The influence of atmosphere-ocean phenomenon on water availability across temperate Australia

Jabbar Khaledi*, Craig Nitschke¹, Patrick N.J. Lane¹, Trent Penman¹, Petter Nyman¹

¹School of Ecosystem and Forest Sciences, University of Melbourne, Parkville, Victoria, Australia

*Corresponding author: Jabbar Khaledi (jkhaledi@student.unimelb.edu.au)

Key Points:
- We investigate the concurrent response of annual rainfall and streamflow to multiple climate variability modes and their interactions
- Climate modes have divergent influences on streamflow and rainfall between and within regions
- In comparison with extreme high rainfall/streamflow, a higher number of extreme low rainfall/streamflow events are related to climate modes

Abstract

Links between climate variability modes, rainfall, and streamflow are important for understanding the trajectories of change and dynamics in water availability. In this paper, we examined the influence of the El Niño Southern Oscillation, Indian Ocean Dipole, Southern Annular Mode, and Interdecadal Pacific Oscillation modes on interannual variations in rainfall and streamflow in four hydroclimate regions. We also explored the link between climate variability modes and extreme rainfall and streamflow years. Climate mode indices, rainfall, and streamflow data from 1975 to 2018 were analyzed for 92 predominately forested catchments located across temperate Australia. Climate modes had divergent influences on streamflow and rainfall between and within regions. Across temperate Australia, a higher proportion of interannual variation in rainfall was explained by climate modes than for streamflow, indicating factors other than atmosphere-ocean phenomena are important in determining interannual streamflow variability. Extremes in rainfall and streamflow across regions were related to the co-occurrence of climate modes, with a stronger relationship between teleconnections and low rainfall/streamflow years than high rainfall/streamflow years. The study provides new insights into the regional drivers of hydrological extremes and consolidates our understanding of the role of teleconnections on water availability in the temperate zone of Australia.

1 Introduction

Temperate regions of Australia are characterized by high interannual and interdecadal rainfall and streamflow variability (Chiew & McMahon, 2002a; Kiem & Verdon-Kidd, 2009; King et al., 2014;
Potter & Zhang, 2009; Risbey et al., 2009; Zhang et al., 2016) including the occurrence of extreme rainfall events (King et al., 2014; Ummenhofer et al., 2009). This temporal variability of rainfall and streamflow and how it plays out across the continent are strongly affected by climate variability modes, driven by anomalies in Sea Surface Temperature (SST) and their interactions with atmosphere circulations (Biondi et al., 2001; Deser & Phillips, 2009; McBride & Nicholls, 1983; Meneghini et al., 2007; Nicholls, 1989; Power et al., 1999; Saji et al., 1999). Connections between climate anomalies at broad spatial and temporal scales are termed teleconnections (Archer & Fowler, 2004; Cai et al., 2011a). In Australia, the teleconnections are complex and are primarily characterized by the El Niño Southern Oscillation (ENSO) (Chiew & McMahon, 2002a; Hill et al., 2009; McBride & Nicholls, 1983; Verdon et al., 2004), Indian Ocean Dipole (IOD) (Ashok et al., 2003; Cai et al., 2011a; Nicholls, 1989; Raut et al., 2014; Risbey et al., 2009), Southern Annular Mode (SAM) (Feng et al., 2010; Kuhnel et al., 1990; Meneghini et al., 2007), and the Interdecadal Pacific Oscillation (IPO) (Power et al., 1999; Verdon et al., 2004).

The effects of climate variability modes on rainfall and streamflow vary temporally and spatially (Risbey et al., 2009; Rose et al., 2001). ENSO is the interaction between the atmosphere and the tropical Pacific Ocean; it has three phases: La Nina, El Nino, and neutral (McPhaden et al., 2006; Rasmusson & Wallace, 1983). ENSO influences climate in many parts of the world and is connected to rainfall and streamflow anomalies over northern, eastern, and central parts of Australia, with increased rainfall typically occurring during La Nina phases (Cai et al., 2011a; Chiew & McMahon, 2002a; Chiew et al., 1998; McBride & Nicholls, 1983; Peel et al., 2002; Piechota et al., 1998; Power et al., 1998; Risbey et al., 2009; Verdon et al., 2004). IOD is the interaction between atmosphere circulations and SST in the tropical Indian Ocean (Saji et al., 1999). IOD influences rainfall in Indonesia and eastern Africa (Saji et al., 1999), and is linked to regional rainfall variability over central, southern, and southwest Australia particularly in the June-October period. Typically, more rainfall occurs during the negative IOD phases in Australia (Ashok et al., 2003; Meyers et al., 2007; Risbey et al., 2009; Ummenhofer et al., 2009). SAM is an extratropical phenomenon caused by anomalies of SST and westerly winds around Antarctica (Gong & Wang, 1999). The effects of SAM on Australian rainfall vary depending on the region and season. Declines in rainfall in southwest and southeast Australia during winter and in western Tasmania during summer are linked with a positive SAM. A positive SAM is also associated with the increase in rainfall during summer in the southern east coast of Australia (Ho et al., 2012; Kiem & Verdon-Kidd, 2009; Kuhnel et al., 1990; Meneghini et al., 2007; Risbey et al., 2009). IPO is the interdecadal interactions between the atmosphere and the tropical Pacific Ocean, and it is linked with decadal climate variability in eastern Australia (Cai & Van Rensch, 2012; Folland et al., 2002; Franks, 2004; Kiem & Franks, 2004; Verdon & Franks, 2006), with more rainfall occurring during negative IPO phase (Henley & King, 2017; Henley et al., 2015; Power et al., 1999; Verdon et al., 2004). The cycles of the IPO are closely related to the Pacific Decadal Oscillation (PDO), with the latter representing the North Pacific (Folland et al., 2002; Mantua et al., 1997) and the former the whole Pacific basin (Power et al., 1999). Climate variability modes interact together; forming complex climate systems due to their simultaneous atmospheric and oceanic oscillations (Behera et al., 2006; Wise et al., 2015; Yu et al., 2015; Yuan & Li, 2008). The interactions between climate modes have been found for ENSO and IOD (Behera et al., 2006; Cai et al., 2011a; Meyers et al., 2007; Risbey et al., 2009), ENSO and IPO (Cai & Van Rensch, 2012; Kiem et al., 2003; Risbey et al., 2009; Verdon et al., 2004), and ENSO and SAM (Pohl et al., 2010).
In the temperate zone of Australia, there is evidence that climate change is influencing spatial and temporal patterns of rainfall and streamflow, although the effects of climate change vary between regions and are difficult to ascertain due to high interannual variability (Head et al., 2014; Nicholls & Collins, 2006). Further impacts are predicted under future climate change (Chiew & McMahon, 2002b; Petrone et al., 2010; Silberstein et al., 2012). Although climate change significantly affects streamflow, these effects are not always linked with the changes in rainfall, nor are they spatially uniform (Saft et al., 2015; Saft et al., 2016; Silberstein et al., 2012). Changes in rainfall/runoff coefficient and shifts in streamflow after long-term droughts suggest that variable hydrologic responses are at work, influencing both annual streamflow and post-drought recovery times (Petrone et al., 2010; Saft et al., 2016). Studies have found a non-linear decrease in streamflow/rainfall ratios, with some catchments exhibiting no recovery of streamflow following the end of the Millennium Drought (2001-2009) in southeastern Australia (Saft et al., 2015; Saft et al., 2016).

