods, in terms of the similarity between LexSemTm and gold-standard
distributions resulting from either evaluation method. For each kind of distribution
(LexSemTm or gold-standard) and each set of lemmas (L

int

or L
di↵

) we list the
average JSD between the distributions resulting from either identification method.
In the case of the LexSemTm distributions of the lemmas in L

di↵

, this comparison
was done on the 23 L

di↵

lemmas present in the high precision subset of LexSemTm
(which were trained on 2878.8±1344.4 usages on average).

these values, the average JSD from our comparison of all pairs of lemmas with equal
polysemy was 0.221±0.220.

Next, we list the results of our evaluation of MWE LexSemTm sense distributions
against the SemCor benchmark and uniform baseline. We list results based on the
JSD metric in Table 5.8, and results based on the ERR metric in Table 5.9. Note
that we do not list uniform baseline results in Table 5.9, because these are equal to
the SemCor benchmark results for the ERR metric.22

Finally, we list the results of our evaluation comparing MWE and simplex sense
distributions. In Table 5.10 we list the average JSD and ERR metrics obtained for
our MWE and simplex LexSemTm sense distributions, and in Table 5.11 we list our
results comparing the shapes of our MWE and simplex sense distributions. Unlike in
all of our previous evaluations, the p-values listed here are from Wilcoxon rank sum
tests rather than Wilcoxon signed rank tests.23

22This is because in both cases the first listed sense in WordNet is always chosen as the first
sense (senses in WordNet are listed in descending order by SemCor frequency).

23We use Wilcoxon rank sum tests here because unlike in previous experiments, we are not com-
paring paired data.
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Lemmas LexSemTm SemCor Uniform
L
union

.160±.149 .291±.324 (p = .036) .178±.136 (p = .002)
L
int

.171±.172 .238±.297 (p = .548) .179±.129 (p = .101)
L
di↵

.150±.297 .339±.340 (p = .032) .176±.141 (p = .010)
Lsc

union

.214±.175 .139±.241 (p = .184) .231±.124 (p = .048)
Lsc

int

.230±.195 .164±.275 (p = .382) .227±.128 (p = .221)
Lsc

di↵

.173±.097 .077±.079 (p = .225) .242±.114 (p = .080)
Lsc*

union

.125±.116 .388±.334 (p = .001) .143±.131 (p = .029)
Lsc*

int

.085±.070 .346±.295 (p = .051) .109±.096 (p = .260)
Lsc*

di↵

.143±.128 .408±.349 (p = .007) .159±.142 (p = .064)

Table 5.8: Results of our evaluation of MWE sense distributions relative to the gold-
standard distributions in GoldMWE, in terms of the JSD metric. Evaluation was
done for LexSemTm sense distributions, as well as SemCor benchmark and uniform
baseline sense distributions, over various subsets of the lemmas in L

union

. All p-values
are from two-sided Wilcoxon signed rank tests, comparing the JSD values obtained
for the benchmark or baseline distributions to those obtained for the LexSemTm
sense distributions.

Lemmas LexSemTm SemCor
L
union

.766±.354 .767±.380 (p = .891)
L
int

.742±.386 .795±.341 (p = .583)
L
di↵

.788±.319 .742±.411 (p = .594)
Lsc

union

.748±.402 .911±.247 (p = .116)
Lsc

int

.692±.442 .877±.283 (p = .225)
Lsc

di↵

.895±.209 1.000±.000 (p = .317)
Lsc*

union

.778±.318 .675±.420 (p = .193)
Lsc*

int

.816±.271 .677±.381 (p = .398)
Lsc*

di↵

.760±.337 .674±.437 (p = .445)

Table 5.9: Results of our evaluation of MWE sense distributions relative to the gold-
standard distributions in GoldMWE, in terms of the ERR metric. This was done
identically to Table 5.8 with the JSD metric, except that ERR values for the uniform
baseline are not listed, since they are identical to the SemCor benchmark in this
case.

5.4.4 Discussion

First we discuss the results of our evaluation of our high recall and high precision
MWE usage identification methods. On the one hand we can see from Table 5.6 that
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Lemmas JSD ERR
L
union

.160±.149 .766±.354
L
gsc

.142±.113 (p = .786) .728±.383 (p = .846)

Llp

union

.138±.107 .800±.323
Llp

gsc

.120±.124 (p = .349) .731±.393 (p = .703)

Table 5.10: Results of our comparison of MWE and simplex sense distributions, in
terms of the absolute values of quality metrics. For each set of lemmas (simplex
lemmas in L

union

and MWE lemmas in L
gsc

) we list average JSD and ERR metrics of
the LexSemTm sense distributions, and compare quality values between the lemma
sets using two-sided Wilcoxon rank sum tests.

Lemmas LexSemTm Gold-Standard
L
union

.975±.050 .473±.365
L
gsc

1.648±.810 (p = .00002) 1.065±.697 (p = .00001)

Llp

union

.979±.042 .488±.365
Llp

gsc

1.062±.353 (p = .393) .645±.402 (p = .110)

Table 5.11: Results of our comparison of MWE and simplex sense distributions, in
terms of the shapes of the distributions. For each set of lemmas (simplex lemmas in
L
union

and MWE lemmas in L
gsc

) and the corresponding subsets with low polysemy,
we list the average entropy of the LexSemTm sense distributions, and compare the
entropy values between the corresponding simplex and MWE lemma sets using two-
sided Wilcoxon rank sum tests.

there is substantially more junk in the high recall-identified sentences, compared to
the high precision-identified ones: the proportion of “invalid” usages for the lemmas
in L

int

is approximately four times as high for high recall-identified sentences as com-
pared with high precision-identified ones, which was found to be clearly statistically
significant (p < 0.001). For the lemmas in L

di↵

, the amount of junk introduced by
high recall identification was significantly higher again, which is to be expected given
that by definition these are lemmas for which a significant proportion of the high
recall-identified usages could not be identified by the high precision method.

On the other hand, it can be seen from Table 5.7 that the sense distributions
resultant from both identification methods are extremely similar. The average JSD
between high precision and high recall gold-standard distributions for the lemmas in
L
int

is very low (0.007±0.017), and most of this variance came from a small number of
outliers.24 These divergences are tiny compared to our comparison value from averag-

24If we remove the three lemmas with the greatest divergence, this average JSD reduces to
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ing over pairs of lemmas with equal polysemy, which was 0.221±0.220. Furthermore,
the LexSemTm sense distributions resultant from each identification method have
even less divergence. Incredibly, this holds true even for the lemmas in L

di↵

, where
the high precision method was working with a relatively small amount of data (even
in the worse case scenario, the maximum JSD observed was just 0.002).

We can conclude that using high recall identification introduces lots of junk com-
pared to high precision identification, but in the vast majority of cases does not
appear to bias the rest of the data. In addition, we can conclude that HCA-WSI is
very robust to the resultant noise from these identification methods, and that the
automatically learnt sense distributions (those in LexSemTm) resulting from either
method are nearly indistinguishable. Given this strong result we chose to only work
with high recall-based sense distributions in subsequent evaluations.

