Abstract

This paper looks at situations in which public and private protection are complementary, that is, when private protection must be coordinated with public
protection to be effective. For example, home alarms deter theft by being connected to a local police station: if the police do not respond to a home alarm, the home alarm on its own is virtually useless in halting a crime in action. We make a distinction between gross and net complementarity and substitution, where the latter takes into account the effect on the crime rate. We show that when public and private protection are complements, the optimal provision of public protection trades off the manipulation effect of encouraging private protection with the compensatory effect of providing protection to households that do not privately invest. We discuss the implications of our results for policy and empirical research in this area.

Key Words: Crime, Private Protection, Law Enforcement; Externalities

JEL: H41, H42, K42

1 Introduction

How should we deploy scarce public resources if public protection of property and private protection of property are complements? Building on previous studies, this paper makes an inquiry into situations of complementarity in public and private protection. By complementarity we mean that the effectiveness of each type of protection is increasing in the presence of the other. We show that very different optimal policy recommendations are generated when public and private protection are substitutes versus when they are complements. As we discuss in detail below, the provision of both public and private protection ultimately creates four types of goods: 1) the public sector provides a public good by lowering crime through means of increased policing - a publicly provided public good, but 2) the public sector also provides a private good by directly protecting households from crime - a publicly provided private good. 3) Each household may invest in private protection to protect their own home - a privately provided private good but 4) this may also have an impact on the overall return to crime - a privately provided public good. The optimal deployment of scarce resources depends critically on the technology of protective interventions and
trading off the externalities.

Acknowledging that different types of private protection interact differently with public protection, this paper presents a model to study how households and the government can invest according to different situations for the best results. For example, bars on windows or specialty locks do not require police intervention to deter crime - these are substitutes for public protection. On the other hand, a private home or business alarm is a complement for public protection services. For instance, in the well-publicized April 2015 Hatton Garden gem heist, 200 million GBP worth of jewels were stolen. The police dismissed the burglar alarm at the time of the heist, however, had they responded, they may have been able to catch the robbers in action: the alarm on its own was ineffective without police response. Interestingly, the theoretical literature on the interaction between private and public protection focuses exclusively on situations where public and private protection are technologically substitutes\(^1\).

There has been a long record of literature leading up to our study of complementarity. Tulkens and Jacquemin (1971) and Clotfelter (1977) were the first to discuss the optimal combination of public and private protection when public protection is a substitute for private protection. Clotfelter (1978), Hotte and van Ypersele (2008), and Baumann and Friehe (2013) investigate externalities generated by private protection and its impact on public policy but neither study considers what would happen if public and private protection were complements. Helsley and Strange (2005) introduced the concept of a political incentive externality- how private protection influences the objective function of the government. They argue that increased local private policing diverts crime to other targets and reduces the aggregate expenditure on traditional policing, revealing another form of substitutability. Helsley and Strange (1999) explore the competition between gated communities and highlight the potential for strategic complementarity or substitutability. However, they abstract

\(^1\) Another example of strong complementarity in technology is documented in the Ayres and Levitt (1998) study of the impact of Lojack, a system designed for recovering stolen cars. A secret radio transmitter is placed in a car to enable the police to track it once it has been stolen. Because thieves cannot discover the transmitters, 95% of the Lojack-equipped stolen cars are recovered. As a result, this system reduces the profitability of car thefts along with the incidence of them.
from investments in public protection.

The only preceding fulsome formal contribution to consider complementarity is Galiani et al. (2018) which considers the decision of land developers to invest in private security under both uniform and targeted public security deployment. Their model does not produce investments in private security when public security is targeted. Their competitive general equilibrium model is used to study how the geographic distribution of police protection affects the decisions to enter criminal activity, the intensity and location of crime, housing prices, and the welfare of skilled and unskilled citizens. When public security is uniformly deployed high income earners invest in private security as a club good to displace crime to unprotected households. When policing is concentrated, there is no investment in the private protection because it is unnecessary for the rich (who are protected in equilibrium) and for the poor (who are unprotected in equilibrium). Our decentralized equilibrium approach complements the contribution of Galiani et al. (2018) by considering the specific mechanisms through which externalities generated through public and private investments in the absence of residential location decisions or directed criminal search. We complement Galiani et al (2018) by abstracting from residential location decisions and directed criminal search to focus on the specific mechanisms through which public and private investments in security interact to affect welfare when there is intermediate complementarity, and effectiveness of public and private technologies. Similarly our work complements Fu et al. (2018). They use a general equilibrium model to analyze the effect of police on crime in the absence of private protection choice. They show that the predicted optimal allocation of police across Metro areas in the US depends on unobserved, Metro-specific attributes. They demonstrate a gap in our understanding optimal policy that may be partially filled by the incidence of private security investments.

Lee and Pinto (2009) explore the interaction between private and public protection in a multi-jurisdictions setting. They use a general model with an appropriation technology that could accommodate for complementarity, but only explore the case
where private and public protection are substitutes. Ben-Shahar and Harel (1995) look at the question of incentivizing private protection effort. They acknowledge the possibility that private protection may be a substitute or complement for government effort, but they also overlooked complementarity.

Historically, the empirical literature has found support for both substitutability and complementarity. In support of substitutability, Bartel (1975) finds that increased public protective expenditures reduces the demand for private protection. Friedman, Hakim, and Spiegel (1987) also discuss the shifts between public protection and private security by emphasizing the role of community size. Philipson and Posner (1996) find that when public anti-crime activities improved, the proportion of homes with burglar alarms drops significantly. There has also been evidence of complementarity between public and private protection. Focusing on environmental regulation, Langpap and Shimshack (2010) find that private enforcement crowds in public monitoring (complementarity), but crowds out public sanctions (substitutability). Di Tella et al (2010) describe how private protection affected the distribution of crime during a crime wave in Argentina. Their work highlights the negative externality produced as private investments in protection by the rich re-directed victimization towards the poor. Interestingly they demonstrate that the type of technology used for protection is very important. To protect oneself at home, the rich have an advantage in hiring private security and installing alarms. While, on the streets rich and poor have access to the same activities of avoiding dark places or wearing fewer jewels. They show that the poor were victimized relatively more at home, while street victimization rates were similar across the income distribution.

More recently, several studies have highlighted the importance of complementarity in the effectiveness of public good provision, specifically when crime is involved. Albouy et al. (2018) show that public safety, a private good purchased through residential choice decisions, is a complement to environmental amenities like public parks: safe parks are a public good, while unsafe parks are a public bad as confirmed by their data from US cities. Blattman et al (2017) presents evidence from randomly as-
signed police officers and investments in municipal services that targeted public “hot spot” policing itself is not an effective crime reduction policy, but that when paired with complementary local improvements in lighting and cleanliness of streets crime is significantly reduced.

Also related to our contribution are recent studies of crime spillovers that highlight the role of innovative crime-reducing technology adoption and deployment. Amodio (2017) studies spillovers from investments in protection in Buenos Aires. Using a household’s knowledge of victimizations outside of an immediate neighborhood as an instrument for individual investments in private security, he finds that if neighbors invest in alarms or CCTV households are more likely to also adopt these private security measures. However, if neighbors invest in bars on windows or specialty locks, there is no effect on household decisions to adopt. While this highlights the displacement effect of deterrent activity, it also demonstrates that the response to the externalities generated are specific to the technology used. Our analysis predicts this finding. More private investments in alarms or CCTV increase the benefits of public investments in policing, which in turn would induce others to adopt CCTV or instal alarms. Munyo and Rossi (2019) find that installation of police monitored cameras in Montevideo reduce crime in the area of coverage by 20%, and that neighboring areas also benefitted from the reduction in crime, demonstrating the public good nature of specific investments in protection that reduce the value of crime and hence incentives for criminals to target even the unprotected households. Besley and Mueller (2018) use a calibrated model of firm investment in private protection against predation to demonstrate that public and private protection are not substitutes. In a similar setting, DeAngelo et al (2017) use data from the National Hockey League to study the relationship between public rule enforcement by referees and private rule enforcement in the form of fighting (vigilante justice). They show that fighting only deters rule breaking in the absence of public rule enforcement, while there is complementarity in that referees deter rule breaking with and without private rule enforcement.