To understand the implications of a changing climate and climate variability (i.e., cycles of wet and dry periods) on water availability and extreme hydrological events we need to understand how atmosphere-ocean processes have shaped the observed variability of rainfall and streamflow. Existing studies have identified some key links between water availability and climate variability modes for Australia. For example, Hendon et al. (2007) showed that in the southeast, southwest, southern east coast of Australia and western Tasmania, SAM accounts for 15% of the weekly variance in winter rainfall. Risbey et al. (2009) found that ENSO explains up to 25% to 50% of rainfall variance, depending on the season and region in Australia. Van Dijk et al. (2013) found that three to four climate phenomena explained 53% to 73% of the variance in 5-year rolling average patterns of precipitation across Australia. Piechota et al. (1998) suggested that in southeast Australia, ENSO can be used to help forecast spring runoff and for the east coast and northeast Australia summer runoff. Kiem and Verdon (2009) found that ENSO alone accounts for a small proportion of streamflow variability in Victoria. Verdon et al. (2004) found a strong relationship between seasonal streamflow and ENSO and IPO in New South Wales (NSW), Queensland (QLD), and Victoria (VIC). They showed that streamflow during the La Nina phase in NSW and QLD increased significantly while La Nina effects declined southward towards VIC. The study also found that wetter conditions during La Nina events occurred when the IPO was in the negative phase.

The above referenced studies have produced important knowledge of these crucially important hydrologic questions. However, there are difficulties in obtaining a consolidated understanding of the climate mode-hydrology interactions for four reasons. The first is that the existing studies have used a range of methodologies and data records, including a number of studies that focused on either rainfall or streamflow but not both, and the inconsistent use of climate modes. Secondly, there is variable regionalization, which is often somewhat arbitrary with respect to climate phenomenon and ecohydrology. Third, the majority of studies are correlative rather than predictive. Fourth, few studies explored the role of climate modes on both means and extremes in rainfall or streamflow. The varying approaches make it difficult to understand the implications for streamflow and water availability in temperate forests when considered alongside climate change and ecohydrological factors such as wildfire and dynamic runoff ratios.

In this paper we provide consolidated analysis of teleconnections and hydrology across the temperate forests of Australia with an emphasis on the following key aspects that are important to our understanding effects of teleconnections in the context of a changing climate and other sources of streamflow variability:

This article is protected by copyright. All rights reserved.
• Predictability - we develop and test models, rather than correlative interactions;
• Regionalization – we constrain the analysis to the temperate forests of Australia and structure our study around natural resource management (NRM) regions, which are meaningful in the context of climate change and climate drivers; and,
• we address the influence of climate modes on both means and extremes in rainfall and streamflow - both measures of change are important and may have different levels of connection with regional climate drivers.

To address these constraints, and to provide a consolidated analysis of teleconnections and their implications for water availability in temperate forests of Australia (Figure 1), this study investigated the concurrent response of annual rainfall and streamflow to multiple climate modes and their interactions. To account for non-symmetry in extreme hydroclimate conditions and their links to climate modes we specifically analyzed the relationship between dry/wet extremes and concurrent climate modes. The paper aimed to answer the following questions:
1. How do hydroclimate regions of temperate Australia compare in terms of interannual rainfall and streamflow variability?
2. What is the multivariate influence of ENSO, IOD, SAM, and IPO on annual rainfall and streamflow, and do their responses vary?
3. What are the relationships between hydrological extremes and concurrent phases of climate modes?

2 Methods

2.1 Study area

The study design was structured around two climate classification schemes; the Koppen-Geiger climate classification (Peel et al., 2007), which was used to define the Australian temperate zone (Figure 1a), and the Natural Resources Management (NRM) classification system (NRM regions, 2020) which was used to assign study catchments to different geographic regions within the Australian temperate zone (Figure 1b). The NRM classification system clusters catchments and regions based on broad-scale climate and biophysical factors and based on their potential vulnerability to the impact of climate change (NRM regions, 2020). There are five NRM clusters within the temperate zone: Southern Slopes (SS), Murray Basin (MB), East Coast (ES), Central Slopes (CS), and Southern and Southern West Flatlands (SSWF) (Figure 1c).

Catchments in these regions are typically dominated by native Eucalyptus forests. Forest types range from open woodland to tall wet forests. The terrain is highly variable with some areas within the Great Dividing Range located along the east coast having headwaters in steep dissected uplands. In other areas, such as western Victoria and the southern parts of western Australia, the catchments are in less rugged terrain. Mean annual rainfall and seasonality is also highly variable. In the south of western Australia, the mean annual rainfall is 694 mm/year with most falling in winter (Charles et al., 2010), while in southeast Australia mean annual rainfall across the study area is 953 mm/year. Rainfall also varies at a local scale. For example, the western part of Tasmania is mountainous and subjected to orographic rainfall while the east part is flat. The
Combination of effects of strong orographic and westerly airstreams leads to a large gradient of rainfall from the west (3000 mm) to the east (1200 mm) (Bennett et al., 2012; Hill et al., 2009).

Within each region, suitable study catchments were selected based on the availability of streamflow data, according to the following criteria:

1. Catchments with the longest streamflow data records (catchments with concurrent streamflow and rainfall data from 1975 to 2018),

2. Streamflow for these catchments were not affected by upstream diversions or impoundment; and,

3. Spatial distribution of catchments across the regions.

Based on these criteria, 22 catchments in SS, 15 catchments in EC+CS, 46 catchments in MB, and 9 catchments in SSWF were selected (Table 1). Due to the small number of qualifying catchments in EC and CS, the catchments in these two regions were considered in one group (ES+CE). More information about the catchments and their attributes was provided in the supplementary material (Tables S1 (SS), S2 (MB), S3 (EC+CS), and S4 (SSWF)).

