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Abstract—We propose an operational measure of information
leakage in a non-stochastic setting to formalize privacy against
a brute-force guessing adversary. We use uncertain variables,
non-probabilistic counterparts of random variables, to construct
a guessing framework in which an adversary is interested in
determining private information based on uncertain reports.
We consider brute-force trial-and-error guessing in which an
adversary can potentially check all the possibilities of the private
information that are compatible with the available outputs to find
the actual private realization. The ratio of the worst-case number
of guesses for the adversary in the presence of the output and
in the absence of it captures the reduction in the adversary’s
guessing complexity and is thus used as a measure of private
information leakage. We investigate the relationship between the
newly-developed measure of information leakage with maximin
information and stochastic maximal leakage that are shown to
arise in one-shot guessing.

I. INTRODUCTION

Recently, maximal leakage based on one-shot guessing [1]
and guessing leakage based on brute-force guessing [2] have
been developed to provide operational information-leakage
metrics for privacy analysis. These notions have started a
new wave of research in information-theoretic privacy with
interpretable or operational measure of private information
leakage [3]. In some cases, however, probability distribu-
tions of the underlying variables or conditional probability
of outputs given private data might not be known a priori
or might change unpredictably over time. For instance, when
considering small datasets, enough data might not be available
to make probabilistic inference about the population and, thus,
we may want to investigate whether an adversary can gain
private information that is not based on statistics. Alternatively,
we may need to avoid randomized policies for privacy preser-
vation. For instance, this could be due to concerns about un-
truthfulness in privacy-preserving reports [4] or complications
in financial auditing and fraud detection [5]. Therefore, in
these cases, there is a need to investigate information leakage
in non-stochastic frameworks.

In this paper, we propose a measure of information leakage
in a non-stochastic framework. Doing so, we also provide
an interpretation for the recent results on non-stochastic
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privacy [6], [7]. We use uncertain variables, non-stochastic
counterparts of random variables introduced in [8], to construct
a guessing framework in which an adversary is interested in
determining private information based on available outputs.
We consider brute-force guessing in which an adversary po-
tentially checks all the possibilities of the private information
that are compatible with the outputs to find the realization
of the private information. This is similar to the interpretation
of [1] for password guessing or side-channel attacks on cipher
systems in which an adversary can repeatedly check all the
possible combinations that are compatible with its observa-
tions. However, the approach of [1] is based on the probability
of successful deduction/inference with just one guess while
we use the number of guesses in a repeated scenario. This
is similar to the brute-force guessing framework in [2] with
the exception of avoiding distributions or statistics. The ratio
of the worst-case number of guesses for the adversary in the
presence of the outputs and in the absence of them captures
the reduction in the adversary’s guessing complexity and is
thus used as a measure of information leakage.

Although a brute-force interpretation of leakage is used
in this paper, we follow the axioms1 of [1] for guiding the
development of the information leakage metric. These axioms
are, in fact, relevant to any notion of information leakage.
Therefore, we require that the introduced information-leakage
metric (R1) explain leakage in an operational manner (what
leakage means in practice), (R2) require minimal assumptions
about the privacy-intrusive adversary, (R3) satisfy properties,
such as (R3.a) data-processing inequality (post processing does
not increase leakage), (R3.b) independence property (inde-
pendent outputs result in zero leakage), and (R3.c) additivity
property (akin to composition rule in differential privacy), and
finally, (R4) accord with intuition.

In summary, this paper makes the following contributions:

• Proposing a non-stochastic brute-force guessing frame-
work for measuring information leakage in which the ra-
tio of the worst-case number of guesses for the adversary
in the presence of the output and in the absence of it is
used to define a measure of information leakage;

1Not all the requirements in [1] are axioms, e.g., the requirement for the
leakage to accord with intuition, but most can be regarded as fundamental
properties required for private information leakage metric.