Next we discuss the results from comparing our MWE LexSemTm sense distri-
butions with the SemCor benchmark and the uniform baseline. In terms of JSD,
our LexSemTm distributions strongly outperform the SemCor benchmark on av-
erage over all of the lemmas in L

union

, which is statistically significant (p < 0.05). In
addition, it outperforms the baseline uniform distributions in terms of JSD, with a
smaller on average but more consistent di↵erence in JSD (p < 0.01). Similar results
hold over L

int

and L
di↵

, although not all results are statistically significant on these
sets (possibly due to less statistical power on the smaller sets).

However, when we control for whether the lemmas are in SemCor or not, we see
a significant change in behaviour for the JSD metric. For lemmas not in SemCor,
we observe that LexSemTm beat the SemCor benchmark even more strongly. On
the other hand for the lemmas in SemCor, we observe that the SemCor benchmark
beat LexSemTm on average, although the set of lemmas in SemCor (Lsc

union

) is
relatively small, and we weren’t able to establish statistical significance for this result
(p > 0.1 in all cases).

In terms of ERR there is much less di↵erence between LexSemTm and our bench-
mark and baseline distributions. The ERR values seemed about equal on average
when evaluating over all lemmas, and the same general pattern as for JSD was ob-
served when controlling for membership in SemCor. However, none of the di↵er-
ences observed according to the ERR metric were statistically significant (p > 0.1 in
all cases).

These results are generally very similar to those we observed when we evaluated
our LexSemTm distributions for simplex lemmas in Section 5.3. While it appears
that the relative performance of the SemCor benchmark may be higher in this in-
stance for the lemmas present in SemCor, compared to what was observed in Sec-
tion 5.3 for simplex lemmas, we can’t be sure of this due to the small size of Lsc

union

and the lack of statistical significance.
Finally, we discuss the results of our comparison of MWE and simplex sense

0.002±0.002.
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distributions. We can observe firstly from Table 5.10 that the JSD and ERR values
obtained for both MWE and simplex sense distributions are very similar on average.
This is true regardless of whether we control for polysemy or not, and in all cases the
di↵erence between JSD or ERR values of the MWE and simplex sense distributions
is not statistically significant (p > 0.3 in all cases). Looking at Table 5.11, we can
observe that in general our MWE sense distributions have lower entropy than simplex
ones, which holds true for both the LexSemTm and gold-standard sense distributions.
However this is to be expected, because as noted previously the MWE lemmas are
much less polysemous on average.25 When we control for polysemy and only look
at lemmas with polysemy 2 or 3, this di↵erence between MWE and simplex sense
distributions all but disappears (p > 0.1 in both cases). However, interestingly we
see that for all sets of lemmas, the gold-standard sense distributions consistently
have lower entropy than the LexSemTm distributions. This suggests that HCA-
WSI is systematically producing distributions that are too flat on average. This is an
interesting result, which strongly suggests there is room for improvement in the simple
topic–sense alignment component of HDP-WSI and HCA-WSI. However, further work
based on this observation is beyond the scope of this thesis.

Returning to the initial questions posed in the introduction to this chapter, we
can make some conclusions. First of all, we can answer the original question in
the a�rmative: MWE sense distribution learning appears to be achievable, and as
far as we can tell the task seems to be comparable with simplex sense distribution
learning in all important respects. This includes the relative performance on the
task compared with the strong benchmark of using SemCor-based distributions, the
absolute performance on the task in terms of JSD and ERR metrics, and the general
shape of both the gold-standard and LexSemTm sense distributions. Given that to
the best of our knowledge MWE sense distribution learning is a novel task, this is a
very significant result.

In addition, we can conclude that there appears to be little impact in practice
due to our sense identification methods. While the high recall method was found to
introduce a significantly higher proportion of invalid usages, this was found to have
a negligible impact upon the results of HCA-WSI. Furthermore, from comparing our
two sets of gold-standard distributions, we can observe that the distribution over
senses of the remaining usages once the invalid ones were removed was for the most
part unchanged by the identification methods. Based on this, we can conclude that
HCA-WSI seems to be robust to the exact method of MWE usage identification, which
gives us further confidence in the quality of LexSemTm, and allows us to get away
with just using the high recall-identified LexSemTm sense distributions.

Finally, from these results we can make a couple of auxiliary conclusions. First
of all, we have evidence that HCA-WSI is producing sense distributions that are too
flat on average, which may help motivate future work on improving the topic–sense

25Due to the definition of entropy, it tends to be higher for distributions over larger supports.
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alignment method of HCA-WSI. Given that LexSemTm contains the WSI output
of HCA-WSI for all lemmas, such improvements could directly be applied to update
and improve LexSemTm. In addition, based on the strong similarity we observed
between the high recall- and high precision-identified LexSemTm sense distributions
for the lemmas in L

di↵

(where the high precision-identified LexSemTm distributions
were trained fewer than 3,000 usages on average), we have further evidence that
the quality of LexSemTm sense distributions is still high for lemmas trained on
fewer than 5,000 usages. This strengthens our argument in Section 5.3 that our
conclusions — regarding LexSemTm distributions being superior to SemCor-based
distributions for lemmas missing from SemCor, and on-par with SemCor-based
distributions otherwise — extend to lemmas with low frequency in LexSemTm.

5.5 Conclusion

In Section 5.2 we described the creation of our LexSemTm dataset, containing
WSI output from HCA-WSI across the bulk of the vocabulary of English, Japanese,
Italian, Mandarin, and Indonesian, which can be trivially aligned to any sense in-
ventory containing glosses, as well as distributions over WordNet senses for the
English lemmas. This dataset contains MWE as well as simplex lemmas, and in the
process of creating it we proposed two simple but novel methods for identifying MWE
usages. In addition, we showed that for English, LexSemTm had significantly higher
coverage than SemCor over polysemous lemmas (approximately 88% versus 39%).

Then in Section 5.3 we evaluated the English sense frequency data in LexSemTm
for polysemous simplex lemmas, relative to SemCor. We first demonstrated that
LexSemTm distributions strongly outperform SemCor-based distributions for lem-
mas that are missing SemCor, and also that they are roughly on-par in quality for
lemmas in SemCor. Furthermore, while our main evaluation was performed on lem-
mas where LexSemTm was trained on at least 5,000 usages, we provided multiple
sources of evidence that these results appear to also hold for lemmas with LexSemTm
frequency less than 5,000. This justifies supplementing SemCor with LexSemTm
frequencies for most polysemous WordNet lemmas, and possibly replacing them al-
together. However, we did not find any clear evidence of LexSemTm outperforming
SemCor-based distributions for lemmas in SemCor, over any range of SemCor
frequencies.

