TITLE: Penetrating head injuries in children presenting to the emergency department in Australia and New Zealand. A PREDICT prospective study.

AUTHORS:

Franz E Babl MD 1,3
franz.babl@rch.org.au

Mark D. Lyttle MBChB 2,4,5
mldyttle77@gmail.com

Silvia Bressan MD, PhD 2,6
silviabress@gmail.com

Meredith L Borland MBBS 7,8
meredith.borland@health.wa.gov.au

Natalie Phillips MBBS 9
natalie.phillips@merton-oxford.com

Amit Kochar MD 10
amit.kochar@health.sa.gov.au

Sarah Dalton BMed 11
sarah.dalton@health.nsw.gov.au

John A. Cheek MBBS 1,2,12
john.cheek@rch.org.au

Yuri Gilhotra MBBS 9
yurigilhotra@me.com

Jeremy Furyk MBBS 13
jeremy.furyk@health.qld.gov.au

Jocelyn Neutze MBChB 14
jocelyn.neutze@middlemore.co.nz

Susan Donath MA 2,3
susan.donath@mcri.edu.au

Stephen Hearps PGDipBiostat
stephen.hearps@mcri.edu.au

This article is protected by copyright. All rights reserved.
Marta Arpone MSc 2,3
marta.arpone@mcri.edu.au

Louise Crowe PhD 2
louise.crowe@mcri.edu.au

Stuart R Dalziel PhD 15,16
sdalziel@adhb.govt.nz

Ruth Barker MBBS 17
Ruth_prut@hotmail.com

Ed Oakley MBBS 1-3
ed.oakley@rch.org.au

1 Royal Children’s Hospital, Melbourne.
Address: Emergency Department, Royal Children’s Hospital, 50 Flemington Rd, Parkville, VIC, 3052, Australia.

2 Murdoch Children’s Research Institute, Melbourne.
Address: 50 Flemington Rd, Parkville, VIC, 3052, Australia.

3 Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne.
Address: Grattan St, Parkville, VIC, 3010, Australia.

4 Bristol Royal Hospital for Children, Bristol.
Address: Emergency Department, Bristol Children’s Hospital, Paul O’Gorman Building, Upper Maudlin St, Bristol, BS2 8BJ, United Kingdom.

5 Academic Department of Emergency Care, University of the West of England, Bristol.
Address: Blackberry Hill, Bristol, BS16 1XS, United Kingdom.

6 Department of Women’s and Children’s Health, University of Padova, Padova.
Address: Via Giustiniani3, 2 35128, Padova, PD, Italy.

7 Princess Margaret Hospital for Children, Perth.
Address: Emergency Department, Princess Margaret Hospital for Children, Roberts Rd, Subiaco, Perth, WA, 6008, Australia.

8 Schools of Medicine, University of Western Australia.
Address: 35 Stirling Hwy, Crawley, WA, 6009, Australia.

pHl_V16 20 1 18
Lady Cilento Children’s Hospital, Brisbane and Child Health Research Centre, School of Medicine, The University of Queensland.
Address: Emergency Department, Lady Cilento Children’s Hospital, 501 Stanley St, South Brisbane, QLD, 4101, Australia.

Women’s & Children’s Hospital, Adelaide.
Address: Emergency Department, Women’s & Children’s Hospital, 72 King William St, North Adelaide, SA, 5006, Australia.

The Children’s Hospital at Westmead, Sydney.
Address: Emergency Department, The Children’s Hospital at Westmead, 212 Hawkesbury Rd, Westmead, NSW, 2145, Australia.

Monash Medical Centre, Melbourne.
Address: Emergency Department, Monash Medical Centre, 246 Clayton Rd, Clayton, VIC, 3186, Australia.

The Townsville Hospital, Townsville.
Address: Emergency Department, The Townsville Hospital, 100 Angus Smith Dr, Douglas, QLD, 4814, Australia.

Kidzfirst Middlemore Hospital, Auckland.
Address: Emergency Department, Kidzfirst Middlemore Hospital, 100 Hospital Rd, Auckland, 2025, New Zealand.

Starship Children’s Health, Auckland.
Address: Emergency Department, Starship Children’s Health, 2 Park Rd, Grafton, Auckland, 1023, New Zealand.

Liggins Institute, University of Auckland, Auckland.
Address: 85 Park Ave, Grafton, Auckland, 1023, New Zealand.