2.2 Streamflow, rainfall, potential evapotranspiration, and climate indices

Monthly streamflow data for the period 1975-2018, for 88 catchments, were downloaded from Hydrologic Reference Stations (HRS) (Bureau of Meteorology, 2019a). Streamflow data for three catchments in SSWF (Canning River, Dombakup Brook, Shannon River) and one catchment in SS (Anson Rivers) were downloaded from the Water Data Online (Bureau of Meteorology, 2019b). The HRS stations are high-quality monitoring sites operated by the Bureau of Meteorology (BoM) to determine long-term trends of streamflow variability and predict water availability across Australia’s hydroclimatic regions. These sites have been defined based on criteria such as not being affected by dams or, irrigation infrastructure upstream, and that there is a minimal land-use change in the catchment upstream (Bureau of Meteorology, 2019c). For the HRS dataset, the median uncertainties in the mean response of the available gauged discharge ranged from +4.5 to −4.2% (McMahon & Peel, 2019). The definition by BoM for water years in these catchments varied from March to February, February to January, or October to September. In this study, we have used the calendar year from January to December to ensure that the duration of streamflow records analyzed for all catchments was standardized.
Spatially interpolated rainfall data from 1975 to 2018 were collated for each catchment. Catchments were first delineated from the Shuttle Radar Topography Mission (SRTM) digital elevation model dataset with a cell size of 0.00416 degrees (USGS, 2019). Rainfall data for each catchment was then extracted from the gridded rainfall dataset that forms part of the Australian Water Resource Assessment Landscape (AWRA-L) project. These interpolated grids are produced for the Australian continent based on rainfall data from 6500 rainfall gauge stations and interpolated to a 0.05 degree (approximately 5×5 km) (Frost et al., 2016). The accuracy of daily rainfall in these grids, described in (Beesley et al., 2009) is estimated to be in the order of 0.01 mm, 0.85 mm, and 3.43 mm for mean error, mean absolute error, and root mean square error, respectively. Since interannual variability in rainfall is a critical part of our study we compared the range of coefficient of variation of annual rainfall from the interpolated rainfall dataset with 50 gauged rainfall stations across temperate Australia to test the robustness of the interpolated data. Potential Evapotranspiration (PET) in AWRA-L is calculated on a 0.05 degree national grid using the Penman equation (Penman, 1948). The daily gridded minimum and maximum temperature, downward solar irradiance, and wind speed at 2 m were used to produce the PET dataset (McVicar et al., 2008).

Historical records of indices of climate variability modes were derived from available online data. NINO 3.4, Dipole Mode Index (DMI), and Tripole Index (TPI) for the Interdecadal Pacific Oscillation were downloaded from the Global Climate Observing System (GCOS) Working Group on Surface Pressure (WG-SP) (WGSP, 2019). The SAM history index was downloaded from the Climate Data Guide dataset (Climate Data Guide, 2019). NINO 3.4 is an index used to measure the development and intensity of ENSO. It is the area-averaged SST from 5S-5N and 170-120W calculated from the HadISST1 (Rayner et al., 2003). DMI is used to measure the IPO. It is the anomalous Sea Surface Temperature (SST) gradient between the western (50E-70E and 10S-10N) and the southeastern (90E-110E and 10S-0N) equatorial Indian Ocean (Saji & Yamagata, 2003). SAM index is the difference of zonal mean sea level pressure between 40°S and 65°S (Marshall, 2003). TPI is an index to measure IPO. It is based on the difference between the SST (Sea Surface Temperature Anomaly) averaged over the central equatorial Pacific and the average of the SST in the Northwest and Southwest Pacific (Henley et al., 2015). There are other indices used to measure IPO (e.g. Cai & Whetton, 2001; Folland et al., 1999; Folland et al., 2002; Mantua et al., 1997; Parker et al., 2007; Power et al., 1999). The UKMO IPO index (Folland et al., 1999; Folland et al., 2002) is a commonly used IPO index used to define the relationship between Australian rainfall/streamflow with IPO. The TPI represents the IPO phenomenon in a more stable and robust manner than the UKMO IPO index, and it is explicitly aligned with the observed spatial pattern of the IPO (Henley et al., 2015; Henley et al., 2017). There is however a strong correlation between TPI and the UK Met Office IPO index (Henley et al., 2015). The correlation between two indexes ranges from 0.92 to 0.97 for different datasets of TPI and UK Met Office IPO. For filtered datasets, the correlations range from 0.85 to 0.97 (Henley et al., 2015). Further information about TPI and IPO indices and their differences is provided in Henley et al (2015).

The length of the collected dataset was defined based on the availability and quality of streamflow data. To capture the historical trends and variability of IPO, which is an interdecadal climate variability mode, a number of catchments with longer records of streamflow data are required. Unfortunately, across our study region, the amount of data on streamflow extending before 1975 decreased with increasing time such that among the selected catchments only 4 catchments had 68 years of streamflow data (68 is the maximum length), and 19 catchments (5 in SS, 6 in MB, 3 in...
SSWF, and 5 in EC+CS) had streamflow data ≤ 68 and ≥ 60 years. These nineteen catchments do not provide a sufficient sample size nor a representative sample of the spatial coverage of hydroclimate regions in the Australian temperate zone for a robust analysis. Furthermore, catchments with a longer duration of data are subject to data quality issues. To address potential biases that may have influenced our data from 1975 onwards we compared the statistical distribution and standard deviation of the TPI data from 1975 to 2018 with the data from 1900 to 1975 and data from 1900 to 2018. The statistical distribution and standard deviation for all climate mode indices for these three periods were approximately equal. The standard deviation for IPO time series data from 1976-2018 was 0.60 and for IPO data from 1900 to 1975 and from 1900 to 2018 was 0.64 and 0.62, respectively.

2.3 Analyses

2.3.1 Variation and trend in annual rainfall and streamflow

To understand how annual rainfall and streamflow varied between and among catchments in each region we analyzed the coefficient of variation (CV), standard deviation, and mean of the interannual variability of rainfall and streamflow for each catchment using data between 1975 to 2018. These were summarized according to hydroclimate regions. The relationship between changes in the range of CV of streamflow among catchments from one region to another and hydroclimate factors (mean annual rainfall and PET) in those regions were analyzed to understand how the range of CV of streamflow in each region is related to mean annual rainfall and PET.