Finally, in Section 5.4 we provided a thorough evaluation of the MWE sense dis-
tribution data contained in LexSemTm. In the course of this analysis we concluded
that HCA-WSI is robust to our di↵erent MWE usage identification methods, and that
we can safely get away with just using data from the high recall method (which covers
a greater range of lemmas). Furthermore, we concluded that sense distribution learn-
ing can successfully be done for MWEs, and that MWE sense distribution learning
is comparable to simplex sense distribution learning in all important respects: the
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relative performance compared to the SemCor benchmark is similar, the absolute
performance as evaluated against gold-standard data using JSD or ERR metrics is
about the same on average, and the sense distributions are very similar in shape on
average. Finally, we observed that the distributions in LexSemTm appear to be
systematically too flat, which we believe may motivate future work on refining the
topic–sense alignment method used by HCA-WSI.

Based on these conclusions, we can finally answer the remaining research ques-
tions. The first remaining question asked whether unsupervised all-words sense dis-
tribution learning can be used to supplement or replace existing sense frequency
resources. Based on our results and conclusions from Section 5.3, we can strongly
justify supplementing SemCor with LexSemTm-based sense frequencies for lem-
mas missing from SemCor. Furthermore, we have have evidence to suggest that
we can likely replace SemCor with LexSemTm-based sense frequencies altogether,
although this latter conclusion was not as strongly justified. Regarding the other re-
maining question, which asked whether sense distribution learning could be extended
to MWEs, not only does sense distribution learning using HCA-WSI appear to behave
similarly for MWE lemmas as with simplex lemmas in all important respects, but it
is also robust to how we identify MWE usages. However, given the restriction in the
scope of our evaluations for the most part to English nouns (as in previous sections),
we again need to hedge our answers, and note that they only apply strongly to this
class of lemmas.

Finally, we have addressed the other core aim of our research, which was to apply
unsupervised all-words sense distribution learning to create a language-wide multi-
lingual sense frequency resource, which was satisfied by the creation of LexSemTm.
In addition to this, we have created two accompanying gold-standard datasets: (1)
GoldSemCor, containing usage sentences from EnWiki for a set of simplexWord-
Net lemmas over a wide and balanced range of SemCor frequencies, which are
tagged with WordNet senses; and (2) GoldMWE, containing usage sentences
from EnWiki for a set of MWE WordNet lemmas with usages sampled based on
both MWE identification methods, which are labelled as to whether they are valid
MWE usages or not, along with WordNet sense labels for those labelled as valid us-
ages. These gold-standard evaluation datasets are a bonus outcome from this chapter
that will support future sense distribution learning research, especially work aiming to
supplement or replace SemCor, and performing usage identification or sense learning
(including WSD and sense distribution learning) for MWEs.
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Conclusion

6.1 Summary

In this thesis we have extended and optimised existing sense distribution learning
methods to produce HCA-WSI, an e�cient method for unsupervised all-words sense
distribution learning. This method was created by replacing the HDP topic modelling
component of the previously state-of-the-art HDP-WSI method with HCA, a more ef-
ficient topic modelling algorithm. HCA-WSI was demonstrated to be consistently over
an order of magnitude faster than HDP-WSI, and more robust with less random vari-
ation in sense distribution quality. In addition, we applied HCA-WSI vocabulary-wide
across English, Japanese, Italian, Mandarin, and Indonesian to create LexSemTm,
a new sense frequency resource of unprecedented size, containing data for both sim-
plex and MWE lemmas. These respective outcomes directly address the primary and
secondary aims of our research, which were to develop a method for unsupervised
all-words sense distribution learning, and apply it language-wide to create a novel
sense frequency resource. Furthermore, in addressing these aims we have answered
our core research questions, which were:

1. What does a practical blueprint look like for e�ciently applying sense distri-
bution learning on a large scale, and achieving an optimal balance between
accuracy and computation time?

In the conclusion of Chapter 4, we provided a template for applying HCA-WSI
e�ciently and achieving a reasonable accuracy versus computation time tradeo↵.
Specifically, we provided conservative lower bounds of the number of lemma usages
and Gibbs sampling iterations needed for stable results, which we estimated as 5,000
to 10,000 and 300 respectively, and we showed that HCA-WSI is stable with respect
to HCA hyperparameter settings, with 10 topics, burstiness turned on, and otherwise
default settings recommended as a safe and e�cient general setup.

82
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2. To what extent can unsupervised all-words sense distribution learning be used
to supplement or replace existing sense frequency resources?

In Chapter 5 we demonstrated that sense distributions from unsupervised all-
words sense distribution learning can be used to supplement SemCor. We concluded
that the sense distributions in LexSemTm are clearly superior to SemCor-based
distributions for lemmas that are missing from SemCor.1 This is highly signifi-
cant, given that in total LexSemTm has approximately 88% coverage of polysemous
WordNet lemmas, compared to only 39% for SemCor. Furthermore, we concluded
that the LexSemTm sense distributions for lemmas in SemCor are roughly on-par
with SemCor-based distributions. While our primary evaluation in Section 5.3,
which resulted in these conclusions, was conducted only on lemmas with LexSemTm
frequency at least 5,000 (lemmas where LexSemTm was trained on at least 5,000 us-
ages), we presented multiple sources of evidence all indicating that these conclusions
likely extend to all lemmas, regardless of LexSemTm frequency.

3. Can sense distribution learning also be applied to MWE lemmas, and if so how
does this task compare to simplex sense distribution learning?

In Chapter 5 we also demonstrated that for all practical purposes, the task of
MWE sense distribution learning seems to be equivalent to simplex sense distribu-
tion learning. In answering this question, we experimented with two simple methods
of unsupervised general-purpose MWE identification, and found that the sense dis-
tributions obtained using either method — including both the gold-standard sense
distributions after filtering out invalid usages, and the LexSemTm distributions —
were almost indistinguishable. In addition, we showed that the LexSemTm sense
distributions for MWE lemmas were comparable in quality to those for simplex lem-
mas, both in terms of their quality relative to benchmark and baseline distributions,
and their absolute quality as measured by our metrics of sense distribution quality.

6.1.1 Research Outcomes and Impact

The most significant outcome of our work is the LexSemTm dataset. As noted
above, this dataset contains English sense distributions with substantially greater
coverage than SemCor over WordNet lemmas. This dataset can be of impact
anywhere where accurate sense distributions are useful, especially in performingWSD,
as discussed in Section 1.1.

In addition to this, LexSemTm contains WSI outputs — specifically the doc-
ument distributions over topics and the topic distributions over words that were

1Recall that in this case, “SemCor-based” means the distribution is based on the first-listed
WordNet sense, which is somewhat arbitrary in the absence of SemCor data (WordNet senses
are usually listed in descending order by SemCor count).
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produced by HCA— for both polysemous and nonpolysemous WordNet lemmas
across all five languages. These can easily be aligned to any sense inventory from
the respective languages, using the topic–sense alignment method of HCA-WSI, and
any future improvements to this alignment method could be used to quickly update
the WordNet sense distributions in LexSemTm without the need to run HCA-WSI
again.

Furthermore, the presence of the non-English data in LexSemTm may also have
significant impact, since SemCor-like resources for other languages are currently
very limited. A summary of SemCor-like resources has recently been compiled by
Petrolito and Bond (2014); while there exist a handful of such resources for other
languages, they are all very limited, and usually substantially smaller than SemCor.
However, the non-English data in LexSemTm has not yet been evaluated, so future
work is required to be sure of its impact.