We construct a general equilibrium search model. On the supply side of the market of
crime, potential perpetrators of criminal activities choose whether or not to commit a crime. On the demand side, households invest in private protection by choosing both the size of their investment and potentially the type of protection. Types of protection vary with respect to their degree of substitutability or complementarity with public protection. The provision of public protection then further depends on the factors that might affect government decisions.

Our model features purely random matching and abstracts from any directed search by criminals. This was a deliberate modelling choice to focus on the interaction between public and private enforcement in a tractable way. Decreuse, Mongrain and van Ypersele (2015) look at wealth heterogeneity and directed search to highlight the trade off between wealthier and less protected victims. They found that in equilibrium criminals are ex ante indifferent between targeting neighborhoods of different levels of wealth. They also found that in some equilibria, criminals prefer victimizing rich, but more protected households. In other equilibria, some criminals prefer less wealthy, but less protected households. In that environment, households impose a negative externality on each other, which leads to excessive investments in private protection.

In Decreuse, Mongrain and van Ypersele (2015), criminals are observing both wealth and private protection when selecting their victims. Lacroix and Narceau (1995) and Baumann and Friese (2013) explore an environment where criminals observe private protection investments, but have imperfect information about the potential reward associated with victimizing a particular household. Private protection can then serve as a signal that a household has something valuable to protect, which may lead to under investments in private protection. In our model, we abstract for those alternative channels and focus on the deterrence externality. When households chose their investment effort, we assume they ignore the fact that their effort may deter crime and help other households. This effect can be important, as Di Tella et al (2010) found a significant deterrence impact of alarm.

The public sector of our model is composed of an enforcement authority who decides on the allocation of resources. There are potentially two externalities: 1) a diversion

This article is protected by copyright. All rights reserved.
externality (negative) where the investment by one household diverts crime to other households. This generally leads to over-investment in private protection, and excessively low crime rates. Then we have 2) a deterrence externality (positive) where households do not consider the effect of their investment on the decisions of criminals. This generally leads to under-investment in private protection, as well as an excessively high crime rate. We concentrate on the second type of externality- the deterrence externality- but all results are symmetrically opposite when compared to the first type of externality.

In section two, we develop the theoretical model with one form of public protection and one form of private protection, allowing for either gross complementarity or gross substitutability. We define the relationship between public and private protection as gross substitutes when public investment helps households that are not investing in private protection relatively more than those who are investing in private protection. Similarly, if public investment helps households who are investing in private protection relatively more than those who are not investing, then public and private protection are gross complements. In this case, an increase in public protection increases the incentive to invest in private protection. We also identify when public and private protection can be net substitutes or net complements. Net substitutes occurs when increases in public protection reduces the crime rate. With a lower crime rate, there is less incentive to invest in any form of private protection. This endogenously introduces substitutability between private and public investment: all forms of protection that are gross substitutes are also net substitutes, but some forms of protection that are gross complements could be net substitutes.

We characterize the constrained first best (CFB) outcome, where government chooses both the levels of private and public protection investment. The first best outcome is trivial as it features no crime at all. We then compare the CFB outcome with a second

2 There are other inefficiencies introduced by public enforcement. Friehe and Miceli (2018) analyze efforts by criminals to avoid public enforcement. They show that even if public decision makers fully internalize the social benefits and costs of enforcement effort, they may exert socially excessive effort when unable to per-commit to a particular effort level.

This article is protected by copyright. All rights reserved.
best (SB) outcome, where the government chooses the level of investment in public protection and households choose their own private investment. In the SB outcome, we show that the crime rate is too high because the deterrence externality is not taken into account by households. This changes government incentives in two ways: 1) the “manipulation” incentives prompt the government to take actions to influence the level of investment in private protection in order to reduce crime. If public and private protection are net complements, the government over-provides public enforcement to push households into providing more private investment. If, instead, protections are substitutes, the government under-provides public protection. 2) the “adjustment” incentives arise because the returns to public investment now differs because there are fewer protected houses. This is similar to portfolio adjustment, when the rates of return change, the optimal investment strategy also changes. As an example, imagine that private and public protections display strong net complementarity. On one hand, the government may over-provide public protection to encourage private investment by exploiting complementarity. This is a way to encourage households to provide more private protection and consequently lower crime. On the other hand, the return on public investment is lower. Complementarity implies that public investment is more effective for protected houses. The problem is that there are too few of them, so public investment is less effective than it should be. When the return on the publicly provided private good is low, there is not much incentive to invest. When the manipulation incentives is stronger, governments should over-provide public protection if investments are net complements and under-provide it if they are net substitutes.

In the third section, we look at a richer environment where two forms of private protection are available at the same time - one complement and one substitute. In order to link the theoretical model to some empirical facts, we look at two particular forms of protection which are the most prevalent as recorded in the victimization survey of the 2014 Canadian General Social Survey (GSS): private alarms, which are gross complements for public protection as these improve in function with more policing, and bars on windows- a gross substitute as public policing helps the unprotected.

This article is protected by copyright. All rights reserved.
relatively more than those with bars on windows. This will allow us to look at the
distributional impact of public policy as these two forms of private protection are
more intensively used by households of different income brackets. All proofs are in
the Appendix.

2 Model and Positive Analysis

The economy is composed of two types of agents and a government. The govern-
ment provides public protection denoted by u. There is a unit mass of individuals
who may be inclined to commit property crime. Each of these individuals chooses
between attempting robbery or remaining honest. For expositional reasons, we refer
to those individuals as dishonest, even if a proportion choose to commit no crime.
Dishonest individuals have heterogenous cost r of committing a crime. We assume
that r is uniformly distributed between zero and one. The wealth of dishonest indi-
viduals is normalized to zero. Let c be the proportion of dishonest individuals that
actually commit crime. Two components determine a criminal’s payoff: first, match-
ing between a thief and a potential victim must happen for any crime to take place.
We assume a constant return matching technology, where a criminal finds a victim
with constant probability ρ. Second, thieves who are successfully matched with a
victim steal a certain fraction of the household’s wealth. For every dollar stolen the
criminal only gets to enjoy $\lambda \leq 1$ of it. Stolen goods are traditionally discounted on
the market, and there is the consideration that goods may have sentimental value.
There is also the fact that some goods or infrastructure might be broken during a
robbery or victimization may impose some psychic cost. The total amount stolen is
determined in part by the household’s investment in private protection. Thieves who
are unsuccessful at finding a suitable victim get a payoff normalized to zero.

On the other side of the matching market are the households that are the potential
victims. There is a mass H of households for whom the cost of committing a crime
is arbitrarily large. Households are heterogenous in wealth w, which is uniformly

This article is protected by copyright. All rights reserved.
distributed between zero and H. Each household is matched with a criminal with probability $\rho c/H$. A household loses a proportion $\ell_i(u)$ of their wealth, where $i = 0$ if the household is unprotected and $i = 1$ if the household invested in private protection.

Private protection reduces potential losses, where the difference in expected losses is given by $\Delta(u) = [\ell_0(u) - \ell_1(u)] > 0$. Losses are also affected by public protection u. Public enforcement reduces private losses, so $\ell'_i(u) < 0$. We assume that $\ell''_i(u) > 0$.

For expositional purposes, we assume that $\ell'_i(1) \rightarrow 0$, so that $u \in [0, 1]$.

Definition 1: Public and private protection are gross complement (resp. gross substitute if $\Delta'(u) > 0$ (resp. < 0). When $\Delta'(u) > 0$ public protection helps privately protected households relatively more than non-protected ones. This generates gross complementarity between public and private protection. When $\Delta'(u) < 0$, unprotected households benefit relatively more, so public and private protection are gross substitutes. The neutral case is given when $\Delta'(u) = 0$.

Private protection carries a fixed cost F. Denote by η the proportion of households who make the investment in private protection.