• Measuring leakage from the private data to the outputs
when we are aware of adversary’s intentions (i.e., what
sensitive attribute/data it wants to guess) and when we are
not aware of the adversary’s intentions, which is defined
based on the maximal information leakage;

• Demonstrating that the non-stochastic brute-force leakage
satisfies the axioms outlined for information leakage
in [1], such as operational interpretation, minimality of
assumptions on the adversary, data-processing inequality,
independence property, and additivity;

• Presenting identifiability, a new notion of privacy based
on the developed maximal measure of information leak-
age, in this paper;

• Relating the non-stochastic information leakage based on
the presented brute-force guessing framework to maximin
information [8], which we prove stems naturally from
one-shot guessing with perfect accuracy, and stochastic
maximal leakage, which is shown to relate to stochastic
one-shot guessing [1].

II. UNCERTAIN VARIABLES

We borrow the following concepts from [8]. Consider
uncertainty set Ω. An uncertain variable, uv in short, is a
mapping on Ω. For example, for uv X : Ω → X, X(ω) is
the realization of uv X corresponding to uncertainty ω ∈ Ω.
For any two uvs X and Y , the set JX,Y K := {(X(ω), Y (ω)) :
ω ∈ Ω} ⊆ JXK × JY K is their joint range. For uv X ,
JXK := {X(ω) : ω ∈ Ω} denotes its marginal range. The
conditional range of uv X , conditioned on realizations of uv
Y belonging to the set Y , is JX|Y (ω) ∈ YK := {X(ω) :
∃ω ∈ Ω such that Y (ω) ∈ Y} ⊆ JXK. If Y = {y} is a
singleton, JX|Y (ω) ∈ {y}K = JX|Y (ω) ∈ YK is replaced
with JX|Y (ω) = yK or JX|yK when it is clear from the
context. For any two uvs X and Y , we define the notation
JY |XK := {JY |X(ω) = xK,∀x ∈ JXK}. We sometimes
refer to JY |XK as a non-stochastic channel as JY |XK fully
characterizes the non-stochastic communication channel from
X to Y . In this paper, we only deal with discrete uvs
possessing finite2 ranges.

Uvs X1 and X2 are unrelated if JX1|X2(ω) = x2K = JX1K
for all x2 ∈ JX2K and vice versa. Similarly, X1 and X2 are
conditionally unrelated given Y if JX1|X2(ω) = x2, Y (ω) =
yK = JX1|Y (ω) = yK for all (x2, y) ∈ JX2, Y K. Uvs Xi, i =
1, . . . , n, are unrelated if JX1, . . . , XnK = JX1K× · · · × JXnK
and conditionally unrelated given Y if JX1, . . . , Xn|Y (ω) =
yK = JX1|Y (ω) = yK×· · ·× JXn|Y (ω) = yK for all y ∈ JY K.
Uvs X , Y , and Z form a Markov (uncertainty) chain, denoted
by X − Y − Z, if X and Z are unrelated conditioned on Y ,
that is, JX|Z(ω) = z, Y (ω) = yK = JX|Y (ω) = yK for all
(z, y) ∈ JZ, Y K. Note that, by symmetry of the definition of
unrelated uvs, X−Y −Z forms a Markov chain if and only if
Z−Y −X forms a Markov chain. We say X1−X2−· · ·−Xn

forms a Markov chain if Xi−Xj−X` forms a Markov chain
for any 1 ≤ i<j<` ≤ n.

2Extension to countably infinite sets is straightforward with extra care when
manipulating extended real numbers (i.e., infinity).

Non-stochastic entropy of uncertain variable X is defined as
H0(X) := log2(|JXK|). This is often described as the Hartley
entropy [8], [9], which coincides with the Rényi entropy
of order 0 for discrete variables [10], [11]. Conditional (or
relative) entropy of uv X given Y is given by H0(X|Y ) :=
maxy∈JY K log2(|JX|Y (ω) = yK|). This is the Arimoto-Rényi
conditional entropy of order 0 [10], [12]. Based on this, we
can define I0(X;Y ) := H0(X)−H0(X|Y ). This is equivalent
to the 0-mutual information [10], [13].