A second significant outcome of this thesis is our blueprint for running HCA-WSI
e�ciently on a language-wide scale, with some generic lemma-independent recom-
mendations for hyperparameter settings and the quantity of data needed. This may
have impact in guiding future work that involves large-scale sense distribution learn-
ing, for example learning domain-specific sense distributions over entire vocabularies
to facilitate domain adaptation, or learning user-specific sense distributions for user
modelling applications. The impact of our work in this respect is especially signif-
icant, given that our optimised method is over an order of magnitude faster than
the previous state-of-the-art method, and also more robust. In addition to this, our
methodology is language-independent and can be applied to simplex lemmas as well
as MWEs.

Of particular note, to the best of knowledge, this is the first ever general-purpose
sense distribution learning or WSD method that has been applied to MWEs. There-
fore, an additional impact of our work with regard to this second outcome is that
we have provided a solution to a previously unsolved problem, which may motivate
future work on this novel task.

In addition to these major outcomes, in the process of evaluating our LexSemTm
sense distributions — both for simplex and MWE lemmas — we created two gold-
standard evaluation datasets: GoldSemCor and GoldMWE (in Section 5.3 and
Section 5.4 respectively). These datasets each contain usages for a variety of lemmas
labelled with WordNet senses, and may help facilitate future work on sense dis-
tribution learning. More specifically, GoldSemCor contains sense distributions for
lemmas over a wide range of SemCor frequencies, which could facilitate future work
on replacing or supplementing SemCor, and GoldMWE contains MWE sense dis-
tributions, which could facilitate future work on MWE sense distribution learning. In
addition, the MWE usages in GoldMWE are labelled according to whether they are
actual usages of the MWE or not, which means this dataset may also help facilitate
future work on MWE identification.

Finally, our work may have impact due to some of its auxiliary findings. For in-
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stance, in Section 4.3 and Section 5.4 we found strong evidence that HCA-WSI sense
distribution learning is very robust. This was due to the negligible impact of hyper-
parameter settings, the negligible impact of the MWE usage identification methods,
and the relatively small variance in sense distribution quality (compared to HDP-WSI)
observed in our bootstrapping experiments. This is significant, because it indicates
that researchers or practitioners using HCA-WSI probably do not need to spend any
significant e↵ort optimising hyperparameter or usage identification settings. Further-
more, due to the low variance in sense distribution quality they can be confident in
the output of the method.

In addition, in Section 5.4 we found evidence that the sense distributions produced
using HCA-WSI are systematically too flat. This finding could also be impactful, as it
provides evidence that there is scope for improving the topic–sense alignment method
used by HCA-WSI, which may motivate work to improve this method. This could in
turn lead to improvements in HCA-WSI, and could be used directly to update the
existing sense distributions in LexSemTm, as discussed above.

6.1.2 Research Limitations

One major limitation of our work is that we narrowed the scope of most of our
evaluations to English nouns only. This was done in order to make the investigation
manageable and the cost of acquiring labelled data reasonable, however it limits the
confidence of our conclusions for other languages and other parts of speech (POS).
On the other hand, as was argued in Section 1.2, we believe this is the part of the
LexSemTm dataset that will be of greatest use to other researchers and practitioners.

A second shortcoming is that many of our evaluations were performed on rela-
tively small sets of lemmas, which limited the statistical power of many of the com-
parisons in these investigations. For instance, the BNC dataset used extensively in
Chapter 4 contained only 40 lemmas, the GoldSemCor gold-standard dataset from
Section 5.3 contained only 50 lemmas, and the GoldMWE gold-standard dataset
from Section 5.4 contained only 46 lemmas. Unfortunately, this was unavoidable due
to the significant cost of obtaining sense-labelled data. Of course, this cost was one
of the main motivators for developing an unsupervised method for large-scale sense
distribution learning in the first place!

Finally, because there was no strong evaluation of LexSemTm sense distributions
compared to SemCor-based distributions for lemmas with LexSemTm frequency
less than 5,000, our conclusions regarding how LexSemTm compares to SemCor
for these lemmas were somewhat vague. While we performed a secondary evaluation
over a wider range of lemmas, and found that sense distribution quality only degraded
slightly with low LexSemTm frequency, this evaluation was fairly rough; it was
performed using SemCor-based distributions as proxy gold-standards. While these
results were corroborated by findings from some of our other evaluations, we would
be much more confident of our conclusions for the lemmas with low LexSemTm
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frequency if we had evaluated over gold-standard sense-labelled data for such lemmas.
Again, the main limitation stopping us from addressing this shortcoming was the cost
of obtaining the required sense-labelled data.

6.2 Future Work

We conclude this thesis with some recommendations for future work. For each
possible direction of future work, we provide some concrete suggestions for how our
work could be extended in that direction.

6.2.1 Evaluating Remaining Data in LexSemTm

The most immediate recommendation would be to extend our evaluations in this
thesis, by addressing the shortcomings described above. Specifically, this could in-
volve obtaining sense-labelled data for: (1) English lemmas in LexSemTm covering
a wide range of LexSemTm frequencies, including both lemmas present in and miss-
ing from SemCor; (2) English lemmas in LexSemTm over all POS (noun, verb,
adverb, and adjective), including both lemmas present in and missing from SemCor;
(3) English MWE lemmas over all POS; and (4) non-English lemmas. This sense-
labelled data could be obtained using Amazon Mechanical Turk, as in Section 5.3
and Section 5.4. Alternatively, the non-English data could be obtained using exist-
ing multilingual sense-annotated corpora (for example, those listed in Petrolito and
Bond (2014)). However, this would introduce similar limitations to our secondary
evaluation in Section 5.3, where we used SemCor-based distributions as proxy gold-
standards.

These sense-labelled datasets could be used directly to answer the following ques-
tions respectively: (1) how do LexSemTm sense distributions compare to SemCor-
based distributions in quality, as a function of LexSemTm frequency? (2) does
the relative quality of LexSemTm sense distributions compared to SemCor-based
distributions depend on POS? (3) does the performance of MWE sense distribution
learning depend on POS? and (4) how does the English contained in LexSemTm
compare with the non-English, both in terms of sense distribution quality and qual-
itatively? These questions could be answered using similar methodology as in this
thesis. This is a very appealing direction for work, given the large quantity of data in
LexSemTm— specifically the non-English data, and the English data for POS other
than noun — that we haven’t yet evaluated.

6.2.2 Improving Topic–sense Alignment

Another direction for future work would be to improve the current topic–sense
alignment method used by HDP-WSI and HCA-WSI. The current method is very naive,
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as it only takes into account exact matches in word occurrences between sense glosses
and topics. In particular, our observation from Section 5.4 that the LexSemTm
sense distributions are systematically too flat strongly implies that there is scope to
improve this method. One issue with the existing method is that it doesn’t take
into account words with very similar meanings. For example, if a gloss of the river
bank sense of bank contained the word river , and a topic contained the words water
and stream, we would like these words to contribute to the prevalence score for that
sense. Furthermore, it is likely that some glosses will have a higher concentration of
strongly context-bearing words than others, and thus will tend to obtain relatively
higher prevalence scores, regardless of the “true” sense distribution.