Let the government choose the level of public protection, u. There are two components to the cost of investment in public protection, where the total cost is given by Γu. We assume that the government maximizes the sum of honest agents’ welfare. The timing is as follows: the government chooses u, and then households choose whether or not to invest in private protection. Given these parameters, dishonest individuals choose whether or not to commit a crime. We now proceed to describe the components of household choice when considering an investment in private protection.
2.1 Private Protection Investment

A household with wealth \(w \) invests in private protection if the marginal benefit is larger or equal to the investment cost \(F \). Since the marginal benefit is strictly increasing with wealth, households with wealth \(w \geq \bar{w}(c,u) \) will invest in private protection where:

\[
\bar{w}(c,u) = \frac{FH}{\rho c \Delta(u)}.
\]
(1)

An increase in the matching probability \(\rho \), or an increase in the number of active criminals \(c \) increases investment in private protection. The sign of \(\bar{w}_u(c,u) \) depends on the sign of \(\Delta'(u) \). When \(\Delta'(u) > 0 \), public enforcement promotes investment in private protection since \(\bar{w}_u(c,u) < 0 \), which we defined above as gross complements. When \(\Delta'(u) < 0 \), public enforcement reduces private protection, \(\bar{w}_u(c,u) > 0 \), which we defined above as gross substitutes. Note that these gross effects are for a given crime rate. At equilibrium, the crime rate will depend on public protection so the net effect may be different.

2.2 Criminality Decision

Dishonest individuals attempt to commit a robbery if and only if the expected return is larger than the cost \(r \). Let \(R(\bar{w}(c,u), u) \) be the expected expected amount stolen from a random household. This amounts to:

\[
R(\bar{w}(c,u), u) = \ell_0(u) \int_0^{\bar{w}(c,u)} \frac{w}{H} dw + \ell_1(u) \int_{\bar{w}(c,u)}^H \frac{w}{H} dw.
\]
(2)

Dishonest individuals with cost \(r < \bar{r} \) attempt to commit a robbery, where \(\bar{r} = \rho \lambda R(\bar{w}(c,u), u) \). Lemma 1 describes the equilibrium investment in private protection and the dishonest individuals’ criminality decisions.

Lemma 1: The equilibrium number of dishonest individuals attempting a robbery \(c(u) \) and the equilibrium protection income threshold \(\bar{w}(u) \) are determined by the
following two equations:

\[c(u) = \rho \lambda R(\bar{w}(u), u) = \rho \lambda \ell_0(u) \int_0^{\bar{w}(u)} \frac{w}{H} dw + \rho \lambda \ell_1(u) \int_{\bar{w}(u)}^{H} \frac{w}{H} dw; \quad (3) \]

\[\bar{w}(u) = \frac{FH}{\rho c(u) \Delta(u)}. \quad (4) \]

The crime rate is then given by \(\rho c(u)/H \).

The proportion of households who invest in private protection is then given by \(\eta(u) = \int_{\bar{w}(u)}^{H} \frac{1}{H} dw. \) A change in public protection has a ambiguous effect on private protection. As stated in Proposition 1 below, public protection displaces private protection when the elasticity of \(\Delta(u) \) is smaller than the elasticity of \(R(\bar{w}(u), u) \). This condition differs from the gross substitution condition \(\Delta'(u) < 0 \) stated before because the crime rate is endogenous. An increase in public protection reduces crime, which reduces the incentive to invest in private protection. The net complementarity is a condition on the equilibrium it is formally defined as follows:

Definition 2: Public and private protection are net complements (resp. net substitutes) if \(\frac{d\bar{w}}{du} < (\text{resp.} >)0. \)

Only if public and private protections are sufficiently gross complements will private protection respond positively to public protection.

Proposition 1: Let

\[\varepsilon(\Delta|u) = \frac{u \Delta'(u)}{\Delta(u)} \quad \text{and} \quad \varepsilon(R|u) = \frac{-u}{R(\bar{w}(u), u)} \frac{\partial R(\bar{w}(u), u)}{\partial u}, \]

and denote by \(\bar{\Delta}'(u) \), the value of \(\Delta'(u) \) such that \(\varepsilon(\Delta|u) = \varepsilon(R|u) \). Then public and private protections are net complements iff \(\varepsilon(\Delta|u) > \varepsilon(R|u) \) otherwise, both forms of protections are net substitutes.

This article is protected by copyright. All rights reserved.
When both forms of protection are gross substitutes, they are also net substitutes. The opposite is not necessarily true. Increases in public protection helps relatively more the unprotected households, and it also reduces the crime rate. Figure 1 highlights the difference between net and gross substitutes/complements. Intuitively, Proposition 1 comes down to how the expected reduction in losses generated by private protection changes with \(u \). For example, if \(\rho c(u)\Delta(u) \) is independent of \(u \), then public and private protection are net neutral. The reduction in the probability of victimization is exactly compensated by the increase in private protection effectiveness. When the latter is smaller than the effect on the crime rate, then both form of protections are net substitutes and vice versa.

3 Normative Analysis

We now investigate optimal policies. The best possible outcome would be a world without crime and no protection spending. For practical reasons, we assume away such a possibility. We first look at the constrained first best (CFB). This case features a planner who is able to chose both the public protection investment and private protection investments. The planner is constrained in the sense that crime cannot be controlled directly. The planner chooses private and public protection investments first and then potential criminals decide whether or not to commit crime. We then compare the CFB with a second best (SB) situation where the planner has no direct

\[-\ell_1'(u) > -\ell_0'(u)/2. \]

This article is protected by copyright. All rights reserved.
control on private protection investments. In this decentralized environment, the planner picks the public protection investment level first, then households invest in private protection, and finally potential criminals decide whether or not to commit crime.

3.1 Constrained First Best

In the constrained first best (CFB), the planner maximizes the sum of all honest agents’ utilities by choosing the level of public protection u and the set of households who invest in private protection \tilde{w} anticipating future criminals’ behaviours. This objective function is most commonly used in the literatures of law and economics.\(^4\)

Note that a government could potentially manipulate $\bar{w}(u)$ via taxes or subsidies to get to the desired \tilde{w}. The CFB problem face by the government is:

$$\max \left\{ u, \tilde{w} \right\} \left\{ \frac{H^2}{2} - \rho c(\tilde{w}, u) \ell_0(u) \int_0^{\tilde{w}} w \frac{dw}{H} - \rho c(\tilde{w}, u) \ell_1(u) \int_{\tilde{w}}^{H} w \frac{dw}{H}
ight.$$

$$- HF \int_{\tilde{w}}^{H} \frac{1}{H} dw - \Gamma u \right\},$$

$$\text{(5)}$$

where $c(\tilde{w}, u) = \rho \lambda R(\tilde{w}, u)$ is the number of dishonest individuals attempting a robbery given \tilde{w} and public protection u.

Definition 3: The CFB investment in private protection \tilde{w}^* and in public enforcement u^* are respectively determined by:

$$\frac{\rho c(\tilde{w}^*, u^*)}{H} \Delta(u^*) \left[\tilde{w}^* - \frac{FH}{\rho c(\tilde{w}^*, u^*) \Delta(u^*)} \right] + \rho R(\tilde{w}^*, u^*) \frac{\partial c(\tilde{w}^*, u^*)}{\partial \tilde{w}} = 0; \text{ (6)}$$

\(^4\)See Hotte and van Ypersele (2008) for a discussion.

This article is protected by copyright. All rights reserved.
The first equation represents the optimal allocation of private protection. On the left hand side, we find the sum of all net private marginal benefits associated with lower losses net of the cost of investment in private protection. This is a privately-provided private good (PvPPvG). We must also add the public good aspect of private protection. More investment in private protection leads to lower crime rates. This is commonly referred to in the literature as the deterrence effect of private protection and is a privately-provided public good (PvPPuG).