Queensland Injury Surveillance Unit
Address: Jerome House, 18 Clarence St, South Brisbane, 4101
CORRESPONDING AUTHOR:
Franz E Babl
Emergency Research
Murdoch Children’s Research Institute
Flemington Rd
Parkville
Victoria 3052
Australia
Phone 61 3 9345 6153
Fax 61 3 9345 600
Email franz.babl@rch.org.au
ABSTRACT

Background and objectivise:
Penetrating head injuries (pHI) are associated with high morbidity and mortality. Data on pHI in children outside North America are limited. We describe the mechanism of injuries, neuroimaging findings, neurosurgery and mortality for pHI in Australia and New Zealand.

Methods:
Planned secondary analysis of a prospective observational study of children <18 years who presented with a head injury of any severity at any of 10 predominantly paediatric Australian/New Zealand emergency departments (EDs) between 2011 and 2014. We reviewed all cases where clinicians had clinically suspected pHI as well as all cases of clinically important traumatic brain injuries (death, neurosurgery, intubation >24h, admission > 2 days and abnormal CT).

Findings:
Out of 20,137 evaluable patients with head injury, 21 (0.1%) were identified to have sustained a pHI. All injuries were of non-intentional nature and there were no gunshot wounds. Mechanism of injuries varied from falls, animal attack, motor vehicle crashes and impact with objects. Mean Glasgow Coma Scale (GCS) on ED arrival was 10; 10 (48%) had a history of loss of consciousness, 7 (33%) children were intubated pre hospital or in the ED. 14 (67%) children underwent neurosurgery, 2 (10%) craniofacial surgery and 5 (24%) were treated conservatively; 4 (19%) patients died.

Conclusions:
Paediatric pHIs are very rare in EDs in Australia and New Zealand, but are associated with high morbidity and mortality. The absence of firearm-related injuries compared to North America is striking, and may reflect Australian and New Zealand firearm regulations.

What is already known on this topic

- Penetrating head injuries in children are rare but potentially severe.
- They are a major concern in countries with high rates of interpersonal violence.
- There are no national data on penetrating head injuries in Australia and New Zealand.

What this paper adds
• In a large prospective Australian and New Zealand data set of head injured children, penetrating injuries were very rare with high morbidity and mortality.
• Not a single case of firearm related head injury was identified.

Key words
Head injury, child, firearm injuries, Australia, New Zealand
INTRODUCTION

Information on penetrating head injuries (pHI) in children is limited. In several recent large observational studies deriving clinical decision rules for imaging in children with head injury (HI) from North America, penetrating injuries were excluded *a priori* and case numbers were not listed.\(^{(1-3)}\) While not excluded *a priori* in a data set of 20,000 children with HI from the United Kingdom, pHI were not differentiated from blunt injuries caused by high speed objects.\(^{(4)}\) Reports of pHI in children usually come from settings where interpersonal violence is high. Examples include paediatric reports on pHI from the United States (US) with a focus on gunshot wounds,\(^{(5)}\) from South Africa where stab wounds predominate,\(^{(6)}\) and from battle zones in Iraq and Afghanistan where blast injuries dominate.\(^{(7)}\) Most reports do not relate pHI to head injuries in general and often the focus is on fatalities not emergency department (ED) presentations.

Based on single centre reports pHI in children in Australia and New Zealand are infrequent.\(^{(8,9)}\) A comparison of gun fatalities in children, most of which were HIs, between South Australia and San Diego County in the US showed a much higher rate of gun fatalities and a high rate of hand gun use in the US whereas in Australia long guns were more often used in fatalities.\(^{(9)}\) In Australia the reduction of gun violence has been a focus of much regulatory and legislative change over the last 20 years \(^{(10,11)}\) with gun ownership and gun related deaths in Australia and New Zealand generally at low levels.\(^{(12)}\)

Based on a lack of information on cause and rate of ED presentations of pHI in Australia and New Zealand, we set out to identify and analyse cases of pHI from within a large prospective data set of head injured children to describe their frequency of presentation to the ED, their characteristics, management and outcome.

METHODS

Study design, setting and patients

This was a planned secondary analysis of a prospective multi-centre observational study, which enrolled children presenting with HIs of any severity to 10 paediatric EDs in Australia and New Zealand over a 44 month period between April 2011 and November 2014. All EDs are members of
the Paediatric Research in Emergency Departments International Collaborative (PREDICT) research network.(13) Eight of the 10 study EDs were located at tertiary children’s hospitals and 7 of the 10 sites were regional paediatric trauma centres. The parent study was conducted to assess the accuracy of three HI clinical decision rules with details described elsewhere.(14,15)

In this study we extracted patients with possible pHl in terms of epidemiology and outcome.