We believe that this alignment method could be improved by taking advantage
of distributed representations (embeddings) of words, senses, and topics.2 A simple
baseline approach for doing this would be to use existing word embeddings (for exam-
ple word2vec vectors (Mikolov et al. 2013)), in order to create an embedding of each
gloss and topic, by averaging the word vectors in each. Similarity between glosses
and topics could then be computed based on these vectors (for example using cosine
similarity), which could be used in place of JSD in performing alignment. Because
similar words should have similar word embeddings, this may deal with the problem
of similar but non-identical words appearing in topics and glosses, and the problem
of some glosses containing more words with exact matches in topics than others.

A more advanced approach to using topic and sense embeddings for topic–sense
alignment would be to take advantage of existing methods for calculating embeddings
of senses or bags of words.3 For example, Rothe and Schütze (2015) and Bhingardive
et al. (2015) have recently proposed methods for calculating sense embeddings in
the same vector space as word embeddings, for sense inventories with a WordNet-
like network structure. In particular, the AutoExtend method of Rothe and Schütze
(2015) looks very promising for this purpose, since AutoExtend sense vectors have
been shown to be of high quality.4 In addition, methods for calculating embeddings
of bag of words, such as doc2vec5 (Le and Mikolov 2014), could be used to create
higher quality topic vectors, and also to retrain word embeddings for the language
based on patterns in the topics (which could lead to further improvements in sense
vectors). These more sophisticated sense and topic vectors could then be used to
perform alignment, as described above for the baseline approach.

2Recall that an embedding of an object is a representation of that object as a vector in some
vector space.

3A bag of words is a multiset of words. Topics from HDP or HCA can be represented as bags of
words, based on the counts of how many times each word was allocated to a given topic in the topic
modelling output (in other words, using the unnormalised versions of the topic distributions over
words).

4This was measured by how successfully the sense vectors could be used to improve supervised
WSD, by including features based on these vectors.

5Technically, only the distributed bag of words (DBOW) version of doc2vec can be applied to
bags of words.
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Furthermore, the observation from Section 5.4 that HCA-WSI sense distributions
are systematically too flat should also be taken into consideration in any future work
to improve topic–sense alignment. In the existing alignment method, a single topic is
assigned to each usage, which are then aligned to to the glosses. We propose that it
may be necessary to fundamentally change this architecture to deal with this flatness
problem. As a first step in exploring new architectures, we suggest trying to assign a
single sense to each usage rather than a single topic. The reason for this is that if we
could ensure that most usages were assigned to the most frequent senses, we would
be guaranteed of obtaining a relatively skewed sense distribution.

Given an improved topic–sense alignment method, it would also be worthwhile
re-aligning the WSI data in LexSemTm to WordNet, and then repeating our
experiments comparing LexSemTm sense distributions to SemCor-based distribu-
tions. It is possible that improvements to alignment could lead to stronger conclusions
regarding whether LexSemTm can supplement or replace SemCor.

6.2.3 Extracting Novel Senses from LexSemTm

A completely di↵erent direction for future work would be to use the WSI data
in LexSemTm to expand existing sense inventories. For example, Lau et al. (2012)
and Lau et al. (2014) demonstrated that the WSI output of HDP-WSI could be used
to detect novel word senses (that is, senses not currently listed in a given sense
inventory). These methods could be applied to the WSI data in LexSemTm, in order
to extract novel senses for all five languages. Furthermore, following methodology
such as that of Cook et al. (2013), this could be used in order to expand existing
lexical resources (such as WordNet or other dictionaries) with new senses.

This study could be particularly interesting, because LexSemTm contains WSI
output for the nonpolysemous lemmas in each language, in addition to the poly-
semous lemmas. In the case of English, in addition to the approximately 27,000
polysemous lemmas contained in LexSemTm, there are approximately 70,000 non-
polysemous lemmas. Therefore, extracting novel senses from LexSemTm could lead
to the discovery of many new polysemous lemmas.

6.2.4 Multiword Expression Sense Learning

Finally, given that MWE sense learning, including WSD, WSI, and sense distribu-
tion learning, are novel tasks to the best of our knowledge,6 this thesis could motivate
further work on MWE sense learning. One such direction would be to extend super-
vised WSD methods, such as IMS (Zhong and Ng 2010), to MWEs. To start with,
supervised WSD could be performed on MWEs using the same features as for simplex
lemmas, in order to compare the performance of supervised WSD for MWE versus

6Other than the minor exceptions noted in Section 2.4.
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simplex lemmas. This could then be extended by experimenting with MWE-specific
features, for example the insertion of any extra words between the MWE components.

A further extension to the above would be to also address the problem of MWE
identification; it seems reasonable to believe that these tasks should be performed
jointly, as they are related. Therefore, one could attempt to perform WSD and iden-
tification for MWEs jointly, in order to investigate whether either task can benefit the
other. This could be done using standard supervised learning, or alternatively using
semi-supervised learning with co-training (Blum and Mitchell 1998). Furthermore,
this could be facilitated by our GoldMWE dataset, which contains sentences for a
set of MWEs, along with gold-standard labels for both WSD and identification.
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Appendix A

Amazon Mechanical Turk Details

In this appendix we show in detail the Amazon Mechanical Turk (AMT: see
Section 3.1.5) interfaces provided to workers for our annotation tasks. In addition,
we list the control sentences used for each lemma in our AMT experiments. These
details are of importance for the reproducibility of our annotation experiments.

A.1 AMT Interface

The interface provided to workers for creating our GoldSemCor gold-standard
dataset (see Section 5.3) is shown in Figure A.1 and Figure A.2. At the start of
each batch the instructions shown in Figure A.1 were shown to workers, in order to
define the annotation task. Subsequently, the examples in Figure A.2 were provided,
to help make the instructions more clear. After the instructions and examples they
were provided with the 27 sentences to annotate, which were presented in the same
style and with the same information as the examples.

Similarly, Figure A.3 and Figure A.4 show the instructions and examples respec-
tively provided to workers at the start of each batch in the annotation task for creating
GoldMWE (see Section 5.4). Again, these examples show the style of information
and annotation options provided to workers for the subsequent 28 sentences they were
asked to annotate.

Note that in each batch, the order of the annotation options was randomised once
in order to reduce bias, but kept consistent throughout the batch in order to make
the task as simple as possible for workers.
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Figure A.1: Detailed instructions provided to AMT workers for the annotation of
GoldSemCor. These are the general instructions provided at the start of each
batch to be annotated.
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Figure A.2: Examples provided to AMT workers for the annotation of GoldSem-
Cor. These were provided at the start of each batch after the detailed instructions
in order to help define the annotation task by example.
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Figure A.3: Detailed instructions provided to AMT workers for the annotation of
GoldMWE. These are the general instructions provided at the start of each batch
to be annotated.
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Figure A.4: Examples provided to AMT workers for the annotation of GoldMWE.
These were provided at the start of each batch after the detailed instructions in order
to help define the annotation task by example.