Precipitation patterns have changed across temperate Australia since records began due to changes in climate (Bureau of Meteorology, 2021a). To account for the possible bias imparted into our analysis by continued climate forcing on precipitation and streamflow patterns we undertook a trend analysis of annual rainfall and streamflow between 1975 to 2018 for each region. For this analysis, we used the Mann-Kendall (MK) trend test (Hamed, 2008; Hamed & Rao, 1998). We used the Hamed and Rao Modified MK Test which uses a variance correction method to improve trend analysis and consider serial autocorrelations (Hamed & Rao, 1998). The significance level in our analysis was 0.05. For more information about the MK trend test see Supplement text S1.

2.3.2 Effects of climate modes on rainfall and streamflow

Random forest machine learning models were used to investigate the combined effects of climate modes (ENSO, IOD, SAM, and IPO) on rainfall and streamflow in each hydroclimate region (SS, MB, EC+CS, and SSWF). Random forest is a bagging ensemble learning method that can consider complex interactions between variables and constructs multiple classifiers or regressors trees and aggregates their results (Breiman, 2001, 2002). Recent studies have shown that random forest is a robust modeling approach for predicting water resources in comparison with other models such as support vector regression, artificial neural networks, and linear models (Li et al., 2016; Tyralis et al., 2019). For more information on random forest models see Supplement text S2.

The association between annual rainfall and streamflow with climate modes in each region was modeled in two steps. In the first step, data were split into a train set and test set. We allocated 80% of the data to the train set and 20% to the test set. The random forest model was trained using train set data. In step two, the model was evaluated using the test set, and the Explained Variance
(EV) and Feature Importance (FI) metrics were calculated for each region. The importance of each variable in the random forest model is estimated by defining how much the error in prediction increases when data for that variable is changed while other variables are held constant (Breiman, 2002; Liaw & Wiener, 2002).

2.3.3 Concurrent effects of climate modes on hydrological extremes

Hydrological extremes were examined in relation to the two most influential climate modes in each region. The two climate modes with the highest association were determined by the outputs from our statistical analysis. The number of years with extremely low or high annual rainfall and streamflow during concurrent phases of climate modes was determined for catchments in each region. Extreme rainfall years were defined based on the definition by BoM for rainfall percentiles. According to BoM, 10th percentiles of a time series of rainfall are designated as extreme low rainfall and 90th percentiles as extreme high rainfall (Bureau of Meteorology, 2019d). The probability of extreme low annual rainfall years for each concurrent phase of climate modes was then calculated by dividing the number of years with extreme low annual rainfall during that concurrent phase by the total number of years with extreme low rainfall. The relationship between hydrological extremes with concurrent phases of climate modes was tested using a contingency table and the chi-square test. Probability density functions for each of the climate modes were calculated to quantify the relationship between the extreme events across the range of each climate mode index. The same analysis was performed for streamflow extremes.

3 Results

3.1 Variation and trend of annual rainfall and streamflow

The CV in annual streamflow was higher than the CV in annual rainfall for each region (Figure 2a). The increased CV in streamflow was due to the higher standard deviation in annual streamflow compared to rainfall (Figure 2b) relative to the mean values of annual rainfall and streamflow (Figure 2c). The range of the CV provided a standardized metric that allows for comparisons in interannual variability of streamflow and rainfall to be made within and between regions. Figures S1 (SS), S2 (MB), S3 (EC+CS), and S4 (SSWF) in the supplementary material provide additional information about the CV of streamflow and rainfall among catchments in each region. Our analysis of the range of the CV of gauged rainfall stations for 50 catchments showed that the range of the CV of rainfall was between 0.12 and 0.3 (Figure S9 in the supplementary material) which was consistent with our analysis based on interpolated rainfall data.

The range of interannual variability in streamflow among catchments in MB was larger than in other regions. In the EC+CS, the range of the variation in annual streamflow was smaller than in other regions but most of the catchments in this region had a high CV in streamflow. The difference in the variation range of streamflow and rainfall also varied from region to region. This difference in the ranges was greater in SSWF than in other regions. Analysis of the relationship between the CV of streamflow and hydroclimate factors showed that with increasing mean annual rainfall (Figure S5) (which corresponded to decreasing mean annual PET (Figure S6)) and mean annual streamflow (Figure S7), the CV of streamflow decreased. With decreasing mean annual rainfall and annual streamflow, the CV of streamflow increased. With an increasing CV of rainfall, the
CV of streamflow increased (Figure S8). These results highlighted that areas with a drier climate have higher inter-annual variability in rainfall and streamflow.

The trend analysis showed that there was no trend in rainfall from 1975 to 2018 in Australian temperate regions (Figure 3). There was also no trend in streamflow in the SS (Figure 3a) and EC+SC (Figure 3c). Streamflow in the MB (Figure 3b) and SSWF (Figure 3d) showed a decreasing trend (MB Mann-Kendall test: p = 0.025, slope = 0.022, in SSWF Mann-Kendall test: p = 0.026, slope = 0.021). The trend of decreasing streamflow in SSWF and MB has been reported previously (Petrone et al., 2010; Potter et al., 2010; Silberstein et al., 2012; Zhang et al., 2016). The decrease in streamflow in the MB is a response attributed to the Millennium Drought (Van Dijk et al., 2013). Table S5 in the supplementary material provides more information about the Mann-Kendall trend test for rainfall and streamflow in each region.