We end this section by presenting the definition of max-
imin information from non-stochastic information theory [8].
Consider uvs X and Y . Any x, x′ ∈ JXK are JX|Y K-overlap
connected if there exists a finite sequence of conditional
ranges {JX|Y (ω) = yiK}ni=1 such that x ∈ JX|Y (ω) = y1K,
x′ ∈ JX|Y (ω) = ynK, and JX|Y (ω) = yiK ∩ JX|Y (ω) =
yi+1K 6= ∅ for all i = 1, . . . , n − 1. We say A ⊆ JXK
is JX|Y K-overlap connected if all x, x′ ∈ A are JX|Y K-
overlap connected. Further, A,B ⊆ JXK are JX|Y K-overlap
isolated if there does not exist x ∈ A, x′ ∈ B such that x, x′

are JX|Y K-overlap connected. An JX|Y K-overlap partition is
a partition of JXK such that each member set is JX|Y K-
overlap connected and any two member sets are JX|Y K-
overlap isolated. There always exists a unique JX|Y K-overlap
partition [8], which is denoted by JX|Y K?. The maximin in-
formation is I?(X;Y ) := log2(|JX|Y K?|). In [8], it is proved
that |JX|Y K?| = |JY |XK?| and thus I?(X;Y ) = I?(Y ;X).
The overlap partition captures common uv [14], an extension
of common random variable [15] to uvs. This relationship
explains the relationship between entropy of the common uv,
which is equal to the maximin information, and the zero-error
capacity [8], [15].

III. INFORMATION LEAKAGE IN BRUTE-FORCE GUESSING

Consider uv X containing sensitive data U , which is inter-
preted as some attribute or feature of X that is computable
by some function g : JXK→ JUK, i.e., U = g ◦X . Note that,
by construction, |JUK| ≤ |JXK|. Let Y be an observable uv
that depends on X , e.g., X and Y are the input and output,
respectively, of a (privacy-preserving) channel.3 These uvs
form a Markov chain U − X − Y . An adversary wants to
guess U correctly given Y . For instance, consider an example
in which X captures weight and height of an individual, and
U denotes body mass index. In such an example, insurance
agencies might be interested in deducing the body mass index
of an individual (due to its correlation with heart disease)
based on publicly released data Y while they do not have
any particular interest in learning an individual’s height and
weight separately.

We assume that the adversary can guess the value of U
in a brute-force trial-and-error manner. That is, the adversary
chooses a distinct element u ∈ JUK each time and tests4

whether the actual value U(ω) equals u. The adversary repeats

3The conditional range JY |XK characterizes this channel, which can also
be regarded as a non-stochastic privacy-preserving scheme.

4We assume that the adversary has access to an oracle that can determine
whether U(ω) is equal to u (for a given u ∈ JUK) or not.



this procedure until the answer is ‘yes’. We consider the num-
ber of trials before the successful guess. Without observations
of Y , the adversary must try at most |JUK| times. However,
with access to observation Y (ω) = y ∈ JY K, the actual value
of U(ω) lies in the conditional range JU |Y (ω) = yK and there-
fore the maximum number of trials is |JU |Y (ω) = yK|. Since
the number of trials is proportional to the inference cost/effort
of the adversary, the ratio |JUK|/|JU |Y (ω) = yK| captures the
reduction in the adversary’s maximum cost for guessing U
upon the observation JU |Y (ω) = yK. This coincides with the
definition of the information gain log2(|JUK|/|JU |Y (ω) = yK|)
in [16], where log2(|JU |Y (ω) = yK|) denotes the ‘combinato-
rial’ conditional entropy. The adversary’s reduction in guessing
cost can be interpreted as the information gained about uv U
from the observation Y (ω) = y.

Note that the measure log2(|JUK|/|JU |Y (ω) = yK|) is also
consistent with the stochastic brute-force guessing leakage
HG(U)−EY [HG(U |Y (ω) = y)] proposed in [2, Definition 3]
for rvs U and X . This measure is based on the guessing en-
tropy5 in [17] defined as HG(U) :=