Appendix A: Amazon Mechanical Turk Details 106

A.2 AMT Control Sentence Lists

We now list the control sentences used in our AMT annotation experiments. In
Table A.1 we list the control sentences used for our simplex lemmas to create Gold-
SemCor, and in Table A.2 we list the control sentences used for our MWE lemmas to
create GoldMWE. In both cases, for each lemma we list the set the lemma belongs
to, the control sentences, and the “correct” sense(s) for each control sentence.

In the case of GoldSemCor lemmas, the set is based on the SemCor frequency
of the lemma (see Section 5.3). On the other hand, in the case of GoldMWE lemmas
the lemmas are partitioned into L

int

and L
di↵

, based on whether they are in the high
precision part of GoldMWE (see Section 5.4).

The numeric senses listed are a reference to the sense order in WordNet; for
example, “#2”’ refers to the second-listed sense in WordNet for a given lemma.
Alternatively, in the case of MWE lemmas in GoldMWE, the “invalid” sense means
that the sentence is a negative example; that is, the sentence is considered not a
valid usage of the given MWE. For both tables of control sentences, if multiple senses
are listed it means that we decided — sometimes based on annotator response, and
sometimes ourselves — that the control sentence was ambiguous, and multiple senses
could apply. These ambiguous control sentences were excluded when training MACE,
as detailed in Section 5.3 and Section 5.4.
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Lemma Set Control Sentence Sense(s)

animation L(1)

gsc

She spoke with animation about her trip. #3, #4, #6
The Web site has hundreds of animations you can
download.

#5

bowler L(1)

gsc

The man was dressed in a sharp suit and a bowler hat. #3
He is currently the best performing bowler on the
Australian cricket team.

#1

crossover L(1)

gsc

A rock musician’s crossovers into jazz and soul music. #3
What happens if they crossover and vote in the
Democratic primary?

#2

fin L(1)

gsc

The large muscles of the body actually do most of the
work, but the fins help with balance and turning.

#6

We consistently talk to snorkelers who have wide feet;
men specifically who have problems finding fins that will
fit them.

#4

flora L(1)

gsc

One of Australia’s greatest treasures is her flora — a
staggering 24,000 species of native plants have been
identified compared to England’s 1700 native plants.

#1

Mr Steven’s garden contained a wide variety of native and
introduced flora.

#2

format L(1)

gsc

The data format is widely used, as it facilitates very
e�cient processing under most scenarios.

#1

The magazine is especially known for its easy to read
format, and weekly satire columns.

#2

lodge L(1)

gsc

But otherwise, traditional Native American houses like
these are usually only built for ritual or ceremonial
purposes, such as a sweat lodge or tribal meeting hall.

#5

After a hard day of walking, the pilgrims decided to
search the local village for a lodge to stay for the night.

#6

metabolism L(1)

gsc

There are four stages in the metabolism of butterflies
and moths: egg, larva, pupa, and adult.

#1

If we eat and drink more kilojoules than we need for our
metabolism and exercise, we store it mostly as fat.

#2

propulsion L(1)

gsc

Sailboats use wind as their source of propulsion. #1
In an act of propulsion, Andy hurled the ball over the
wall.

#2

punt L(1)

gsc

This little 300 punt is light and economical, get into the
boating lifestyle on a budget.

#2

The Aussie punt is when we drop the nose and kick the
point of the football.

#3

blend L(2)

gsc

The name Microsoft is a blend of the words
microcomputer and software.

#2

A refreshing blend of ice, co↵ee and milk that can be
sweetened or flavored.

#1, #3

conjecture L(2)

gsc

This hypothesis was dismissed on the grounds that is was
only conjecture.

#1

Recent work has involved examining the cognitive
processes involved with conjecture.

#3

cream L(2)

gsc

Co↵ee can be prepared with or without cream. #2
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Recently an experimental anti-ageing skin cream has
been trailed by pharmaceutical companies.

#3

designer L(2)

gsc

Interior designers are often employed to decorate their
homes.

#1

The following graphic designers were involved in creating
the show’s artwork:

#3

heroine L(2)

gsc

The book’s main heroine was widely regarded as a
one-dimensional character.

#1

As a result of her brave actions she was declared a
heroine by the President of the United States.

#2

hobby L(2)

gsc

The king’s hobby had injured its wing during the last
hunt.

#3

Hunting is a common hobby for those living in rural
communities.

#1

jewel L(2)

gsc

The crown was set with a variety of brightly colored
jewels.

#1

To her father, she was a real jewel. #2

lease L(2)

gsc

The lease must be signed by the lawyers of both parties
before the contract is enforceable.

#2

The lease is 5 years. #3

poster L(2)

gsc

The activist posters regularly placed pieces of
propaganda on walls around the university.

#2

Missing-pet posters are a common sight on poles and
trees around the city.

#1

zombie L(2)

gsc

The zombie is a high-octane cocktail full of delicious fruit
juices, that make you feel like you’re downing
sophisticated candy.

#5

The soldiers were believed to have been brought back to
life to create an army of zombies.

#1

anatomy L(3)

gsc

He was a researcher in human anatomy. #1
The anatomy of a movie trailer. #3

associate L(3)

gsc

He worked as an associate at the bank for three years
before being promoted.

#3

He was a close associate of the mayor. #1, #2

graduate L(3)

gsc

Too many law graduates and not enough jobs. #1
The meniscus is used to measure the volume of a liquid in
a container, such as a graduate.

#2

lane L(3)

gsc

The cafe is located on a small lane in between the town
hall and the public library.

#1

Swimming pools are often divided into separate lanes for
swimmers of di↵erent speeds.

#2

orange L(3)

gsc

Nutrients contained in oranges are plentiful and diverse. #1, #3
Orange is the color of the Dutch Royal Family. #2

original L(3)

gsc

A Van Gogh original nearly sold for $80. #1
Several schematic copies were created from the original. #2

symphony L(3)

gsc

Beethoven’s ninth symphony is arguably the single piece
that inspired the methodology of musical analysis.

#1

The university symphony is playing in the concert hall
after noon.

#2



Appendix A: Amazon Mechanical Turk Details 109

treason L(3)

gsc

He was sentenced to death later that year for high
treason.

#1

He considered his best friend’s betrayal as an act of
treason.

#2, #3

uncle L(3)

gsc

He had over a dozen aunts and uncles. #1
He served as an uncle to the new employees at the
company, helping them settle in to work.

#2

variable L(3)

gsc

The main variable is the teacher. #1
The equation contains three variables in it; x, y, and t. #4

base L(4)

gsc

They returned to the main military base in Paris. #1, #14
They set up camp at the base of Mt Everest. #4

belt L(4)

gsc

The lawn formed a green belt around the manor. #5
The man’s belt did not match his black dress shoes. #2

canvas L(4)

gsc

The tent was made from a thick, green canvas. #1, #4
The signature wrestling move involves slamming the
opponent face-down onto the canvas.

#6

engagement L(4)

gsc

It is normal for couples to hold an engagement party
before getting married.