The investment in public protection is also governed by public and private benefits. On the left hand side of the second equation is the private benefit of public investment, or the publicly-provided private good (PuPPvG). When public investment increases, all households face lower expected losses for a given crime rate. We can also find on the left hand side, the public good aspect of the public enforcement arising from a lower crime rate, and is a classic publicly-provided public good (PuPPVvG). On the right hand side is the marginal cost of public protection.

3.2 Second Best

We now look at public enforcement when private protection is not controlled by the government, but chosen directly by households. The government chooses public protection investments anticipating private protection choices and criminals’ behaviours.

The government problem is:

\[
\max_{\{u\}} \left\{ \frac{H^2}{2} - \rho c(\bar{w}(u), u) \ell_0(u) \int_{\bar{w}(u)}^{w(u)} \frac{w}{H} dw - \rho c(\bar{w}(u), u) \ell_1(u) \int_{\bar{w}(u)}^{H} \frac{w}{H} dw - F \right\}
\]

This article is protected by copyright. All rights reserved.
The solution to this problem will be referred to as a second best (SB) solution. The goal is to understand in what manner this solution differs from the CFB solution and what is the role of complementarity and substitutability of the private and public investment.

Definition 4: The SB investment in public enforcement, u^*, is given by:

$$\frac{-\rho c(u^*)}{\partial R(\bar{w}(u^*), u^*)} \frac{\partial R(\bar{w}(u^*), u^*)}{\partial u} - \frac{\rho R(\bar{w}(u^*), u^*)}{\partial c(\bar{w}(u^*), u^*)} \frac{\partial c(\bar{w}(u^*), u^*)}{\partial u}$$

The first two terms in Definition 4 represent the same reasons for investing in public protection as in the CFB scenario. However, it is evaluated at a sub-optimal investment in private protection. The last term on the left hand side of Definition 4, represents the fact that the government may alter public enforcement to manipulate private investments in a more desirable way. The marginal benefit of promoting private protection must be equal to F, its marginal cost. On the right hand side of Definition 4, we have the marginal cost of public enforcement.

Using Definition 4, we can characterize differences in public enforcement, private protection and crime rates between the constrained first best and the second best. We start by looking at one expression derived from the proof of Proposition 2 (see Appendix). It describes the difference between the SB first order condition on u and the similar first order condition for the CFB, both evaluated at the CFB solution u^*.

This article is protected by copyright. All rights reserved.
The expression is composed of two important parts:

\[
2\rho^2 \lambda \left[R(\bar{w}(u^*), u^*) - \frac{\partial R(\bar{w}(u^*), u^*)}{\partial u} - R(\bar{w}^*, u^*) + \frac{\partial R(\bar{w}^*, u^*)}{\partial u} \right]
\]

Adjustment for under-investment in private protection (PuPPvG and PuPPuG)

\[
- F \frac{d\bar{w}(u^*)}{du} \leq 0.
\]

Net social MB of manipulating private protection (PvPPuG - fiscal externality)

Whenever the expression above is positive, the government should provide more public enforcement in the second best environment compared to what should be done in the CFB. That is, the government should over-invest in public enforcement. When the expression is negative, the government should under-invest. The term on the second line represents the “manipulation” incentives faced by the government: the incentive to manipulate the private protection decision of households. The crime rate is affected by both private and public protection. Because households do not internalized the effect of private protection on crime, the government wishes to stimulate private protection to reduce the crime rate. The marginal benefit of additional investments in private protection is equal to its marginal cost \(F \). Isolating this channel, when public and private protection are net complements, the government would like to over-invest in protection to stimulate private protection. When public and private protection are net substitutes, the government would like to under-invest in protection to force households to invest more in private protection on their own.

The term on the first line represent the adjustments made by the government to account for the under-investments in private protection. The government must adapt public investment to take into consideration that there are fewer protected houses. The marginal benefit of the publicly provided private good is different because of the difference between protected and non-protected houses. Do the adjustment incentives call for more or less protection? Because there are fewer protected houses, the sign of \(\Delta'(u) \) matters for whether the government desires more or less public protection. With gross complementarity \(\Delta'(u) > 0 \), protected houses benefit relatively more than...
unprotected one. The return on public investment under the SB is then lower than under the CFB. Public protection helps relatively more the protected households, but the problem is that there are fewer protected households. Consequently, the government would be inclined to invest less, because public protection is not as effective. Alternatively, if \(\Delta'(u) < 0 \), unprotected households benefit relatively more from public investment, so government should over-invest in public protection to help all the additional unprotected households.

At the same time, when the crime rate is higher, so is the probability of victimization. This implies naturally that public investment is more desirable. Consequently, even if \(\Delta'(u) > 0 \), the government may want to over provide public enforcement. Yes, there are few protected houses to help, so the return on \(u \) is lower. But at the same time, the probability of victimization is higher, so public protection is more desirable.

Proposition 2: With a first degree approximation, when public and private protection are net neutral, the optimal investments in public protection are the same in the SB and in the CFB, but the crime rate is higher for the CFB. Whenever,

\[
1 > 2 \left[1 + \epsilon(R|w) \right] \frac{\bar{u}(w^*) - \bar{w}^*}{\bar{u}(u^*)},
\]

then SB would call for over-investment in public protection if public and private protection are net complements, while asking for under-investment in public protection if both forms of protection are net substitutes. If the sign of the condition above is reversed, the opposite applies. In both cases, crime rate would be higher.

Given the complexity of (10) it is difficult to obtain clear insights without taking additional steps. In Proposition 2, we take a first degree approximation of the adjustment incentives. Later on, we investigate the bias it creates.

With net neutrality, the government is unable to manipulate behaviour. With the linearization, however, the marginal return on public protection effort is independent of the level of investment in private protection. In this case, there is simply nothing to do differently for the government. The crime rate is higher because private protection is lower, but public investment remains the same. Starting from net neu-
trality, if investments becomes more complementary, the manipulation incentives call for additional public investments, but the adjustment incentives suggests to shy away from public investment because the return is too low. The value of manipulating private investments relative to adjusting for the under-provision of private investments determines the appropriate response from the government.

If we concentrate on the first order effects, Proposition 2 shows that the manipulation incentives dominate whenever the highlighted condition is satisfied. This requires that $\epsilon(R|w)$ is sufficiently small. In such a case, the private response to public investment is large, leading to strong manipulation incentives. It must also be the case that $\bar{w}(u^*) - \tilde{w}^*$ is sufficiently small, so that the need to adjust for the lack of private investments is limited.

Corollary to Proposition 2: When taking into account the bias introduced by the first degree approximation, there should be over-provision of public protection when public and private protections are net neutral. Furthermore, if $1 < 2 [1 + \epsilon(R|w)] \frac{\bar{w}(u^*) - \tilde{w}^*}{\bar{w}(u^*)}$, there should definitively be the over-provision of public protection when protection is gross neutral.

The corollary to Proposition 2 assesses the direction of the bias created by the first order approximation used in Proposition 2. Put simply, the first order approximation neglects some of the impacts of an excessively high crime rate. The direction of the bias depends on whether public and private protection are complements or substitutes. Where both forms of investment are net neutral, the government cannot alter private behaviour by over or under investing. Whether the return on public protection investment is higher or lower is less obvious. When investments are net neutral, they are gross complements, meaning that public investment helps relatively more the protected households. Since there are fewer protected houses in the SB, public investments is less desirable relative to the CFB. Put simply, the return on the publicly provided private good is lower. However, crime rate is higher, and more protection is desirable because it is more often necessary. The need for the publicly

This article is protected by copyright. All rights reserved.
provided public good is then stronger. With linearization, those two effects exactly cancel out. Because the effects on crime rates works through feed back channels, some of its value is ignored with the approximation.

\[\Delta'(u) \]

Figure 2: Investment in public protection for \(1 > 2 [1 + \epsilon(R|w)] \frac{\bar{w}^*(u^*) - \tilde{w}^*}{\bar{w}(u^*)} \)

Figures 2 and 3 also help understand further implications of the bias. The red brackets show the public investment decisions under the linear approximation, while the blue brackets represent the same decisions when taking the bias into consideration. Take a case where the manipulation incentives are dominant. Figure 2 shows that the actual transition (in blue) from under-investment to over-investment happen when private and public protection are net substitute and even potentially gross substitute. When \(\Delta'(u) = 0 \), the gross return on public enforcement is independent of the number of protected houses. That leaves only two considerations. On one hand, the government would like to stimulate private protection by investing less and exploiting net substitutability. On the other hand, the crime rate is too high and government wants to invest more in public protection because it is more often required. When the adjustment incentives dominates, government may want to over-provide public provision even if there are fewer houses that are protected as we can see in Figure 3. Again, an excessively high crime rate justifies higher public investment.