3.2 Climate modes and variation of annual rainfall

More than 50% of the variation of annual rainfall was explained by climate modes in the SS (51%), MB (84%), EC+CS (57%), and SSWF (74%) (Figure 4). A higher proportion of annual rainfall variability in SS (Figure 4a) and MB (Figure 4b) was explained by IOD and ENSO. Annual rainfall variability in EC+CS (Figure 4c) was mostly explained by IPO and ENSO. The variability of rainfall in SSWF (Figure 4d) was more associated with ENSO and IOD. The relative importance of SAM and IPO for rainfall suggests that these modes are also important in the SSWF. To account for potential bias in our results due to the 1975-2018 time period, we repeated the analysis for rainfall data from 1957 to 2018. The results of this analysis showed there was no difference in explained variance for SS and MB, and a small difference for SSWF and EC+CS (-0.03% to -0.05%). There were also some minor differences (0 to 6%) between the relative importance of climate modes. However, these differences are lower in terms of the absolute importance of climate modes (absolute importance is calculated by multiplying the relative importance of climate modes in explained variance). Figure S10 in the supplementary material provides more information on the explained variance and relative importance of climate modes on rainfall data from 1957 to 2018.
3.3 Climate modes and variation in annual streamflow

Less variation in streamflow compared to rainfall was explained by climate modes in the SS (36%), MB (70%), EC+CS (54%), and SSWF (62%) (Figure 5). Streamflow variability in SS had the weakest association with climate modes (Figure 5a). In the SS, MB, and SSWF (Figure 5a, 5b, 5d) streamflow variability was more related to the IOD. The annual variation of streamflow in EC+CS (Figure 5c) was highly related to IPO and SAM.

3.4 Concurrent effects of climate modes on extreme high and low annual rainfall

The occurrence of hydrological extremes during concurrent phases of climate modes varied within the biophysical regions of the Australian temperate zone (Figure 6). In the SS and MB, 82% and 96% of extreme low annual rainfall years, respectively, were correlated with concurrent El Nino and positive IOD events (Table 2). In the EC+CS, 92% of extreme low annual rainfall years occurred during concurrent positive IPO and El Nino events. In the SSWF, 66% of extreme low annual rainfall years occurred during concurrent positive IOD and El Nino events. In the EC+CS, 73% of extreme high annual rainfall years were correlated with concurrent La Nina and negative IPO events. The probability density plots (see Figure 6) highlighted that years with extreme low/high rainfall coincide with positive/negative phases of concurrent climate modes. For example, in the SS (Figure 6a) and MB (Figure 6b) when the IOD was > 0.3 and ENSO was > 0.7 all extreme events were low events. In the MB and SSWF (Figure 6d) there were no extreme low rainfall events when IOD and ENSO were less than zero. Figure S11 and Table S6 in the supplementary material provide data on extreme high and low rainfall and the number of catchments that experienced extreme rainfall during each event of concurrent climate modes.

3.5 Concurrent effects of climate modes on extreme high and low streamflow

The relationship between concurrent phases of climate modes and extreme high and annual streamflow also varied by region (Figure 7). In the SS, MB, and SSWF, 83%, 76%, and 89% of extreme low annual streamflow years, respectively, were correlated with the concurrent positive SAM and positive IOD (Table 3). In the MB, 51% of extreme high annual streamflow years were associated with the negative SAM and negative IOD. In the EC+CS, 80% of extreme high annual streamflow years were related to La Nina and negative IPO. The corresponding figure for low
annual streamflow years during El Nino and positive IPO in EC+CS was 87%. The probability density plots showed that a higher number of extreme low streamflow events in the SS (Figure 7a), MB (Figure 7b), and SWWF (Figure 7d) occurred when SAM was > 0 and IOD was > 0. Table S7 in the supplementary material provides a summary of data on extreme high and low streamflow and the number of catchments that experienced extreme streamflow during each event of concurrent climate modes.

<<<<<<<<<<<<<<Figure 7 here>>>>>>>>>>>>>>>

<<<<<<<<<<<<<<Table 3 here>>>>>>>>>>>>>>>

4 Discussion

Hydrological extremes across the Australian temperate zone are strongly influenced by concurrent phases of climate variability modes. There are very strong relationships between the co-occurrence phases of climate modes and years with extremely low rainfall (Table 2) and streamflow (Table 3), and in some cases the years with extremely high rainfall and streamflow. Our analysis found that in comparison with high rainfall/streamflow events, a higher number of low annual rainfall/streamflow events have occurred during concurrent climate modes. Thus, there is an asymmetric response of extremes to teleconnections, with the dry extremes being more strongly influenced by concurrent events than the wet extremes. The weak relationship between concurrent climate modes and high extreme rainfall/streamflow may be due to the difference in the distribution of rainfall during wet and dry years and the occurrence of some short-term climate phenomena such as cut-off lows, frontal systems, and blocking highs which are connected to high intensity rainfall events (Bureau of Meteorology, 2021b). Another reason could be due to asymmetry in the duration and intensity of concurrent positive and negative phases of climate modes. For example, Cai et al. (2012) showed that during El Nino and positive IOD the reduction in rainfall is significantly higher than increases in rainfall during La Nina and negative IOD phases. The results from our analyses of hydrological extremes (Figures 6 and 7; Tables 2 and 3; Figure S11) emphasize the importance of concurrent events and provide nuanced insights into the regional drives of extremely dry/wet years in the temperate zone of Australia, which builds on existing work that link teleconnections and hydroclimate more generally in Australia (Cai & Van Rensch, 2012; Cai et al., 2009; Cai et al., 2011b; Chiew et al., 1998; Delage & Power, 2020; Van Dijk et al., 2013). In particular, our results demonstrate the critical role of both IOD and ENSO in causing extremely dry rainfall conditions across most of the temperate zone. While these results corroborate findings in earlier work (e.g. Cai et al., 2011b; Min et al., 2013; Van Dijk et al., 2013), our study provides a consolidated analysis of climate mode effects and interaction on hydrological extremes across the Australian temperate zone.

This paper systematically evaluated the concurrent relative influence of multivariate climate modes and their interactions on both rainfall and streamflow across multiple regions of the Australian temperate zone. Our findings highlighted the divergent (different) responses of the...
streamflow to climate modes in comparison with the rainfall. Our analysis with the paired data on rainfall and streamflow show that ENSO has a higher association with rainfall than streamflow. Although the association between IOD with rainfall is higher than ENSO in the SS and MB, and IPO in the EC+CS. In all regions, except EC+CS for IOD, the relative influence of IOD and SAM on streamflow is higher than rainfall. This is consistent with previous studies. For example, Kiem and Verdon (2009) found that ENSO accounted for a smaller proportion of streamflow variability in Victoria, while many studies have found a strong relationship between rainfall and ENSO in this region (e.g. Ashcroft et al., 2016; Cai et al., 2011a; Chiew et al., 1998; Ropelewski & Halpert, 1987). Moreover, teleconnections accounted for a much lower proportion of the variation of streamflow (Figure 5) compared to rainfall (Figure 4). This may be because of the lag effects on streamflow. We repeated the analysis for one, two, and three months of lag streamflow, but the results remained similar. More information about the influence of teleconnections and lag effects of streamflow is provided in the supplementary material (Figures S12, S13, and S14). Another factor driving streamflow variability may be rainfall distributions within years (Dettinger & Diaz, 2000; Fiddes & Timbal, 2016), which can have large impacts on the conversion of rainfall to streamflow at annual timescales. These divergent responses of streamflow and rainfall to climate modes are important for making predictions of streamflow response to climate variability modes.