#3

In the first engagement alone, both sides lost thousands
of troops.

#1

occupation L(4)

gsc

The territory is currently under military occupation by
Russia.

#2, #5

His occupation with his smartphone was so great that he
missed his train stop.

#3

pot L(4)

gsc

Hot summer days can leave pot plants looking worse for
wear with wilted or curling leaves and dehydrated soil,
here’s how to revive them.

#4

At the end of the game of poker, he won the entire pot. #6

survey L(4)

gsc

A survey was conducted on Americans that found 1 in 4
think the sun goes around the Earth.

#1

He tried to get a better survey of the munitions camp
through his binoculars.

#3

technology L(4)

gsc

The company is developing new technology to
automatically assemble buildings.

#1

He served for 10 years as a professor in technology. #2

tension L(4)

gsc

The book was filled with a tension between its desire to
be exciting and action packed, and its political message.

#3

There was an openly hostile tension in the air as the rival
gang members faced each other.

#5

victim L(4)

gsc

Reports say there were 567 victims from the cyclone. #1
Many people are taken in by fraudsters — criminals that
use clever tactics and tricks to try and manipulate their
victims.

#2

integration L(5)

gsc

Successful integration of di↵erent racial and religious
groups into the United States community is considered an
essential component of immigration policy.

#1

Mathematical integration is first taught to students in
late high school, in calculus courses.

#3

number L(5)

gsc

Every whole number is either even or odd. #2
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Afterwards, she nervously asked him for his telephone
number.

#4

opinion L(5)

gsc

Public opinion holds that a traditional family is the ideal
environment to raise children.

#3

Her privately-held opinion was that the monarchy should
be overthrown.

#1, #6

parent L(5)

gsc

While her parents were away on vacation, she was looked
after by her uncle.

#1

This rare tree was used as a parent to grow thousands of
clone trees.

#2

payment L(5)

gsc

She received a payment of $100 for services rendered. #1, #2
As payment for his crimes, he was sentenced to death by
guillotine.

#3

pleasure L(5)

gsc

He felt immense pleasure at seeing his children again. #1, #2
The directors serve at the pleasure of the shareholders. #3

result L(5)

gsc

Lightning occurs as a result of an accumulation of
electrostatic charge in the air.

#1

The results of the blood test are sent directly to the
specialist physician.

#3

speech L(5)

gsc

He delivered the first speech at the opening ceremony. #1
There is ongoing research into whether other great apes
are capable of speech.

#2, #4, #8

step L(5)

gsc

The world’s longest staircase is located on the face of Mt.
Niesen in Switzerland, and contains 11,674 steps.

#4

He took ten steps towards the door before collapsing. #3

theory L(5)

gsc

The theory of gravity has allowed scientists to
understand the motions of stars and planets.

#1

The police o�cer acted on the theory that at least one of
them must have been telling the truth.

#3

Table A.1: List of all control sentences used in creation of the GoldSemCor gold-
standard dataset, from Section 5.3. For each lemma we list which partition of L

gsc

the lemma belongs to, along with both control sentences and the sense(s) for each
control sentence. Each sense listed is based on the order of the lemma’s senses in
WordNet.
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Lemma Set Control Sentence Sense(s)

batting average L
di↵

Online Calculator for calculating the batting
average of a baseball player.

#1

The stock trader increased her batting average to
9 in 10 successful trades.

#2

His skill in batting was average at best. invalid

black and white L
di↵

Back then, all photographs were black and white. #2
This kind of written communication was sometimes
referred to as black and white.

#1

Many studies have established an earnings gap
between black workers and white workers.

invalid

cabinet minister L
di↵

He was a cabinet minister in the 23rd
government.

#1

As a senior minister and member of the cabinet, her
job title was cabinet minister.

#2

She was hurriedly searching for a clean dress from
her cabinet while the minister waited outside.

invalid

carrying out L
di↵

The award was awarded for the most artful
carrying out of the play.

#2

The carrying out of the commander’s orders was
their first priority.

#1

Most of the mess was created while carrying the
uprooted tree out of the property.

invalid

case study L
di↵

After the bank collapsed, a detailed case study
was undertaken to find the cause.

#1

Most case studies done on the drug have found
more reliable results for younger patients.

#2

It is recommended that students study high school
maths in case they decide to study advanced
science or engineering.

invalid

community service L
di↵

She had regularly volunteered to perform
community service at the local aged care home
since a young age.

#1

As part of his punishment, he was sentenced to 6
months of community service.

#2

The local community centre o↵ers various
services to residents of the suburb.

invalid

dance music L
di↵

Back then, dance music referred to music used for
ballroom dancing.

#1

Electronic dance music was booming, and no
company symbolized the boom more than SFX.

#2

The dance instructor muted the music until the
protestors left.

invalid

day school L
di↵

A day school - as opposed to a boarding school - is
an institution where children (or high-school age
adolescents) are given educational instruction
during the day, after which the students return to
their homes.

#3
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Unlike night schools, day schools do their teaching
during the day.

#2

Students are angry at the school’s plans to scrap
the four day school week.

invalid

end of the world L
di↵

Various groups of Christians believe that the Last
Judgement - i.e. the end of the world - is going
to occur in the next century.

#1

Various ancient tribes prophesied a possible end of
the world.

#2

At the end of the promenade is a world class
restaurant.

invalid

fairy tale L
di↵

Reading fairy tales to children at a young age has
been shown to improve educational outcomes.

#1

He called in sick to work, but was fired because his
boss thought his story was a fairy tale.

#2

The fairy told a tale about her home kingdom. invalid

first base L
di↵

First base is often considered an o↵ensive position
to play.

#2

The government only reached first base on their
plans to restructure the tax department.

#3

He had first arrived at the base two years before. invalid

first lady L
di↵

She was the first lady of Russian dance. #1
The president’s wife is known as the first lady. #2
Food is to be served first to the lady, then to the
gentleman.

invalid

gold rush L
di↵

The recent explosion in computing speed has
created a gold rush within the IT sector.

#1

Alluvial gold was discovered along the banks of the
Bendigo Creek in 1851 and resulted in a major
gold rush.

#2

They stormed the bank to collect their gold in a
mad rush, fearful that it would all be gone.

invalid

golden age L
di↵

The period of the Roman Empire is often
questionably viewed as a kind of golden age for
Europe.

#2

The golden age of advertising - the 60s. #1
The longest living golden eagle lived to age 46. invalid

golf club L
di↵

He was a member of the same golf club for over 20
years.

#1

She had purchased a new set of golf clubs in
anticipation of the big game on Saturday.

#2

After a long game of golf they went out clubbing. invalid

grammar school L
di↵

She spent the early years of her education, up to
the age of 12, at the local grammar school.

#2

The majority of students at the university program
completed their education at an Anglican
grammar school, most of whom had studied at
least one of Latin or Classics.

#1

It is believed by some experts that education in
grammar at primary school is currently lacking.

invalid
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music hall L
di↵

The show was held every Saturday at the music
hall in Chicago.

#1

The group performed a music hall, which was a
popular style of performance at the time.