Figure 3: Investment in public protection for \(1 < 2 [1 + \epsilon(R|w)] \frac{\bar{w}^*(u^*) - \tilde{w}^*}{\bar{w}(u^*)} \)

This article is protected by copyright. All rights reserved.
4 Multiple Forms of Private Investments

The preceding exercise allowed us to describe optimal public enforcement policy in a tractable fashion. In this section, we link the different forms of substitutability and complementarity with observable forms of private protection. We now introduce two different forms of private protection. Many of the results obtained in the previous section are robust and some additional insights are obtained by adding multiple forms of protection. In particular, we learn about substitution across forms of investments. As the crime rate increases for example, households may switch from a cheaper to a more efficient form of protection. Because of the technological differences, but also because of their prevalence and the information available in victimization survey of the Canadian General Social Survey (GSS), we look at alarms as one of the private investments, with the other being bars on windows or specialty locks.5

The Canadian GSS provides us with cross-sectional individual data on victimization. We used the last available survey, cycle 28 done in 2014.6 In the survey, respondents declare whether they have ever installed an alarm and if they have ever installed locks or bars. Figure 4 shows the investment by income categories used in the survey.

There are four types of households: (p0) are the households who have no protection at all, (pb) are the households with only bars/locks as a form of protection, (pa) are the households with only alarms and (p2) are the households with both forms of protections. A household that does not invest in any form of protection suffers a loss of $\ell_0(u)$ when targeted as in the previous section. Technology A requires the police response to be effective. An alarm system is the perfect example of such technology. The function $a \in \{0, 1\}$ indicates if a household should invest in such a technology.

5Data sharing is not applicable to this article as no new data were created or analyzed in this study.

6The survey samples dwellings and the respondent may be anyone belonging to the household. We only keep the following types of households: singles or couples with or without children. This excludes less traditional households with additional relatives and non relatives at home. Such households lead to never-ending questions as to the identity of wage-earners and the respondent’s statute in the household. We also exclude observations where the respondent is a child. Household income is not well reported in such cases.

This article is protected by copyright. All rights reserved.
If a household invests in protection A, the loss is then given by $\ell_0(u) - \Delta_a(u)$, where $\Delta'_a(u) > 0$. Public enforcement reduces expected losses for all households, but alarm-protected households receive an additional benefit from public responses to alarms.

The effectiveness of the second form of private protection B is assumed to be independent of public protection. Bars on windows or specialty locks would be a good examples. The indicator function $b \in \{0, 1\}$ determines if the individual invests in this second technology. Investments in this form of protection reduces losses by $\ell_0(u) - \Delta_b$. Investment in technology $i \in \{a, b\}$ has cost F_i. We assume that alarms are more costly, so $F_a > F_b$. A thief matched with a household imposes a loss $L(a, b; u)w$. The loss function is defined the following way:

$$
L(a, b; u) = \begin{cases}
\ell_0(u) & \text{if } a = 0 \text{ and } b = 0; \\
\ell_0(u) - \Delta_a(u) & \text{if } a = 1 \text{ and } b = 0; \\
\ell_0(u) - \Delta_b & \text{if } a = 0 \text{ and } b = 1; \\
\ell_0(u) - \Delta_a(u) - \Delta_b + D & \text{if } a = 1 \text{ and } b = 1,
\end{cases}
$$

(11)
where $0 \leq D < \Delta_b$ represents the fact that the marginal benefit of installing a given protection measure may be lower when the alternative measure is already installed. In other words, there may be redundancy between the two forms of protection. We assume that $\Delta_a(u) \in \left[\Delta_b \frac{F_a}{F_b} - D \frac{F_a}{F_b}, \Delta_b \frac{F_a}{F_b}\right]$ for all relevant values of u. Whenever this condition is not satisfied, no household invests solely in protection A or solely in protection B. Since these cases are empirically irrelevant, we ignore such possibility. Denote by $N_i(c, u)$ the mass of individuals who invest a positive amount in technology $i \in \{a, b\}$ to be determined later.

4.1 Investments in Private Protection

A household with wage w, maximizes utility $W(a, b; w)$, by choosing investment a and b, where:

$$W(a, b; w) = w - \frac{\rho c}{H} L(a, b; u) w - a F_a - b F_b. \tag{12}$$

Define $\bar{w}_{\{0,a\}}(c, u)$ as the revenue such that an individual is indifferent between having protection of type A and having no protection. Define $\bar{w}_{\{b,ab\}}(c, u) > \bar{w}_{\{0,a\}}(c, u)$ as the revenue such that an individual is indifferent between having both from of protection and having only protection B. Similarly, we define $\bar{w}_{\{0,b\}}(c)$ and $\bar{w}_{\{a,ab\}}(c) > \bar{w}_{\{0,b\}}(c)$ for the investment in protection B. The different revenues cut-offs are given by:

$$\bar{w}_{\{0,a\}}(c, u) = \frac{HF_a}{\rho c \Delta_a(u)}$$

and

$$\bar{w}_{\{b,ab\}}(c, u) = \frac{HF_a}{\rho c (\Delta_a(u) - D)};$$

$$\bar{w}_{\{0,b\}}(c) = \frac{HF_b}{\rho c \Delta_b(u)}$$

and

$$\bar{w}_{\{a,ab\}}(c) = \frac{HF_b}{\rho c (\Delta_b(u) - D)};$$

Define $\bar{w}_{\{a,b\}}(c, u) = \frac{HF_a - F_b}{\rho c (\Delta_a(u) - \Delta_b(u))}$ as the income level such that investing only in A is equivalent to investing only in B.

This article is protected by copyright. All rights reserved.
Lemma 2: Investment in private protection as a function of income is given by:

\[
\begin{align*}
\text{none} & \quad \text{if } w \leq \bar{w}_{\{0,b\}}(c); \\
\text{only } B & \quad \text{if } \bar{w}_{\{0,b\}}(c) < w \leq \bar{w}_{\{a,b\}}(c,u); \\
\text{only } A & \quad \text{if } \bar{w}_{\{a,b\}}(c,u) < w \leq \bar{w}_{\{a,ab\}}(c); \\
\text{both } A \text{ and } B & \quad \text{if } w > \bar{w}_{\{a,ab\}}(c).
\end{align*}
\]

Total investments are \(N_A(c,u) = \frac{1 - \bar{w}_{\{a,b\}}(c,u)}{H} \) and \(N_B(c,u) = \frac{\bar{w}_{\{a,b\}}(c,u) - \bar{w}_{\{0,b\}}(c) + 1 - \bar{w}_{\{a,ab\}}(c)}{H} \).

To explain Lemma 2, we refer to Figure 5. The red line corresponds to the lower contour of the sum of losses associated with theft net of expenditures on private protection. Naturally, low income individuals do not invest in protection at all. Above a certain point, individuals are wealthy enough to invest in the cheaper form of investment. Above that, individuals are ready to chose the more efficient, but more expensive investment \(A \). The wealthiest individuals invest in both.

![Figure 5: Private Protection Investments.](image)

Taking the crime rate as constant, public protection and private investment \(A \) are gross complements, as it was the case previously since \(\Delta_a'(u) > 0 \) and public protection helps households investing in private protection relatively more. Interestingly,
public protection and private investment B are gross substitutes despite $\Delta'_b(u) = 0$. Investments in public protection u displaces private investment in protection B by increasing the desirability of investment of type A relative to type B. As public investment on protection increases, $\bar{w}_{[a,b]}(c, u)$ moves to the left on Figure 5. Lemma 3 below summarizes the effect of a change in u on the prevalence of both types of private protections.