When interpreted in the context of the overall patterns of interannual variability in rainfall and streamflow (Figure 2), our analysis of rainfall, streamflow, and links to teleconnections suggests that catchment properties that modulate the water balance are a key consideration for predicting the streamflow response to dynamics hydroclimatic conditions. The strength of local controls on interannual variability depending on region, as indicated by patterns in the interannual CV of rainfall and streamflow (Figure 2). The temporal CV of rainfall remains fairly homogenous through the temperate zone, while temporal CV in streamflow shows distinct differences from one region to another. These results suggest that finer-scale factors, other than rainfall and climate drivers, are likely having a large impact on the temporal (inter-annual variability) in streamflow. These processes will likely operate in different ways depending on geographic context and associated ecohydrological processes. Changes to vegetation, either through land-use (Liu et al., 2019; Webb & Jarrett, 2013) or wildfires (Feikema et al., 2013; Nolan et al., 2015), or prolonged droughts are all possible factors at play, as are the dynamics of catchment storage and groundwater-surface water hydraulic connections (Chiew et al., 2014; Potter et al., 2005). The role of Evapotranspiration (ET), as the largest term in the water balance, is of particular importance. This is supported by our analysis (in supplementary Figures S5-S8) which showed a relationship between streamflow variability and hydroclimate factors such as mean annual rainfall and PET.

Consistent with earlier studies, our analysis shows that more arid landscapes are more variable (both rainfall and streamflow) from one year to the next. For rainfall, this variability is primarily a function of climate and weather, although possible feedbacks with land-use and ecohydrology have been proposed (Andrich & Imberger, 2013; Junkermann et al., 2009). For streamflow, with a much higher interannual variability, this variation is a function of the rainfall but more importantly the catchment processes that govern the water balance (Jothityangkoon et al., 2001; Ning et al., 2017; Tian et al., 2017). These processes, particularly water use by trees, are likely to drive variability up in drier areas more than they do in wet areas where ET is less dependent on rainfall (Deb et al., 2019; Moreno et al., 2012). Interestingly, the streamflow in more arid regions (MB and SSWF) also appears to be more responsive to non-stationary climate, with both showing significant decreasing trends in streamflow. While this decreasing trend in streamflow has been
documented previously (Petrone et al., 2010; Silberstein et al., 2012; Zhang et al., 2016) our results pointing towards this trend being stronger in drier climates is a novel finding.

Given the importance of climate modes on the temporal patterns in streamflow and rainfall variability, our ability to predict future changes in these is contingent on our understanding of how sea surface temperature (SST) and large-scale weather phenomena play out under increased temperatures as predicted with climate change. Research indicates an intensification in ENSO (Cai et al., 2018; Cai et al., 2015; Kim et al., 2014) which means increased rainfall variability. Although the ability to simulate climate modes has improved in current climate models (e.g. from CMIP5 to CMIP6) (Fasullo et al., 2020; Grose et al., 2020; Jiang et al., 2021), simulating and representing these key drivers of change in rainfall at a finer spatial scale is still a challenge for these models (Chen & Jin, 2021; Liao et al., 2021). By linking our predictive models to these future climate mode scenarios there is an opportunity to explore how future variability in climate modes may influence rainfall and streamflow across Australian temperate forests without having to resort to physical modeling to simulate catchment streamflow. However, for streamflow, where climate modes and rainfall variability explain a lower proportion of the variability, understanding how changes in vegetation, soil, and water use by vegetation influence streamflow variability are of critical importance. Incorporating ecohydrological dynamics into streamflow predictions is therefore critical for understanding future change. For example, wildfires have burnt millions of ha. in the regions studied in this paper (Cameron et al., 2009; Filkov et al., 2020; McCarthy et al., 2012). While responses may vary according to burn severity, species, and post-fire rainfall, a common response is reduced evapotranspiration, which ameliorates the effect of lower rainfall (Lane et al., 2006; Lane et al., 2010; Nolan et al., 2015). There are also hypotheses about hydraulic disconnection (groundwater disconnecting with streams) following long dry periods that could result in long-lasting changes to rainfall-runoff relationships (Hughes et al., 2012; Kinal & Stoneman, 2012). Both of these examples would disconnect, to a greater or lesser degree, rainfall and streamflow relationships and therefore the teleconnections with climate modes. However, in the development of ecohydrological models for streamflow prediction, there is a strong need to seek alignment between mechanisms of hydrological change and the regional hydroclimate drivers such as climate mode variability, which influence rainfall (both the amounts and variability) and which are directly impacted by global warming (Cai et al., 2015; Chiew & McMahon, 2002b; Delage & Power, 2020; Kim et al., 2014; Silberstein et al., 2012).

5 Conclusions

Australian temperate zones are characterized by high variability of interannual rainfall, streamflow, and occurrence of hydrological extremes. Climate variability modes are important factors simultaneously influencing the high variability of interannual rainfall and streamflow in biophysical regions of the Australian temperate zone. Hydrological extremes of low annual rainfall and streamflow years are strongly correlated with the effects of co-occurrence phases of regional climate modes. These years with extreme low rainfall and streamflow can be most problematic due to a shortage of water for domestic, agriculture, and increasing the risk of more droughts and wildfires.

Despite the consistent response for rainfall across the region, the interannual variation of streamflow in catchments was higher than rainfall. This result was also consistent across the region suggesting that while rainfall is an important broad-scale driver of streamflow other factors are at
play. We hypothesize that catchment soil and vegetation properties and disturbance history may be influencing the streamflow variability at finer scales. This has implications for predicting future streamflow as changes in rainfall to future climate change may not scale linearly to change in streamflow; however, the quantified teleconnections between climate modes and rainfall and streamflow provide a broad scale tool for understanding changes in water resource availability across temperate Australia.

Acknowledgments

This research was funded by a Melbourne Research Scholarship, the Australian Research Council (LP150100654), Melbourne Water Corporation, and the Victorian Department of Environment, Land, Water, and Planning. These are links to rainfall and streamflow data, and to historical records of climate mode indices: NINO 3.4, DMI, TPI, and SAM datasets that were used in the research. We would like to thank the reviewers of our manuscript whose comments have greatly improved this paper.