The study was approved by the institutional ethics committees at each participating site. We obtained informed verbal consent from parents/guardians apart from instances of significant life-threatening or fatal injuries where participating ethics committees granted a waiver of consent.

The study was registered with the Australian New Zealand Clinical Trials Registry (ANZCTR) ACTRN12614000463673 and followed the Standards for Reporting Diagnostic accuracy studies (STARD) guidelines.(16)

Study procedures
Patients were enrolled by the treating ED clinician who collected clinical data, including positive, negative or unknown suspicion of penetrating injury prior to any neuroimaging. The research assistant (RA) recorded ED and hospital management data after the visit and conducted a telephone follow-up for patients who had not undergone neuroimaging. Site investigators, RAs and participating ED clinicians received formal training prior to and during the study.

Definitions

Clinically important traumatic brain injury

We defined clinically important traumatic brain injury (ciTBI) as death from traumatic brain injury, need for neurosurgery, intubation >24 hours for traumatic brain injury or hospital admission >2 nights for traumatic brain injury in association with traumatic brain injury on computed tomography (CT).(1) We used the Glasgow Coma Scale (GCS) as assigned by the ED clinician on their initial assessment in the analysis. We used senior radiologist reports to determine the results of CT and magnetic resonance imaging (MRI) scans and operative reports for patients who underwent neurosurgery.
Penetrating head injuries

Multiple strategies were undertaken to identify pHI among the 20,137 patients with HIs. We reviewed: (1) all cases in which the ED clinician at time of presentation indicated a clinical suspicion of pHI in the clinical report form; (2) all ciTBI cases with unknown and no suspicion of pHI to ensure complete case identification; and (3) cases with no ciTBI but with unknown suspicion of pHI and skull fracture findings on CT scan. Patients were classified as having a true positive pHI if they had sustained any traumatic fracture of the skull where the dura mater was breached by either a foreign object or by comminuted bone fragments.

Statistical analysis

Patients with pHI are presented using descriptive statistics. Data were entered into Epidata (The Epidata Association, Odense, Denmark), and later REDCap, and analysed using Stata 14 (Statacorp, College Station, Texas, USA).

RESULTS

At the 10 study hospitals we identified 20,137 patients with HIs whose follow up data were available, after excluding representation for the same injury. In total, 21 patients with pHI were identified; 8 out of 28 patients with suspicion of pHI and 13 out of 271 patients with ciTBI with unknown or no suspicion for pHI.

The 21 patients (8 females, 38%) had a mean age at injury of 7.1 years (SD=5.2) (Table 1). All injuries were non-intentional; none of the injuries were purposefully self-inflicted or the result of violence. There were no firearm (shotgun, handgun, rifle) or stabbing, arrow or dart injuries. Table 1 provides details on clinical symptoms and signs. In summary, six injuries were caused by impacts with objects, five were pedestrians struck by motorised vehicles, four were patients involved in motor vehicle crashes, three injuries were the result of falls and three were due to other transorbital or transcranial punctures. Mean GCS assigned by the ED clinician was 10 (SD= 5.4). Two thirds of patients were intubated and two thirds underwent neurosurgery, which was mainly craniotomy, monitoring of intracranial pressure and elevation of a depressed skull fracture. Four patients (19%) died (Table 2).
DISCUSSION

Paediatric pHIs are very infrequent in Australia and New Zealand EDs and make up only 0.1% of HIIs of all severities and causes. While the small number of pHIs were caused by a range of mechanisms it is striking that none of them involved gunshots or stabings.

The few pHIs that did occur had severe injury, a high frequency of loss of consciousness, low GCS on presentation, a high rate of intubation and neurosurgery, and high mortality. In comparison for the overall cohort of 20,137 children only 1.1% had a GCS of ≤12, 0.4% required neurosurgery, and 0.1% died.(14) For ED clinicians an important finding is that the clinical suspicion of a pHI is rare, but likely correlated with a true finding of a pHI on investigation, and should accordingly trigger urgent CT scanning and early neurosurgical involvement.