Lemma 3: For a given crime rate, the effects of a change in public protection u on the prevalence of private protection A and B is the following:

$$\frac{\partial N_A(c, u)}{\partial u} = \frac{(F_a - F_b)\Delta'_a(u)}{\rho c[\Delta_a(u) - \Delta_b]^2} > 0 \quad \text{and} \quad \frac{\partial N_B(c, u)}{\partial u} = -\frac{(F_a - F_b)\Delta'_a(u)}{\rho c[\Delta_a(u) - \Delta_b]^2} < 0.$$

We now discuss the impact of a change in the number of criminals, c, on investments in private protection A and B. An increase in the number of criminals augments the expected benefit of investing in both forms of private protection, but it also increases the relative expected benefit of investing in protection A.

Lemma 4: A higher crime rate ($\rho c/H$) stimulates investments in private protection A for all parameters value and in B if and only if

$$\frac{F_a}{F_b} < 1 + \left[\frac{\Delta_a(u) - \Delta_b}{\Delta_b}\right]\left[\frac{2\Delta_b - D}{\Delta_b - D}\right]. \quad (13)$$

An increase in the number of criminals induces additional low income households, who were previously not investing in protection, to investment in B and more high income individuals, who were previously investing only in A, to invest in both. However, additional mid-income individuals invest in A instead of B. As the probability of victimization increases, the benefit increases relative to the high cost. Regardless, total private protection increases. All households that switch from B to A choose a more effective, but more costly form of protection.

This article is protected by copyright. All rights reserved.
4.2 Equilibrium Crime Rate and Private Protection

From Lemma 2, we can define \(a(w; c, u) \in \{0, 1\} \) and \(b(w; c, u) \in \{0, 1\} \) as the private protection investment choices by an individual with wealth \(w \), given public policy \(u \) and crime intensity \(c \). A dishonest individual who chooses thievery has an expected payoff of \(\rho \lambda R \left(\bar{W}(c, u) \right) \) where \(\bar{W}(c, u) \) is a vector of investment decisions in private protection \(A \) and \(B \). The expected returns are given by:

\[
R \left(\bar{W}(c, u), u \right) = \ell_0(u) \frac{H}{2} - \Delta_a(u) \int_{\bar{w}_{(a,b)}(c,u)}^{H} \frac{w}{H} dw - \Delta_b \int_{\bar{w}_{(a,b)}(c,u)}^{H} \frac{w}{H} dw - (\Delta_b - D) \int_{\bar{w}_{(a,ab)}(c,u)}^{H} \frac{w}{H} dw \tag{14}
\]

Lemma 5: The equilibrium number of dishonest individuals attempting a robbery \(c(u) \) and the equilibrium protection income threshold vector \(\bar{W}(u) \) are determined by the following four conditions:

\[
c(u) = \rho \lambda R \left(\bar{W}(u), u \right);
\]

\[
\bar{w}_{(a,b)}(u) = \frac{H F_b}{\rho c(u) \Delta_b}, \quad \bar{w}_{(a,b)}(u) = \frac{H [F_a - F_b]}{\rho c(u) [\Delta_a(u) - \Delta_b]} \text{ and } \bar{w}_{(a,ab)}(u) = \frac{H F_b}{\rho c(u) (\Delta_b - D)}.
\]

The crime rate is then given by \(\rho c(u)/H \).

Since public protection and private protection \(B \) are gross substitutes, they are also net substitutes. Below is the condition for net complementarity of private protection \(A \). It is a similar condition to Proposition 1, except that net complementarity is now easier to achieve. Facing a lower crime rate, households have less incentive to invest in any form of protection. With only one form of protection, net neutrality implied that the lower crime rate exactly offsets the fact that private protection is now more effective. With two forms of private protection, the relative merit of both investments matters. With additional public protection spending, protection \(B \) become relatively less desirable. Consequently, a technology that would be a net
substitute (or net neutral) taken in isolation can be a net complement when a gross substitute technology is also available. If we render protection B irrelevant ($\Delta_b = 0$ and $D = 0$), then the conditions of Proposition 4 would be the same as in Proposition 1.

Proposition 4: Public protection and private protection B are always net substitutes, while public protection and private protection A are net complements if and only if:

$$
\epsilon(\Delta_a|u) \frac{\Delta_a(u)}{\Delta_a(u) - \Delta_b} \left[1 + \frac{R(\bar{W}(u), u)}{H} \right] \left[\Delta_b \bar{w}_{(0,b)}(u) + (\Delta_b - D) \bar{w}_{(a,ab)}(u)^2 \right] > \epsilon(R|u).
$$

We modelled investments in private protection as discrete choices because it was more tractable and we felt it was more realistic. Results are robust to an environment where investments are continuous. As pointed out by a referee, adding more and more forms of investments is a way to mimic a continuous investment technology.

5 Transfers and Private Protection

With one form of protection, the CFB could be implemented if transfers were available. Imagine a transfer T was given to households who invested in private protection. In a decentralized market, the marginal adopter would be such that the household wealth equals $\frac{(F-T)H}{\rho_c(u)\Delta_a(u)}$. From the first order conditions stated in Definition 4, we can see that a transfer equivalent to $T = \left[1 - \frac{\bar{w}_c}{\bar{w}(u)} \right] F$ would generate a CFB private investment. Simply put, with one externality that was not internalized a single instrument can align private behaviour with the desirable outcome.

With two types of private investments, one could expect the same type of logic to apply. It is not the case however. Investment in both A and B are not aligned with optimal decisions. Because households do not take in consideration the public good

This article is protected by copyright. All rights reserved.
aspect of their investments, there is not enough private protection. All three margins are distorted: i) some low-to-mid income household do not have investment B, when they should, ii) some high income households who only have investment A, should have both, and iii) some mid income houses are protected by investment, but should be protected by investment A instead. Imagine that the government could grant two distinct transfer T_a and T_b to subsidize private protection A and B respectively. This is not sufficient to implement the constraint first best outcome. Having two instruments is not enough, because there are three decisions distorted, $\bar{w}_{\{0,b\}}(u^*)$, $\bar{w}_{\{a,b\}}(u^*)$ and $\bar{w}_{\{a,ab\}}(u^*)$.

Proposition 5: No set of transfers T_a and T_b can guarantee that investment decisions $\bar{w}_{\{0,b\}}(u^*)$, $\bar{w}_{\{a,b\}}(u^*)$ and $\bar{w}_{\{a,ab\}}(u^*)$ match the CFB investment decisions.

Proposition 5 implies that second best public investment decision will be higher or lower than the CFB decisions. Over or under provision is determined by a similar but more complex condition than the condition stated in Proposition 3 and its corollary.

6 Conclusion

Photons themselves do not deter criminal activity. Rather criminal acts are made more difficult as photons of light reflect off of their criminal acts and are received by complementary objects like the eyes of witnesses or CCTV cameras. In contrast, metal bars and fences provide a barrier or obstacle that must be overcome if one wishes to acquire the protected property regardless of the presence of other forms of protection. Our analysis above describes how optimal decisions on the protection of property by private citizens and public providers are affected by the potential interactions of technologies. Complementarities matter for research on the economics of crime when scholars wish to estimate the effect of police on crime. If criminal activity is affected by private protection, and private protection interacts with public protection then any regression of crime rates on a measure of police protection will yield
biased and inconsistent estimates when private protection is unmeasured. Greater
efforts are required to accurately measure private protection.

We build a simple depiction of rational household and criminal behavior, and intro-
duce complexity by considering security goods markets of varying composition. We
also demonstrate how wealth transfers are unable to match CFB investment deci-
sions, proving the robustness of returning to the CFB model. In considering effects
of gross and net complementarity and substitutability, this paper contributes to the
discussion on how investments can be optimally allocated between public and private
goods. With complementarity of public and private protection the optimal policy
trades off the manipulation incentives of affecting private investment decisions with
the adjustment incentives of addressing unprotected property.