References

This article is protected by copyright. All rights reserved.

This article is protected by copyright. All rights reserved.

This article is protected by copyright. All rights reserved.

Peel, M. C., Finlayson, B. L., & McMahon, T. A. (2007). Updated world map of the Köppen-Geiger climate classification. https://hal.archives-ouvertes.fr/hal-00298818

This article is protected by copyright. All rights reserved.

This article is protected by copyright. All rights reserved.

Tables

Table 1. Mean area, forested area, elevation, and mean annual rainfall, streamflow, and PET in each hydroclimate region. The table also shows the min-max range of these factors among catchments in each region.

<table>
<thead>
<tr>
<th></th>
<th>SS</th>
<th>MB</th>
<th>EC+CS</th>
<th>SSWF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of catchments</td>
<td>22</td>
<td>46</td>
<td>15</td>
<td>9</td>
</tr>
<tr>
<td>Area (km²)</td>
<td>Min – Max 91 - 1113</td>
<td>81 - 4740</td>
<td>101 - 2530</td>
<td>74 - 1525</td>
</tr>
<tr>
<td></td>
<td>Mean 421</td>
<td>463</td>
<td>484</td>
<td>478</td>
</tr>
<tr>
<td>Elevation (m)</td>
<td>Min range 16 - 936</td>
<td>115 - 982</td>
<td>79 - 908</td>
<td>20 - 217</td>
</tr>
<tr>
<td></td>
<td>Max range 420 - 1859</td>
<td>295 - 1983</td>
<td>975 - 1507</td>
<td>160 - 570</td>
</tr>
<tr>
<td></td>
<td>Mean 678</td>
<td>634</td>
<td>744</td>
<td>262</td>
</tr>
<tr>
<td>Annual precipitation (mm)</td>
<td>Min range 367 - 1886</td>
<td>188 - 861</td>
<td>335 - 738</td>
<td>282 - 703</td>
</tr>
<tr>
<td></td>
<td>Max range 1166 - 3280</td>
<td>786 - 2037</td>
<td>857 - 1415</td>
<td>1011 - 2416</td>
</tr>
<tr>
<td></td>
<td>Mean 1297</td>
<td>935</td>
<td>869</td>
<td>1010</td>
</tr>
<tr>
<td>Annual streamflow (mm)</td>
<td>Min range 2 - 2633</td>
<td>0 - 121</td>
<td>0 - 64</td>
<td>1 - 32</td>
</tr>
<tr>
<td></td>
<td>Max range 181 - 2634</td>
<td>85 - 796</td>
<td>18.5 - 497</td>
<td>178 - 973</td>
</tr>
<tr>
<td></td>
<td>Mean 592</td>
<td>165</td>
<td>85</td>
<td>144</td>
</tr>
<tr>
<td>Annual PET (mm)</td>
<td>Min range 666 - 982</td>
<td>842 - 1144</td>
<td>1018 - 1263</td>
<td>1062 - 1356</td>
</tr>
<tr>
<td></td>
<td>Max range 1080 - 1465</td>
<td>1331 - 1730</td>
<td>1577 - 1927</td>
<td>1563 - 1972</td>
</tr>
<tr>
<td></td>
<td>Mean 1211</td>
<td>1404</td>
<td>1655</td>
<td>1614</td>
</tr>
<tr>
<td>Forested area (%)</td>
<td>Min – Max 15 – 99</td>
<td>2 - 100</td>
<td>10 – 80</td>
<td>64 - 100</td>
</tr>
<tr>
<td></td>
<td>Mean 76</td>
<td>60</td>
<td>47</td>
<td>91</td>
</tr>
<tr>
<td>Region</td>
<td>Concurrent phases of climate variability modes</td>
<td>Total number of extreme low/high rainfall events</td>
<td>Number of extreme low rainfall events during each concurrent phase</td>
<td>Probability of extreme low rainfall events during the concurrent phase</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>---</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>SS</td>
<td>El Nino - pIOD</td>
<td>110</td>
<td>90</td>
<td>0.82</td>
</tr>
<tr>
<td></td>
<td>El Nino - nIOD</td>
<td></td>
<td>2</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>La Nina - nIOD</td>
<td></td>
<td>4</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td>La Nina - pIOD</td>
<td></td>
<td>14</td>
<td>0.12</td>
</tr>
<tr>
<td>MB</td>
<td>El Nino - pIOD</td>
<td>230</td>
<td>221</td>
<td>0.96</td>
</tr>
<tr>
<td></td>
<td>El Nino - nIOD</td>
<td></td>
<td>1</td>
<td>0.004</td>
</tr>
<tr>
<td></td>
<td>La Nina - nIOD</td>
<td></td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>La Nina - pIOD</td>
<td></td>
<td>8</td>
<td>0.036</td>
</tr>
<tr>
<td>EC+CS</td>
<td>El Nino - pIPO</td>
<td>75</td>
<td>69</td>
<td>0.92</td>
</tr>
<tr>
<td></td>
<td>El Nino - nIPO</td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>La Nina - nIPO</td>
<td></td>
<td>6</td>
<td>0.08</td>
</tr>
<tr>
<td></td>
<td>La Nina - pIPO</td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SSWF</td>
<td>El Nino - pIOD</td>
<td>45</td>
<td>30</td>
<td>0.66</td>
</tr>
<tr>
<td></td>
<td>El Nino - nIOD</td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>La Nina - nIOD</td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>La Nina - pIOD</td>
<td></td>
<td>15</td>
<td>0.34</td>
</tr>
</tbody>
</table>

Table 2. The probability of the extreme low and high rainfall events during concurrent phases of the two most important climate modes in each hydroclimate region. Colored cells show the concurrent phases of climate modes with the highest probabilities of low and high extreme rainfall years for each region.
Table 3. The probability of the extreme low and high streamflow events during concurrent phases of the two most important climate modes in each hydroclimate region. Colored cells show the concurrent phases of climate modes with the highest probabilities of low and high extreme streamflow years for each region.