#2

There was music playing in the hall. invalid

open door L
di↵

Voters were opposed to the open door policy on
international trade.

#1

As part of an initiative to increase transparency,
the department was forced to maintain an open
door to journalists.

#2

The abandoned house had open windows and no
doors.

invalid

real time L
di↵

Internet technologies allow the odds for sporting
events to be updated in real time.

#1

Subsequent advances in search engine engineering
allowed a massive reduction in the real time for
search queries to be processed.

#2

I believe I made it real clear that this time failure
will not be tolerated.

invalid

record album L
di↵

The band’s first record album was an
international sensation.

#1

Back then, they used to store their phonograph
records in a record album.

#2

Later that year, they broke the record for best
selling album of all time.

invalid

street name L
di↵

The street name was changed from Croydon Rd
to Norfolk Rd.

#4

Some of the street names, slang terms and
nicknames given to cocaine during the height of its
popularity have become part of the American
lexicon.

#2

The man is known to live on the same street, but
his name is unknown.

invalid

track record L
di↵

Only companies with a strong track record are
hired for tier 1 construction projects.

#1

Usain Bolt bounced back from a rare defeat, setting
a track record at the Bislett Games on Thursday
in his first 200-meter race of the season.

#2

He was on track to release another record by the
year 2000.

invalid

training school L
di↵

Many students attend the training school after
high school, in order to learn skills such as
carpentry.

#1

When youth require detention, the program ensures
that those youth exit the training school with the
education, skills and supports to reduce the
likelihood of recidivism.

#2

Every Friday he went to football training after
school.

invalid
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turning point L
di↵

the agreement was a turning point in the history
of both nations.

#1

Turn left at the next turning point, in order to
enter Lennox St.

#2

There was an excellent article on John Ford,
turning on the point that anyone who admired
Ford’s later works must have only a very imperfect
appreciation of the earlier ones.

invalid

box o�ce L
int

It was the most successful movie that year in terms
of box o�ce results.

#1

Tickets can be purchased at the box o�ce on the
level above the cinema.

#2

A new delivery of cardboard boxes arrived at the
o�ce yesterday.

invalid

common law L
int

In the context of civil law systems, common law is
often used to refer to laws established by precedent.

#1

England follows a common law system, which
means that legal cases are primarily decided based
on the outcomes of past cases, rather than
statutory law.

#2

It is common to ignore the law in these kinds of
cases.

invalid

concentration camp
L
int

After the war, the enemy soldiers were held in
concentration camps for over 6 years.

#1

Their living situation, which involved nine people
sleeping in two bedrooms, could be easily
categorized as a concentration camp.

#2

The concentration of boot camp facilities was
increased again that year.

invalid

field goal L
int

He didn’t score any field goals until the last game
of the football season.

#1

It is commonly believed that taller basketball
players have a distinct advantage in scoring field
goals.

#2

After her recent success in track and field events,
her goal was to join the number one division.

invalid

first class L
int

The airline only recently started o↵ering first class. #3
First class is a fast, a↵ordable way to send
envelopes and lightweight packages.

#2

He graduated first in his class at Harvard. invalid

free agent L
int

Since he ripped up his contract with the Manchester
United Football Club, he was a free agent.

#1

After joining the hippie commune she started living
as a free agent.

#2

They are free to hire an agent to act on their
behalf.

invalid

health care L
int

The government’s health care policy provides
social insurance for the sick and needy in society.

#1
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The doctor provided top quality health care to his
patients.

#2

Although the car’s engine was not in good health,
nobody cared.

invalid

heavy metal L
int

Mercury is classified as a heavy metal. #1
He started his career as a member of a local heavy
metal band.

#2

The wooden table is less heavy than the metal
one.

invalid

home run L
int

In his first professional baseball game, he scored
two home runs.

#1

The movie’s box o�ce success was a home run. #2
In order to increase her fitness, every day she left
home and ran around the lake.

invalid

military service L
int

In feudal, medieval England, military service was
often the basis of land tenure.

#2

The available manpower of the country’s military
service is over 100 million individuals.

#1

The military mostly obtained administrative
services from other departments.

invalid

number one L
int

His selfish life philosophy was based around taking
care of number one.

#1

He is often considered the number one best chess
player of all time.

#2

She also lost a number of limited edition one
dollar coins in the flood.

invalid

old man L
int

He was believed to be an old man, possibly over 80
years old.

#1

Common wormwood, or old man, is a species of
flowering plants in the sunflower family.

#4

The old dog and young man were out for a walk. invalid

point of view L
int

History is often taught from the point of view of
the conquerers.

#1

From her new point of view, the tree looked much
taller than it did from further away.

#2

Far above the point of impact the view of the
crater is breathtaking.

invalid

post o�ce L
int

He had worked for several years as a high ranking
administrator of the US Post O�ce.

#2

The pub is located 50m from the local post o�ce. #1
The post is visible from the o�ce window. invalid

public school L
int

Conservatives are unhappy about the amount of
taxpayer money going towards government run
public schools.

#1

Unlike in other countries, in Great Britain public
school refers to a kind of private, independently
run secondary school.

#2

He did not like to be seen in public in his school
uniform.

invalid
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public service L
int

Her research in medical science was awarded as an
extraordinary act of public service.

#1

Over half of the workforce is employed in the
public service.

#2

It was first floated on the stock market as a public
financial services company.

invalid

railway line L
int

In this context, the railway line refers to a bundle
of railway routes bundled together as a corporation
(e.g. a UK train operating company).

#1

The old railway lines in the desert have been
showing signs of rust, and are in need of repair.

#2

She was at the railway station standing in line to
board the train.

invalid

roller coaster L
int

The constant change of pace in the movie provided
an emotional roller coaster for viewers.

#1

As of the summer 2009, Walt Disney World has five
roller coaster rides.

#2

Skateboards, Roller Skates, Roller Blades,
Coasters and Go-Carts.

invalid

task force L
int

The military created a special task force to
recapture the capital from the rebels.

#1

The program was launched by a school task force
created to counter playground bullying.

#2

The first task was to force the opposition to agree
to the new tax plan.

invalid

theme song L
int

The radio station changed their theme song after
continuous listener complaints.

#1

He was hired to compose the theme song for every
movie in the series.

#2

For each chosen theme, three matching songs were
decided.

invalid

third party L
int

It is recommended that these services are
performed by a third party, so there is no conflict
of interests between landlord and tenant.

#1

The Greens have recently become a major third
party in Australian politics.

#2

She was the third guest at the party to arrive. invalid

young man L
int

Most of the workers at the factory are young men. #1
She was out for dinner that night with her young
man.

#2

The plot is based around a young woman and a
man of middle age.

invalid
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Table A.2: List of all control sentences used in creation of the GoldMWE gold-
standard dataset, from Section 5.4. For each MWE lemma we list which partition of
L
union

the lemma belongs to, along with all three control sentences and the sense(s)
for each control sentence. Each sense listed is based on the order of the lemma’s
senses in WordNet, and “invalid” is listed if the sentence is a negative example
(not a valid MWE usage).
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