∑|JUK|
i=1 iP{U(ω) = ui},

where (ui)
|JUK|
i=1 are ordered elements such that P{U(ω) =

u1} ≥ P{U(ω) = u2} ≥ . . . ≥ P{U(ω) = u|JUK|}.
Similarly, the conditional guessing entropy is HG(U |Y (ω) =

y) =
∑|JU |Y (ω)=yK|
i=1 iP{U(ω) = ũi|Y (ω) = y} for each

y ∈ JY K, where (ũi)
|JU |Y (ω)=yK|
i=1 are again ordered elements

such that P{U(ω) = ũ1|Y (ω) = y} ≥ P{U(ω) = ũ2|Y (ω) =
y} ≥ . . . ≥ P{U(ω) = ũ|JU |Y (ω)=yK||Y (ω) = y}. When
there is no σ-field or probability measure over JUK, HG(U)
and HG(U |Y (ω) = y) reduce to the prior guessing cost
log2(|JUK|) and posterior guessing cost log2(|JU |Y (ω) =
yK|), respectively, by replacing the expectation with the worst-
case. To quantify the non-stochastic brute-force guessing leak-
age, we consider the difference between log2(|JUK|) and the
minimum guessing cost miny∈JY K log2(|JU |Y (ω) = yK|) as
follows.

Definition 1 (Non-Stochastic Brute-force Guessing Leakage).
For a given uv U , the non-stochastic leakage from U to Y is

L(U → Y ) = log2

 |JUK|
min
y∈JY K

|JU |Y (ω) = yK|


= max
y∈JY K

log2

(
|JUK|

|JU |Y (ω) = yK|

)
.

The measure L(U → Y ) quantifies the maximum reduction
in the guessing cost of the adversary after observing Y , which
indicates the most information gained by the adversary in
the sense of [16]. This measure has been previously used as
the non-stochastic information leakage in [6], [7] for privacy
analysis, e.g., in the case of k-anonymity [6]. Hence, this
definition provides an operative meaning to the non-stochastic

5The guessing entropy HG(U) denotes the minimum average number of
trials for guessing the realization of U . This results from the optimal brute-
force guessing strategy of the adversary to pick ui ∈ JUK, i.e., the element
in JUK with the i-th largest probability P{U(ω) = ui}, at the i-th trial [17].

information leakage and can be used as its interpretation for
privacy analysis.

In the following proposition, we show that non-stochastic
leakage satisfies the data-processing inequality. This implies
that, for a given uv X and a specified attribute U of X , the
leakage is non-increasing along cascading channels JY |XK and
JZ|Y K. This is in line with axiom R3.a of an operational notion
of information leakage in [1]. This is an important requirement
as it shows that a curator does not need to worry about an
increased risk incurred by any post processing after releasing
outputs.

Proposition 1 (Post Processing Inequality). If Markov chain
U −X − Y − Z holds, L(U → Z) ≤ L(U → Y ).

Proof: Due to page limits, the proofs are presented in a
technical note online [18].

The following result shows the leakage is equal to zero if
two uvs are unrelated. Evidently, the most private case arises
from ensuring that X and Y are unrelated because the leakage
is always greater and equal to zero. In this case, the realizations
of Y do not provide any useful information about X or its
derivatives, e.g., U . This is again in line with axiom R3.b of
an operational notion of information leakage [1].

Proposition 2 (Bounding Leakage). L(U → Y ) ≥ 0 with
equality if X and Y are unrelated.

Proof: See our online technical note [18].
For the Markov chain U −X −Y , the measure L(U → Y )

can be used to quantify the non-stochastic brute-force guessing
leakage if we know attribute U of X that is targeted by the
adversary. However, there are some real-world situations that
we do not know a priori the intention of the adversary, i.e.,
the attribute U of X that the adversary is trying to infer. In
some cases, more than one user may observe Y and each
user might be interested in guessing/estimating a different
attribute of X . In these situations, it is required to consider the
brute-force guessing leakage L(U → Y ) when the attribute U
varies. Therefore, we need to define a maximal non-stochastic
guessing leakage. This is in-line with axiom R2 in [1]. We
consider such situations in the next section.

IV. MAXIMAL NON-STOCHASTIC LEAKAGE

For given uv X and the released output Y , we define the
maximal non-stochastic brute-force guessing leakage over all
attributes U as follows.