We concerned ourselves primarily with households but our analysis could be extended
to consider firms, neighborhoods, or regions. The insights generated from our analysis
can be applied to any scenario in which economic actors choose protection in the
presence of vertical externalities. The distribution or composition of exposure to
various forms of protection is a fruitful avenue of future research. A highlight of our
research is that even when a public good is uniformly provided, when interacting
in a complementary way with private goods the distribution of the benefits are not
uniform. This implies that we should consider the equitable distribution of police
resources and the incentives that we provide to police. If police are increasingly given
performance based pay for example, this would more greatly skew police resources
towards households with complementary technologies.
7 References

This article is protected by copyright. All rights reserved.

This article is protected by copyright. All rights reserved.
8 Appendix

Proof of Lemma 1: The number of criminals \(c(u) \) is given by \(c(u) = \int_0^r dr \), and so
\[c(u) = \rho \lambda R(\bar{w}(c,u),u). \]
By substituting (1) in (2), we obtain equation (3) that determined \(c(u) \). We can then substitute back to get
\[\bar{w}(u) = \frac{FH}{\rho c(u)} \Delta(u). \]

Proof of Proposition 1: Comparative static using Cramer’s rule on implicit equations (3) and (4) reveals that:
\[\frac{d\bar{w}(u)}{du} = -\left(\frac{\bar{w}(u)}{u} \right) \left[\frac{\partial R(\bar{w}(u),u)}{\partial u} + \frac{u\Delta(u)}{\Delta(u)} \right]. \] (16)

Consequently, \(\frac{d\bar{w}(u)}{du} < 0 \) if and only if
\[\frac{u\Delta(u)}{\Delta(u)} > -\frac{u}{R(\bar{w}(u),u)} \frac{\partial R(\bar{w}(u),u)}{\partial u}. \] ■

Origin of Definition 2: The first order condition for the SB problem with respect to \(u \) is given by:
\[-\rho^2 \lambda R(\tilde{w}(u^*),u^*) \frac{\partial R(\tilde{w}(u^*),u^*)}{\partial u} - \rho^2 \lambda R(\tilde{w}(u^*),u^*) \frac{dR(\tilde{w}(u^*),u^*)}{du} \]
\[-\frac{\rho \lambda R(\tilde{w}(u^*),u^*) \Delta(u^*)}{H} \left[\tilde{w}(u^*) - \frac{FH}{\rho \lambda R(\tilde{w}(u^*),u^*) \Delta(u^*)} \right] \frac{d\tilde{w}(u^*)}{du} = \Gamma. \] (17)

Since \(\tilde{w}(u^*) = \frac{FH}{\rho \lambda R(\tilde{w}(u^*),u^*) \Delta(u^*)} \), the second term on the second line is zero. We can rewriting \(\frac{dR(\tilde{w}(u^*),u^*)}{du} \) as \(\frac{\partial R(\tilde{w}(u^*),u^*)}{\partial u} + \frac{\partial R(\tilde{w}(u^*),u^*)}{\partial w} \frac{d\tilde{w}(u^*)}{du} \). Given that \(\frac{\partial R(\tilde{w}(u^*),u^*)}{\partial w} = \frac{\tilde{w}(u^*) \Delta(u^*)}{\rho H} \), we get equation (9). Note that for expositional clarity, we replace \(c(\tilde{w}(u^*),u^*) \) with \(c(u^*) \) when appropriate. ■

Proof of Proposition 2: We start by evaluating the SB first order condition at \(u^* \). Note that the equality is no longer guaranteed:
\[-2 \rho c(u^*) \frac{\partial R(\tilde{w}(u^*),u^*)}{\partial u} - \rho c(u^*) \frac{\partial R(\tilde{w}(u^*),u^*)}{\partial \tilde{w}} \frac{d\tilde{w}(u^*)}{du} - \Gamma \leq 0. \] (18)

This article is protected by copyright. All rights reserved.
To properly differentiate between $\bar{w}(u^\star)$ and \tilde{w}^\star, we replace $c(u)$ by $\rho \lambda R(w, u)$. Also note that $\rho c(u^\star) \frac{\partial R(\bar{w}(u^\star), u^\star)}{\partial w} = FH$. Subtracting the first order condition for the CFB problem we get equation (10) in the main text. Rewriting equation (10) we get that:

$$R(\bar{w}(u^\star), u^\star) - \frac{\partial R(\bar{w}(u^\star), u^\star)}{\partial u} - \frac{F}{2 \rho^2 \lambda} \frac{d \bar{w}(u^\star)}{du} \leq 0. \quad (19)$$

Using a linear approximation of $R(\tilde{w}^\star, u^\star) - \frac{\partial R(\tilde{w}^\star, u^\star)}{\partial u}$ evaluate at $\bar{w}(u^\star)$, we get:

$$- \rho c(u^\star) \Delta(u^\star) [\bar{w}(u^\star) - \tilde{w}^\star] \frac{\bar{w}(u^\star)}{u^\star} [\epsilon(\Delta|u) - \epsilon(R|u)] - \frac{F}{2} \frac{d \bar{w}(u^\star)}{du} \leq 0. \quad (20)$$

Using Proposition 1, the expression above becomes:

$$[\epsilon(\Delta|u) - \epsilon(R|u) \left[1 - 2[1 + \epsilon(R|u)] \frac{\bar{w}(u^\star) - \tilde{w}^\star}{\tilde{w}(u^\star)} \right] \leq 0, \quad (21)$$

where $\epsilon(R|u) = \frac{\tilde{w}(u^\star)}{R(\tilde{w}(u^\star), u^\star)} \frac{\partial R(\tilde{w}(u^\star), u^\star)}{\partial u}$. When $1 > 2[1 + \epsilon(R|u)] \frac{\tilde{w}(u^\star) - \tilde{w}^\star}{\tilde{w}(u^\star)}$ is positive, if $\frac{u^\star \Delta'(u^\star)}{\Delta(u^\star)} - \epsilon(R)|u < 0$, the SB investment is lower than the CFB investment. When $\frac{u^\star \Delta'(u^\star)}{\Delta(u^\star)} - \epsilon(R)|u > 0$, the SB investment in public protection is then larger than the CFB investment. The exact opposite applies when the term in bracket is negative. ■

Proof of Corollary to Proposition 2: We first derive all higher order Taylor’s approximation terms and look for signs at net and gross neutrality. The second order approximation term is

$$\frac{\Delta(u^\star)}{H} \left[R(\bar{w}(u^\star), u^\star) \frac{\Delta(u^\star)}{u^\star} [\epsilon(\Delta|u) - \epsilon(R|u)] + 2 \frac{\tilde{w}(u^\star)^2}{H} \Delta'(u^\star) \right] \geq 0. \quad (22)$$

When $\epsilon(\Delta|u) - \epsilon(R|u) = 0$, then $\Delta'(u^\star) > 0$. Consequently, the second order approximation term is positive. When $\Delta'(u^\star) = 0$, then $\epsilon(\Delta|u) - \epsilon(R|u) < 0$ and the second order approximation term is negative. The third order Taylor’s approximation terms

This article is protected by copyright. All rights reserved.
\[\bar{w}(u^*) \Delta'(u^*) \Delta(u^*) \frac{[\bar{w}(u^*) - \bar{w}^*]^3}{H^2}. \]

(23)

Obviously, when \(\Delta'(u^*) = 0 \) the term is nil. When \(\varepsilon(\Delta|u) - \varepsilon(R|u) = 0 \), then it is positive because \(\Delta'(u^*) > 0 \). The fourth order behaves exactly like the third one, since it is simply given by:

\[\Delta'(u^*) \Delta(u^*) \frac{[\bar{w}(u^*) - \bar{w}^*]^4}{24H^2}. \]

(24)