<table>
<thead>
<tr>
<th>Region</th>
<th>Concurrent phases of climate variability modes</th>
<th>Total number of extreme low/high streamflow events</th>
<th>Number of extreme low streamflow events during each concurrent phase</th>
<th>Probability of extreme low streamflow events during the concurrent phase</th>
<th>Number of extreme high streamflow events during concurrent phases</th>
<th>Probability of extreme high streamflow events during the concurrent phase</th>
<th>P-value (Chi-square test)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS</td>
<td>pSAM - pIOD</td>
<td>110</td>
<td>91</td>
<td>0.83</td>
<td>28</td>
<td>0.25</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>pSAM - nIOD</td>
<td></td>
<td>8</td>
<td>0.07</td>
<td>20</td>
<td>0.18</td>
<td></td>
</tr>
<tr>
<td></td>
<td>nSAM - nIOD</td>
<td></td>
<td>4</td>
<td>0.04</td>
<td>47</td>
<td>0.43</td>
<td></td>
</tr>
<tr>
<td></td>
<td>nSAM - pIOD</td>
<td></td>
<td>7</td>
<td>0.06</td>
<td>15</td>
<td>0.13</td>
<td></td>
</tr>
<tr>
<td>MB</td>
<td>pSAM - pIOD</td>
<td>230</td>
<td>175</td>
<td>0.76</td>
<td>77</td>
<td>0.33</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>pSAM - nIOD</td>
<td></td>
<td>5</td>
<td>0.02</td>
<td>23</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>nSAM - nIOD</td>
<td></td>
<td>7</td>
<td>0.03</td>
<td>117</td>
<td>0.51</td>
<td></td>
</tr>
<tr>
<td></td>
<td>nSAM - pIOD</td>
<td></td>
<td>43</td>
<td>0.19</td>
<td>13</td>
<td>0.06</td>
<td></td>
</tr>
<tr>
<td>EC+CS</td>
<td>El Nino - pIPO</td>
<td>75</td>
<td>65</td>
<td>0.87</td>
<td>7</td>
<td>0.09</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>El Nino - nIPO</td>
<td></td>
<td>4</td>
<td>0.05</td>
<td>8</td>
<td>0.11</td>
<td></td>
</tr>
<tr>
<td></td>
<td>La Nina - nIPO</td>
<td></td>
<td>6</td>
<td>0.08</td>
<td>60</td>
<td>0.80</td>
<td></td>
</tr>
<tr>
<td></td>
<td>La Nina - pIPO</td>
<td></td>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>SSWF</td>
<td>pSAM - pIOD</td>
<td>45</td>
<td>40</td>
<td>0.89</td>
<td>10</td>
<td>0.22</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>pSAM - nIOD</td>
<td></td>
<td>0</td>
<td>0.0</td>
<td>7</td>
<td>0.16</td>
<td></td>
</tr>
<tr>
<td></td>
<td>nSAM - nIOD</td>
<td></td>
<td>0</td>
<td>0.0</td>
<td>17</td>
<td>0.38</td>
<td></td>
</tr>
<tr>
<td></td>
<td>nSAM - pIOD</td>
<td></td>
<td>5</td>
<td>0.11</td>
<td>11</td>
<td>0.24</td>
<td></td>
</tr>
</tbody>
</table>
Figures captions

Figure 1. Koppen-Geiger climate classification defines the Australian temperate zone (a) and NRM clusters define the biophysical regions of Australia based on their potential variability to climate change (b). Selected catchments in biophysical regions of the Australian temperate zone (c).

Figure 2. Range of the coefficient of variations (a), standard deviations (b), and means (c) of the interannual variability in rainfall and streamflow in each region. The range of the CV shows the relative differences between interannual variability of streamflow and rainfall in each region and among regions.

Figure 3. The Mann-Kendall trend test analysis for streamflow and rainfall data from 1975 to 2018 shows no change in the trend of rainfall and streamflow in the SS (a) and EC+CS (c). Streamflow in the MB (b) and SSWF (d) has decreased, and in MB the trend of rainfall remained constant. In the SSWF there is a decrease in the trend of rainfall, but it is not statistically significant.

Figure 4. Explained variance and the relative importance of climate modes on the variation of rainfall in the SS (a), MB (b), CS+EC (c), and SSWF (d).

Figure 5. Explained variance and the relative importance of climate modes on the variation of streamflow in the SS (a), MB (b), CS+EC (c), and SSWF (d).

Figure 6. Distribution of extreme low and high annual rainfall years during concurrent phases of two most important climate modes in the SS (a), MB (b), EC+CS (c), and SSWF (d). The size of the circles shows the percentage of the catchments in each region which experienced extreme rainfall during concurrent phases of climate modes. The larger the size of the circle, the higher number of catchments that experienced extreme rainfall during concurrent phases of climate modes. For each graph, the probability density of x-axes is shown on top, and the probability density of y-axes is shown on the rights side of the graph.

Figure 7. Distribution of extreme low and high annual streamflow years during concurrent phases of two most important climate modes in the SS (a), MB (b), EC+CS (c), and SSWF (d). The size of the circles shows the percentage of the catchments in each region which experienced extreme streamflow during concurrent phases of climate modes. The larger the size of the circle, the higher number of catchments that experienced extreme streamflow during concurrent phases of climate modes. For each graph, the probability density of x-axes is shown on top, and the probability density of y-axes is shown on the rights side of the graph.
a) Actual and predicted annual rainfall (SS)

Explained Variance = 0.51
MSE = 0.49

Feature Importance
IOD = 0.48 IPO = 0.15
ENSO = 0.22 SAM = 0.15

b) Actual and predicted annual rainfall (MB)

Explained Variance = 0.84
MSE = 0.15

Feature Importance
IOD = 0.44 SAM = 0.14
ENSO = 0.35 IPO = 0.07

c) Actual and predicted annual rainfall (EC+CS)

Explained Variance = 0.57
MSE = 0.41

Feature Importance
IPO = 0.42 SAM = 0.17
ENSO = 0.28 IOD = 0.13

d) Actual and predicted annual rainfall (SSWF)

Explained Variance = 0.74
MSE = 0.24

Feature Importance
ENSO = 0.27 SAM = 0.24
IOD = 0.25 IPO = 0.24

This article is protected by copyright. All rights reserved.
Minerva Access is the Institutional Repository of The University of Melbourne

Author/s:
Khaledi, J; Nitschke, C; Lane, PNJ; Penman, T; Nyman, P

Title:
The Influence of Atmosphere-Ocean Phenomenon on Water Availability Across Temperate Australia

Date:
2022-01-01

Citation:

Persistent Link:
http://hdl.handle.net/11343/299331