Definition 2 (Maximal Non-Stochastic Brute-Force Leakage).
The maximal non-stochastic leakage from X to Y is defined
as

L?(X → Y ) = sup
U : U−X−Y

L(U → Y ), (1)

where the supremum is taken over all functions g : JXK→ JUK
with JUK containing finite arbitrary alphabets.

The maximal non-stochastic brute-force leakage only de-
pends on uvs X and Y . The maximizer of (1) denotes the



most vulnerable attributes U to the brute-force guessing over
JY |XK; The supremum of (1) indicates the lowest data privacy
level the channel JY |XK provides.

Now, we can show that maximal non-stochastic leakage
admits axiom R3 in the axiomatic approach to operational
information leakage in [1]. That is, maximal non-stochastic
leakage satisfies post processing inequality (post processing
does not increase leakage), unrelatedness (unrelated outputs
result in zero leakage, c.f., independence in maximal stochastic
leakage), and additivity.

Proposition 3 (Properties of Maximal Leakage). The follow-
ing holds:

a) L?(X → Y ) ≥ 0;
b) L?(X → Y ) = 0 if and only if X is unrelated to Y ;
c) L?(X → Y ) ≤ H0(X) with the equality if Y = X;
d) L?(X → Z) ≤ L?(X → Y ) if Markov chain X−Y −Z

holds;
e) If (Xi, Yi), ∀i, are unrelated, i.e., (Xi, Yi) and (Xi′ , Yi′)

are unrelated ∀i 6= i′, then L?((X1, . . . , Xn) →
(Y1, . . . , Yn)) =

∑n
i=1 L(Xi → Yi).

Proof: See our online technical note [18].
Now, we are ready to present a formula for computing the

maximal non-stochastic leakage in the next proposition.

Proposition 4 (Computing Maximal Leakage). L?(X →
Y ) = log2(|JXK| −miny∈JY K |JX|Y (ω) = yK|+ 1).

Proof: See our online technical note [18].

Corollary 5. L?(X → Y ) is not symmetric in general.

Proof: See our online technical note [18].
In the next section, we introduce non-stochastic identifia-

bility as a new notion of privacy, motivated by the expression
for the maximal leakage in Proposition 4.

V. NON-STOCHASTIC IDENTIFIABILITY

We define non-stochastic identifiability by requiring that the
ratio of the cardinality of the set of compatible realization
of uv X with access to the measurements of uv Y over
the cardinality of the set of compatible realization of uv X
without this auxiliary information is lower bounded by an
exponential of the privacy budget. This implies that access
to the realizations of Y does not significantly reduce the
cardinality of the set of possibilities that must be tested for
guessing the realization of X . This definition is in consistent
with stochastic identifiability in [19], [20] which requires that
the posterior distribution (instead of the conditional range) to
remain similar with and without access to privacy-preserving
measurements.

Definition 3 (Non-Stochastic Identifiability). Any mapping M
is ε-identifiable, for ε > 0, if

|JX|Y (ω) = yK| ≥ |JXK|2−ε, ∀y ∈ JY K, (2)

with Y = M ◦X .

We refer to ε in the non-stochastic identifiability as the
privacy budget. By decreasing the privacy budget, we ensure
a higher level of privacy (cf., differential privacy [21] and
identifiability [19]). This is intuitively because, by decreasing
the privacy budget, the size of the set JX|Y (ω) = yK increases
and thus guessing the actual realization of uv X becomes more
complex.

Corollary 6. For any ε-identifiable mapping M, L?(X →
Y ) ≤ log2(|JXK|(1− 2−ε) + 1).

Proof: See our online technical note [18].
Corollary 6 shows that, as expected, the maximal non-

stochastic brute-force guessing leakage L?(X → Y ) goes to
zero as the privacy budget approaches zero. By increasing the
privacy budget, however, we increase the bound on the maxi-
mal non-stochastic brute-force guessing leakage L?(X → Y )
and therefore more private information could be potentially
leaked.

VI. BRUTE-FORCE TO ONE-SHOT GUESS

In the previous section, we considered a brute-force guess-
ing adversary that can potentially check all the possibilities.
In this section, we restrict ourselves to one-shot guesses. We
first analyze the non-stochastic case and its relationship with
the non-stochastic brute-force guessing.

