
Piper et al – EC Feasibility Study Results 

The Brain Monitoring with Information Technology (BrainIT) collaborative network:  
EC Feasibility Study Results 

 
 
Ian Piper1, Iain Chambers2, Giuseppe Citerio3, Per Enblad4, Barbara Gregson2, Tim Howells4, Karl 
Kiening5, Julia Mattern5, Pelle Nilsson4, Arminas Ragauskas6, Juan Sahuquillo7, R. Donald8, R. 
Sinnott9, A. Stell9, on behalf of the BrainIT Group 
 
1Clinical Physics, Southern General Hospital, Glasgow UK 
2Regional Medical Physics Department, Newcastle General Hospital, Newcastle, UK 
3 Neurorianimazione, Hospital San Gerardo, Monza, Italy 
4Neurosurgery, Uppsala University Hospital, Uppsala, Sweden 
5Neurosurgery, Ruprecht-Karls-Universitat Hospital Heidelberg, Germany 
6Kaunas University Hospital, Kaunas, Lithuania 
7Neurosurgery, Vall d’Hebron Hospital, Barcelona, Spain 
8C3 Global Ltd, Dingwall, Scotland 
9National eScience Centre, University of Glasgow, Scotland 
 
 
 
On-behalf of the Brain-IT Group (www.brainit.org). 
 
 

 

 

 

Corresponding Author: 

Ian Piper 
Brain-IT Group Coordinator 
Intensive Care Monitoring 
Dept. Clinical Physics, 5th Floor 
Institute of Neurological Sciences Southern General Hospital 
1345 Govan Road, Glasgow, UK, G514TF 
Tel:+44(0)141-201-2595 
Fax: +44(0)141-201-2592 
Email: ipiper@clinmed.gla.ac.uk 
 

 1 



Piper et al – EC Feasibility Study Results 

Summary 

Background: The BrainIT group works collaboratively on developing standards for collection and 

analyses of data from brain injured patients towards providing a more efficient infrastructure for 

assessing new health care technology.  EC funding supported meetings over a year to discuss and 

define a core dataset to be collected with IT based methods from patients with traumatic brain 

injury.  We now report on the results of a follow-up period of funding to test the feasibility for 

collection of the core dataset with IT based methods.  

Methods: Over a three year period, data collection client and web-server based tools were 

developed and core data (grouped into 9 categories) were collected from 200 head-injured patients 

by local nursing staff.  Data were uploaded by the BrainIT web and random samples of received 

data were selected automatically by computer for validation by data validation (DV) research nurse 

staff against gold standard sources held in the local centre. Validated data were compared with 

original data sent and percentage error rates calculated by data category. Feasibility was assessed in 

terms of the amount of missing data, accuracy of data collected and limitations reported by users of 

the IT methods. 

Findings: Thirteen percent of data files required cleaning.  Thirty “one-off” demographic and 

clinical data elements had significant amounts of missing data (> 15%). Validation nurses 

conducted 19,461 comparisons between uploaded database data with local data sources and error 

rates were generally less than or equal to 6%, the exception being the surgery data class where an 

unacceptably high error rate was found. Nearly 10,000 therapies were successfully recorded with 

start-times but approximately a third had inaccurate or missing end times which limits analyses 

assessing duration of therapy. Over 40,000 events and procedures were recorded but events with 

long durations (such as transfers) were more likely to have “end-times” missed.  

Conclusions: The BrainIT core dataset is a rich dataset for hypothesis generation and post-hoc 

analyses provided studies avoid known limitations in the dataset. Limitations in the current IT based 

data collection tools have been identified and have been addressed. Future academic led multi-

centre data collection projects must decrease validation costs and likely will require more direct 

electronic access to hospital based clinical data sources for both validation purposes and for 

reducing the research nurse time needed for double data entry. This type of infrastructure will foster 

remote monitoring of patient management and protocol adherence in future trials of patient 

management and monitoring. 

KEY WORDS: clinical network, traumatic brain injury, Grid, Internet 
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Background 

Severe traumatic brain injury is a leading cause of death and survivors have serious and long term 

morbidity [1].  The loss of employment to the victim and the stress and increased burden of care to 

family members have significant social and economic effects. 