The absence of gunshot injuries to the head in this study may reflect the relatively low level of gun ownership and gun violence across Australia and New Zealand compared with other countries. Gun ownership in Australia and New Zealand is reported at 13.7 (2016) and 29.5 (2016) guns per 100 people respectively. Gun associated deaths of any cause in Australia in New Zealand are reported at 0.93/100,000 (2015) and 1.20/100,000 (2010) respectively.(12) This compares to the US whose rates of gun ownership is 3.4 to 7.3 times higher (101.05 guns per 100 people and gun deaths is 8.8 to 11.3 times higher (10.54/100,000 (2014)).(12) In Australia in particular, following the Port Arthur gun massacre at a tourist location in 1996, multiple legislative and regulatory processes were put in place across the country to restrict gun ownership as part of the National Firearms Agreement.(11) In addition, a national tax payer funded gun buy-back program led to the destruction of some 600,000 weapons.(10,11) A recent analysis of the gun law reforms and intentional firearm deaths in Australia has shown an accelerated reduction in firearm deaths following the reforms.(10) Similar to Australia, a mass shooting in New Zealand in 1990 triggered legislative change that restricted firearm sales, tightened restrictions for firearm licences, and required secure storage of firearms.(18) While causality between firearm policy and gun violence is difficult to determine, our observational study supports the current status quo regarding firearm policy in both countries.
The absence of gunshot wounds to the head, may also reflect the possibility that children injured in this way do not present to EDs. Gunshot wounds in general and those to the head in particular, are often fatal and may only be captured in a coronial data set.(9,19) National data from New Zealand reported only three unintentional firearm deaths in children aged less than 15 years from 2002 to 2014 (20-22) confirming that not only injury, but death from gunshots is rare in New Zealand. There likely are intentional firearm injuries but they are not reported. A report from the Australian National Coronial Information System reported 47 closed cases of deaths in children aged 15 or less due to projectile related fatalities from 2002-2014,(23) of which 35 were related to long gun use and 9 handgun use. Nineteen of these were due to intentional self-harm, 17 assault, 10 unintentional and one legal intervention.

pHI in general and gunshot wounds to the head in particular carry a high mortality and it is possible that victims died on scene and did not present to the ED. These patients would only be captured in a linked coronial database. Our study was focussed on their frequency of presentation to the ED, their clinical characteristics and outcome.

In summary, in a prospectively collected Australian and New Zealand multicentre data set, childhood pHI were very rare in EDs and generally presented seriously injured. No firearm-related head injuries were identified in this large ED dataset.

Declaration of conflicts of interests
None of the authors have conflicts of interests.

Acknowledgement
We would like to thank the participating families, emergency department staff and research staff at participating sites.

Funding
The study was funded by grants from the National Health and Medical Research Council (project grant GNT1046727, Centre of Research Excellence for Paediatric Emergency Medicine GNT1058560), Canberra, Australia; the Murdoch Children’s Research Institute, Melbourne, Australia; the Emergency Medicine Foundation (EMPJ-11162), Brisbane, Australia; Perpetual Philanthropic Services
Author Contributions

This article is protected by copyright. All rights reserved.
References

<table>
<thead>
<tr>
<th>DEMOGRAPHICS</th>
<th>Penetrating head injury n=21</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean age (years, SD)</td>
<td>7.1 5.2</td>
</tr>
<tr>
<td>Median age (years, IQR)</td>
<td>6.5 2.9-10.7</td>
</tr>
<tr>
<td>Patients < 2 years</td>
<td>4 19</td>
</tr>
<tr>
<td>Female</td>
<td>8 38</td>
</tr>
<tr>
<td>Current GCS (clinician assigned), median (IQR)</td>
<td>12 3-15</td>
</tr>
<tr>
<td>3-8</td>
<td>8 38</td>
</tr>
<tr>
<td>9-12</td>
<td>3 14</td>
</tr>
<tr>
<td>13</td>
<td>2 0</td>
</tr>
<tr>
<td>14</td>
<td>2 10</td>
</tr>
<tr>
<td>15</td>
<td>8 38</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PATIENT HISTORY</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Known or suspected LOC</td>
<td>10 48</td>
</tr>
<tr>
<td>Witnessed disorientation</td>
<td>6 29</td>
</tr>
<tr>
<td>History of vomiting</td>
<td>2 10</td>
</tr>
<tr>
<td>History of amnesia</td>
<td>4 19</td>
</tr>
<tr>
<td>Seizure since injury</td>
<td>1 5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GENERAL EXAMINATION</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Intubated and ventilated on arrival</td>
<td>7 33</td>
</tr>
<tr>
<td>Headache*</td>
<td>7 50</td>
</tr>
<tr>
<td>Focal neurology present*</td>
<td>2 29</td>
</tr>
<tr>
<td>Patient irritated or agitated*</td>
<td>6 86</td>
</tr>
<tr>
<td>Patient abnormally drowsy/difficult to wake*</td>
<td>4 57</td>
</tr>
<tr>
<td>Patient slow to respond to speech*</td>
<td>3 43</td>
</tr>
<tr>
<td>Patient has altered mental status*</td>
<td>5 71</td>
</tr>
<tr>
<td>Head laceration</td>
<td>14 67</td>
</tr>
<tr>
<td>Head haematoma</td>
<td>15 71</td>
</tr>
<tr>
<td>Obvious palpable skull fracture</td>
<td>10 48</td>
</tr>
<tr>
<td>Possible skull fracture on palpation</td>
<td>10 48</td>
</tr>
<tr>
<td>Suspicion of depressed skull fracture</td>
<td>13 62</td>
</tr>
<tr>
<td>Clinical open skull fracture</td>
<td>9 43</td>
</tr>
<tr>
<td>Serious facial injury</td>
<td>9 43</td>
</tr>
<tr>
<td>Signs of basal skull fracture</td>
<td>4 19</td>
</tr>
</tbody>
</table>