All higher order approximation terms are zero. Consequently, when \(\varepsilon(\Delta|u) - \varepsilon(R|u) = 0 \), expression (21) should be negative, meaning that there should be over-provision of public protection under the SB. When \(\Delta'(u^*) = 0 \), there is an additional positive term in expression (21). If \(1 < 2 \left[1 + \varepsilon(R|w) \right] \frac{\bar{w}(u^*) - \bar{w}^*}{\bar{w}(u^*)} \), then there should definitively be under-provision of public protection under the SB at \(\Delta'(u^*) = 0 \). If \(1 > 2 \left[1 + \varepsilon(R|w) \right] \frac{\bar{w}(u^*) - \bar{w}^*}{\bar{w}(u^*)} \), we cannot confirm the sign of (21) at \(\Delta'(u^*) = 0 \). ■

Proof of Lemma 2: Looking at Figure 1 is helpful in understanding the proof. Given the assumption made about \(\Delta_a(u) \), we have that \(\bar{w}_{\{0,b\}}(c) < \bar{w}_{\{0,a\}}(c,u) < \bar{w}_{\{a,ab\}}(c) \). Moreover, it must be the case that \(\bar{w}_{\{a,b\}}(c,u) \) prefer to invest in protection \(B \) over protection \(A \) and they prefer investing in protection \(B \) as opposed to not investing at all. This implies that \(\bar{w}_{\{0,a\}}(c,u) \) is irrelevant in the decision making. Above \(\bar{w}_{\{a,b\}}(c,u) \), \(F_b + \frac{\rho_c}{H} \ell_0(u) - \Delta_b|w \) is dominated by \(F_a + \frac{\rho_c}{H} \ell_0(R) - \Delta_a(u) \). Consequently, individuals between \(\bar{w}_{\{a,b\}}(c,u) \) and \(\bar{w}_{\{a,ab\}}(c,u) \) invest only in \(A \). Individuals with income above \(\bar{w}_{\{a,ab\}}(c,u) \) invest in both. ■

Proof of Lemma 3: All results are simple comparative statics of \(N_A(c,u) \) and \(N_B(c,u) \). ■

This article is protected by copyright. All rights reserved.
Proof of Lemma 4: The effect of c on $N_B(c, u)$ is:

\[
\frac{\partial N_B(c, u)}{\partial c} = \frac{1}{\rho c^2} \left[\frac{F_b}{\Delta_b} + \frac{F_b}{\Delta_b - D} - \frac{F_a - F_b}{\Delta_a(u) - \Delta_b} \right].
\]

The expression above is positive if an only if condition (13) is satisfied. ■

Proof of Lemma 5: The proof is identical to proof of Lemma 1. ■

Proof of Proposition 3: We start by looking at the total effect of u on the vector $W(u)$ using Cramer’s rule.

\[
\frac{d\tilde{w}_{(a,b)}(u)}{du} = \frac{\rho H \tilde{w}_{(a,b)}(u)}{2c(u)} \left[\frac{\Delta'_a(u)}{\Delta_a(u) - \Delta_b} \left(1 + \tilde{w}_{(a,b)}(u)^2 / H^2 \right) - \ell'_0(u) \right] > 0;
\]

\[
\frac{d\tilde{w}_{(a,ab)}(u)}{du} = \tilde{w}_{(a,ab)}(u) \frac{\rho H \tilde{w}_{(a,ab)}(u)}{2c(u)} \left[\frac{\Delta'_a(u)}{\Delta_a(u) - \Delta_b} \left(1 + \tilde{w}_{(a,ab)}(u)^2 / H^2 \right) - \ell'_0(u) \right] > 0.
\]

The impact of public investment on private protection A is given by $\frac{dN_A(u)}{du} = -\frac{1}{H} \frac{d\tilde{w}_{(a,b)}(u)}{du}$, which is positive if and only if (15) is satisfied. The impact of public investment in private protection B is given by $\frac{dN_B(u)}{du} = \frac{1}{H} \left[\frac{d\tilde{w}_{(a,b)}(u)}{du} - \frac{d\tilde{w}_{(a,ab)}(u)}{du} - \frac{d\tilde{w}_{(a,ab)}(u)}{du} \right]$, which is always negative. ■

Proof of Proposition 4: We define the vector of private protections \tilde{W} a government would choose if it was able to force private investment decisions. The CFB

This article is protected by copyright. All rights reserved.
problem face by the government is:

\[
\max_{\{u, \tilde{w}\}} \left[H - \rho_\text{c}(\tilde{W}, u)\ell_0(u) \right] \frac{H}{2} + \rho_\text{c}(\tilde{W}, u)\Delta_a(u) \int_{\tilde{w}_{(a,b)}}^H \frac{w}{H} dw \\
+ \rho_\text{c}(\tilde{W}, u)\Delta_b \int_{\tilde{w}_{(a,b)}}^{\tilde{w}_{(a,b)}} \frac{w}{H} dw + \rho_\text{c}(\tilde{W}, u)(\Delta_b - D) \int_{\tilde{w}_{(a,b)}}^H \frac{w}{H} dw \\
- \int_{\tilde{w}_{(a,b)}}^H F_a dw - \int_{\tilde{w}_{(a,b)}}^{\tilde{w}_{(a,b)}} F_b dw - \int_{\tilde{w}_{(a,b)}}^H F_b dw - u.
\]

The CFB investment in private protection vector \(\tilde{W}^* \) and in public enforcement \(u^* \) are respectively given by:

\[
\left[w^*_0(b) - \frac{F_b H}{\rho_\text{c}(W^*, u^*)\Delta_b} \right] = \frac{\Delta_b - F_b}{\Delta_b} w^*_0(b); \quad (25)
\]

\[
\left[w^*_{a,b} - \frac{(F_a - F_b) H}{\rho_\text{c}(W^*, u^*)[\Delta_a - \Delta_b]} \right] = \frac{[\Delta_a(u) - \Delta_b] - [F_a - F_b]}{[\Delta_a(u) - \Delta_b]} \tilde{w}_{(a,b)}; \quad (26)
\]

\[
\left[w^*_{a,ab} - \frac{F_a H}{\rho_\text{c}(W^*, u^*)B} \right] = \frac{\Delta_b - D - F_b}{\Delta_b - D} \tilde{w}_{(a,ab)}; \quad (27)
\]

\[-2\rho_\text{c}(W^*, u^*) \frac{\partial R(\tilde{W}^*, u^*)}{\partial u} = 1; \quad (28)
\]

Without transfers, first order conditions (25), (26) and (27) suggest that \(\tilde{w}_0(b)(u^*) \), \(\tilde{w}_{a,b}(u^*) \) and \(\tilde{w}_{a,ab}(u^*) \) are higher than the CFB investment level. Call \(T_a \) and \(T_b \) the transfers given to households who buy private protection \(A \) and \(B \) respectively. Private investments would then given by \(\tilde{w}_0(b)(u^*) = \frac{H[F_a - T_a]}{\rho_\text{c}(W^*, u^*)\Delta_b}, \tilde{w}_{b,a}(u^*) = \frac{H[F_a - T_a - F_b + T_a]}{\rho_\text{c}(W^*, u^*)[\Delta_a(u^*) - \Delta_b]} \) and \(\tilde{w}_{a,ab}(u^*) = \frac{H[F_a - T_a]}{\rho_\text{c}(W^*, u^*)[\Delta_b - D]}. \) No set of transfers \(T_a \) and \(T_b \) can guarantee that \(\tilde{w}_0(b)(u^*), \tilde{w}_{b,a}(u^*) \) and \(\tilde{w}_{a,ab}(u^*) \) all equals \(\tilde{w}^*_0(b), \tilde{w}^*_{b,a} \) and \(\tilde{w}^*_{a,ab} \). given by conditions (25), (26) and (27). ■
Minerva Access is the Institutional Repository of The University of Melbourne

Author/s:
Hickey, R; Mongrain, S; Roberts, J; van Ypersele, T

Title:
Private Protection and Public Policing

Date:
2019-03-01

Citation:

Persistent Link:
http://hdl.handle.net/11343/286844