 

The aetiology of the disease is complex often implicating multiple organ systems causing a high 

variation in the presentation of injury and, as a result, a large number of patients are required when 

assessing new health care technology.  Recruiting patients from multiple centres will significantly 

reduce the time to assess new therapy and monitoring. However, despite the existence of guidelines 

for the management of severely head injured patients [2, 3] this group of patients is subject to 

considerable variability in care across centres [4-9].  To improve the monitoring and management 

standards in this population, the inter and intra-centre variability in the management, physiological 

monitoring and treatment of these patients needs to be assessed on a multi-national basis. To do so 

require a standardised, IT based, higher resolution methodology for acquiring multi-centre patient 

management and physiological monitoring information in a standardised way.  

 

One consequence of the variability in management that exists across centres that manage patients 

with TBI (traumatic brain injury), is its confounding influence upon multi-centre trials of therapy.  

There have been in the last few years many multi-centre clinical trials of potential neuroprotective 

drugs targeted at patients with brain trauma. However despite promising pre-clinical results, most 

have failed to show efficacy in the head-injured population.  A number of reasons have been 

proposed for these failures which include: poor study design, insufficient dose of drug penetrating 

the blood brain barrier and inter-species differences in brain injury mechanisms.   

 

Another factor, not as yet systematically examined, is the occurrence of secondary insults which are 

missed through use of inappropriate monitoring methods. Recent estimates put the proportion of 

adverse events missed by using only end-hour recording compared with minute by minute computer 

based monitored to be in the region of 30%.  Even in large scale randomised trials, an accurate 

sample size analysis cannot be made without a knowledge of the incidence of relevant confounding 

factors.  Inaccurate sample size estimates will lead to trials that are under-powered. 

 

Improving the standards and resolution for multi-centre data collection will also effect assessment 

of new medical technology which is of relevance to the medical device industry. The majority of 

 3 



Piper et al – EC Feasibility Study Results 

companies that develop or support devices used to monitor brain injured patients in intensive care 

are small to medium size enterprises. Unlike the pharmaceutical industry, these small device 

companies lack the resources to independently assess their devices in multi-centre clinical trials.  

This severely limits the provision of quality evidence demonstrating the clinical utility of their 

products.   

 

What is required to address these issues is an open, collaborative network of centres interested in 

developing higher resolution and more standardised methods for collection of neuro-intensive care 

monitoring and management data from patients with traumatic brain injury. Such an infrastructure 

will provide a more efficient means for assessing new and developing health care technology, 

whether it is new drugs, management approaches or new monitoring devices.  

 

To address these issues, the Brain Monitoring with Information Technology (BrainIT) group was 

formed (www.brainit.org) . The group has 3 main aims: 

1)  To develop and disseminate standards for the collection, analysis and reporting of intensive 

care monitoring and management data collected from brain injured patients.  

2  To develop and use a standardised database as a tool for hypothesis generation and the 

development, testing and validation of new data analysis methodologies.  

3  To provide an efficient multi-centre infrastructure for generating evidence on the utility of 

new invasive and non-invasive intensive care monitoring and management methods. 

 

The BrainIT group have first defined a core dataset collected using PC based tools as part of a 

European Community (EC) funded study (QLGT-2000-00454).   A series of meetings spread over 

one year enabled key stake holders to meet and the group to define a minimum set of data that 

should be collected from all patients with traumatic brain injury (TBI).  The outcome of the study 

was to define a core dataset which would be useful in most research projects conducted in this 

population of patients [10]. 
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This paper reports on the results of a subsequent three year EC funded study (QLGC-2002-00160) 

that enabled the group to develop IT methods to collect the core dataset and to assess the feasibility 

and accuracy for collection of this core-dataset from 22 neuro-intensive care centres across Europe.  

Feasibility was assessed in terms of missing data, accuracy of data collected and limitations 

reported by users of the IT data collection methods.  To assess accuracy, data validation research 

nurse staff were hired on a country by country basis to check samples of the collected data against 

local gold standard clinical record sources in order to quantify the accuracy for collection of the 

BrainIT core-dataset using the group IT based data collection methods.  This paper describes the 

results of analysis of 200 patient’s data in which validation data was also acquired independently by 

data validation research nurses.  The error rates classed by data category are presented and 

discussed.  Known limitations of current IT data collection methods and proposed solutions to these 

limitations are also discussed. 
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Methods 