*Percentage based on patients not intubated on arrival (n=7)
SD = standard deviation; IQR = interquartile range
GCS = Glasgow Coma Scale; LOC = loss of consciousness
Table 2. Management and outcome of penetrating head injuries

<table>
<thead>
<tr>
<th>Current study</th>
<th>n=21</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient intubated or ventilated due to the head injury</td>
<td></td>
</tr>
<tr>
<td>Length of intubation (hours, mean; SD)</td>
<td>63.5</td>
</tr>
<tr>
<td>NEUROIMAGING</td>
<td></td>
</tr>
<tr>
<td>Neuroimaging</td>
<td>21</td>
</tr>
<tr>
<td>CT</td>
<td>21</td>
</tr>
<tr>
<td>MRI</td>
<td>7</td>
</tr>
<tr>
<td>Abnormal neuroimaging</td>
<td>21</td>
</tr>
<tr>
<td>Intracranial haemorrhage/contusion</td>
<td>15</td>
</tr>
<tr>
<td>Extra-axial bleeding</td>
<td>11</td>
</tr>
<tr>
<td>Parenchymal bleeding</td>
<td>8</td>
</tr>
<tr>
<td>Sub-arachnoid bleeding</td>
<td>5</td>
</tr>
<tr>
<td>Cerebral oedema</td>
<td>9</td>
</tr>
<tr>
<td>Diffuse axonal injury</td>
<td>1</td>
</tr>
<tr>
<td>Midline shift or brain herniation</td>
<td>6</td>
</tr>
<tr>
<td>Diastasis of skull</td>
<td>4</td>
</tr>
<tr>
<td>Pneumocephalus</td>
<td>11</td>
</tr>
<tr>
<td>Skull fracture*</td>
<td>20</td>
</tr>
<tr>
<td>Depressed</td>
<td>15</td>
</tr>
<tr>
<td>Non-depressed</td>
<td>8</td>
</tr>
<tr>
<td>Basal Skull</td>
<td>5</td>
</tr>
<tr>
<td>Unknown</td>
<td>1</td>
</tr>
<tr>
<td>NEUROSURGICAL INTERVENTION</td>
<td></td>
</tr>
<tr>
<td>Neurosurgery *</td>
<td>14</td>
</tr>
<tr>
<td>Monitoring of intracranial pressure</td>
<td>9</td>
</tr>
<tr>
<td>Elevation of depressed skull fracture</td>
<td>9</td>
</tr>
<tr>
<td>Craniotomy</td>
<td>10</td>
</tr>
<tr>
<td>Haematoma Evacuation</td>
<td>3</td>
</tr>
<tr>
<td>Lobectomy</td>
<td>1</td>
</tr>
<tr>
<td>Tissue debridement</td>
<td>2</td>
</tr>
<tr>
<td>Dura repair</td>
<td>10</td>
</tr>
<tr>
<td>DEATH</td>
<td></td>
</tr>
<tr>
<td>Died</td>
<td>4</td>
</tr>
</tbody>
</table>

*More than one type of skull fracture/neuroimaging possible

CT= computed tomography; ED = Emergency Department; MRI = magnetic resonance imaging