A. Non-Stochastic One-Shot Guessing

Let us consider an adversary with only a single opportunity
for guessing the private realization of uv U by observing
the realization of uv Y . For instance, consider the problem
of guessing a person’s password based on side-channel in-
formation (e.g., inter-keystroke delay as in [1]) while the
system locks immediately after one wrong guess. Therefore,
the adversary is interested in finding the largest amount of
information that can be deduced correctly with one guess. This
happens when |JU |Y (ω) = 1K| = 1 for all y ∈ JY K. In the
next proposition, we show that the maximum information is
the largest amount of information can be leaked to such an
adversary. We further relate this notion of leakage to maximal
non-stochastic leakage with brute-force guessing.

Proposition 7 (Maximal Leakage Bounds Maximin Info).
For uvs X and Y ,

I?(X;Y ) = sup
U : U −X − Y,

|JU |Y (ω) = yK| = 1,
∀y ∈ JY K

L(U → Y ) ≤ L?(X → Y ),

where the supremum is taken over all g : JXK → JUK such
that |{g(x) : x ∈ JX|Y (ω) = yK}| = |JU |Y (ω) = yK| = 1.

Proof: See our online technical note [18].

Remark 1 (Relationship with Zero-Error Capacity). Following
Proposition 7 and [8], the zero-error capacity of any memory-
less uncertain channel satisfies C0 = supJXK⊆X I?(X;Y ) ≤
supJXK⊆X L?(X → Y ). Therefore, based on Corollary 6, the
zero-error capacity of any memoryless ε-identifiable channel



is upper bounded by log2(|X|(1 − 2−ε) + 1), where |X| is
the number of the input alphabets. This constraints dynamical
systems that can be estimated or stabilized through privacy-
preserving communication channels [8], [22].

In the next subsection, we consider one-shot guessing in the
stochastic sense of [1] and investigate its relationship with the
maximal non-stochastic leakage with brute-force guessing.

B. Maximal Stochastic Leakage

We can recreate the stochastic framework for information
leakage in [1] by endowing all the uncertain variables in this
paper with a measure.

Definition 4 (Maximal Stochastic Leakage). For jointly dis-
tributed rvs X and Y , the maximal stochastic leakage from
X to Y is given by

L̃(X → Y )

= sup
U : U−X−Y

log2

E
{

max
u∈JUK

P{U = u|Y = y}
}

max
u∈JUK

P{U = u}

 ,

where supremum is taken over all random variables (rvs) U
taking values in finite arbitrary alphabets. It was shown in [1]
that

L̃(X → Y ) = log2

 ∑
y∈JY K

max
x∈JXK

P{Y = y|X = x}


= I∞(X;Y ),

where I∞ is the Sibson mutual information Iα with α →
∞ [13], [23]. Note the fact that {x : P{X = x} > 0} = JXK.

In the next proposition, we show that the worst-case maxi-
mal stochastic leakage provides a bound for the maximal non-
stochastic brute-force leakage. Therefore, we can interpret the
maximal non-stochastic brute-force leakage as a robust non-
stochastic counterpart of the maximal stochastic leakage.

Proposition 8 (Relating Maximal Leakages). L?(X → Y ) ≤
supP{Y=y|X=x} L̃(X → Y ) +H0(X|Y ).

Proof: See our online technical note [18].

VII. CONCLUSIONS AND FUTURE WORK

We developed an interpretable notion of non-stochastic
information leakage based on guessing in a non-stochastic
framework. We considered brute-force guessing in which an
adversary can potentially check all the possibilities of the
private information that are compatible with the available
outputs to find the actual private realization. The ratio of the
worst-case number of guesses for the adversary in the presence
of the output and in the absence of it captures the reduction in
the adversary’s guessing complexity and is thus used as a mea-
sure of information leakage. We computed the maximal non-
stochastic leakage over all sensitive attributes that could be
targeted by the adversary and compared it with non-stochastic

identifiabiliy, maximin information, and stochastic maximal
leakage. Future work can focus on extending this definition to
a dynamic framework with continual observations.
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