Core dataset Definition 

Through European Community (EC) funding (QLRI-2000-00454), a series of meetings over a year 

brought together neurosurgeons, intensivists, scientists and representatives from the medical device 

and pharmaceutical industries to define and discuss a “core-dataset definition” for data that will be 

collected from all patients with traumatic brain injury (TBI), irrespective of the underlying project 

aim.  A core dataset was defined and published [10] which consisted of the following nine data 

categories:  

i) Demographic and “one-off” clinical data (pre-neurosurgical hospital data, neurosurgical 

hospital admission data and the first and worst CT scan data).  This is data that is 

collected only once per patient. 

ii) Daily management data (eg: use of sedatives, analgesics, vasopressors, fluid 

input/output balance etc). This data is collected as an overview of the day to day 

intensive care management of the patient and is collected only once per day. 

iii) Laboratory data (eg: blood gas,  haematology, biochemistry data etc).  This is 

“episodic” data which is data collected more than once but at unpredictable times. 

iv) Event data (eg: nursing manoeuvres, physiotherapy, medical procedures (line insertion), 

calibrations etc – also episodic data). 

v) Surgical procedures.  

vi) Monitoring data summary (eg: type and placement location of ICP sensor, BP lines, 

etc).  Typically this data is only collected once per patient and is an overview of the 

monitoring configuration for a patient. 

vii) Neuro Event data (eg: GCS scores, pupil size and reactivity also episodic data). 

viii) Targeted Therapies A set of therapy categories have been defined with some associated 

therapy type detail.  For every therapy given and intended target must also be given (eg: 

mannitol for raised ICP). 
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ix) Vital monitoring data.  This is bedside monitoring data which is collected at regular 

intervals with a minimum sampling rate of once per minute.  

Network Structure 

The BrainIT group network structure consists of a central coordinating and data centre (Glasgow) 

with individual centres clustered into language based regions where each language region contains a  

sub-coordinating centre.  Each sub-coordinating centre is responsible for coordinating the training 

and validation activities across centres within their region and to meet this requirement hire a “data 

validation” nurse responsible for providing training on the data collection tools and web-services to 

all centres within their own language region.   The data validation nurses also provide a data 

checking and validation service coordinated from Glasgow.  

 

Data Collection Tools 

Clinical data is entered by local bedside nursing staff either on hand held PDA’s or on in-house 

designed JAVA based software running on a PC.  In collaboration with Kelvin Connect Ltd [11] the 

BrainIT core dataset definition was implemented in a flexible and easy to use hand-held PDA based 

device.  A training course was held for the data validation nursing staff in Glasgow on the optimal 

use of the data collection instruments which also provides data entry in six European languages.  An 

anonymisation routine removed patient identification elements from the collected data and labelled 

the patient data file with a unique BrainIT study code generated from the BrainIT web-site.  A local 

database held in each centre linked the anonymised data to local centre patient ID information 

which was needed during the data checking stage of the study. Anonymised data was uploaded via 

the BrainIT website.  A server side data converter tool converts data from centre based format into 

BrainIT data format generating nine data category files which are imported into the BrainIT 

Microsoft SQL2005 database.   
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Data Validation Process 

Figure 1 graphically represents the data validation process.  Centre staff enter data using client side 

tools such as the hand held PDA.  Data is uploaded via the BrainIT web-services and a server-side 

converter formats data into the series of common data format files which are input into the BrainIT 

SQL database.  A validation request tool residing on the database server randomly samples 20% of 

the data uploaded for each data category and generates a validation request file for each local data 

validation nurse listing the timestamps and data items to be checked against local gold-standard data 

sources.  Data validators move between their designated centres and enter into a data validation tool 

the requested data items from source documentation held in each local centre.  The resulting 

validation data file is uploaded to the BrainIT data coordinating centre via the website and using 

data validation checking software tools, the validated data is checked against the data items 

originally sent from which percentage accuracy data was calculated. 

As part of this validation process, and in addition to the categorical and numeric clinical data being 

checked for accuracy, we also assessed the minute by minute monitoring data.  Random samples of 

monitoring data channels uploaded (eg: ICP, SaO2) were selected and validation staff asked to 

manually enter the hourly recorded values from the nurses chart (or local gold standard data source) 

for the first and last 24 hour periods of bedside monitoring for a given patient for a given channel.  

These “validation” values could then be compared with a range of summary measures (eg: mean, 

median) from the computer based monitoring data acquired from the patient.  

Assessing Feasibility 

To assess feasibility, we sought answers to specific questions including: a)what data cleaning was 

necessary prior to analysis? b) how much missing data was found in specific data categories? c) 

how accurate is the data that was collected? and d) what are the known limitations of the existing IT 

methods for collection of the data? 
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Results 

Data Description 

Over a two year period, core dataset data (grouped by nine categories) were collected from 200 

head-injured patients by local nursing staff.  One patient’s data was discarded from the cohort as 

there was less than 4 hours of monitoring data which fell outside our inclusion criteria leaving 199 

patients in the feasibility study dataset. Table 1 summarises the key demographic and clinical 

features of the study cohort.  Mean age was 36 years with the usual predominance of male patients.  

Using the TCDB classification on worst CT, 100 patients were coded with diffuse injury and 60 

with mass lesions.  Using the extended Glasgow Outcome Scale (GOSe) there were 33 deaths 

(20%) with 47% good and 53 % poor outcome respectively. Table 2  summarises the quantity of 

data collected per patient classed by data category.  There were 109 “one-off” demographic and 

clinical data items collected which included pre-neurosurgical (PHSH) and neurosurgical hospital 

(NSH) data.  The majority of the data were “episodic” in nature in that they were collected more 

than once per patient but at un-predictable times.  These data types included “ICU monitoring” 

categories describing, for example, the location and type of medical monitoring device placed (eg: 

right frontal ICP bolt), neurological status (ICU GCS scores/pupil size and reactivity) , therapies 

delivered, surgeries performed etc.  The largest number of data items collected fell within the 

“Other clinical events” category which included annotations of blood samples, lab results, and other 

nursing and medical procedures.  In this category there was on average greater than 230 recordings 

per patient.  The next most common category of data collected were those of annotations of target 

driven therapies.  In this category there were on average greater than 60 targeted therapies delivered 

per patient.  By far the largest category of data collected was the “periodic” minute by minute 

physiological monitoring data with over 2 million records in the patient cohort.  Table 3 lists the 

number of patients with specific types of monitoring. 
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Data Cleaning 

On average three raw data files were uploaded per patient giving 600 patient data files uploaded to 

the central database using the BrainIT web-services.  All data files were validated prior to inclusion 

into the study dataset and in a proportion of these errors were found with data values needing to be 

re-checked and corrected by local nursing staff.  Seven raw data patient files required resolving 

mismatches between physiological data patient identifiers and other clinical data files (1.2 % of 

files uploaded).  Ten raw data files required trimming of physiological data outside the range of 

clinical data (2% of files uploaded).  Nineteen patient files required correction of one or more 

admission, surgery or discharge time stamps (3% of files uploaded). 

 

Missing Data  

One-Off Measurements 

There was missing data across certain data fields.  Figure 2 is a graph listing those “One-Off” 

demographic and clinical data fields with greater than 15% of missing data.  Common patterns in 

the types of fields yielding the highest missing data rates could be identified: A) One third of the 

fields with significant amounts of missing data were “one off” laboratory data values (eg: glucose, 

Haematocrit, PaCO2) which should have been obtained from admission notes from either the pre-

neurosurgical hospital (PNSH) or the receiving neurosurgical hospital (NSH).  B) One third of the 

missing fields were explanatory variables associated with either the first or worst CT scan 

classification.  These explanatory variables included “yes/no” categories as to whether or not 

specific pathologies were seen on CT such as SAH, pneumoencaphalopathy, hydrocephalus etc. C)  

Fifteen percent of the missing data fields were explanatory variables associated with the 6 month 

Glasgow Outcome Scale data.  These included fields such as “who was the main respondent” to the 

questionnaire and what was deemed to be the “main cause of disability” (head injury or systemic 

injury).  
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Episodic Measurements 

These data types include therapies, laboratory values and nursing and medical procedures that were 

entered more than once at un-predictable times.  For each episodic data measurement both a “start-

time” and “end-time” should have been recorded for each measurement by local nursing staff.    

Nearly 10,000 therapies were successfully recorded with start-times but approximately a third had 

inaccurate or missing end times. Table 4 is a breakdown of the therapies delivered classed by type 

listing the proportion with missing “end-times”.   Clearly the quantity of missing end-times in this 

part of the dataset severely limits analyses assessing duration of therapy.  Over 40,000 events and 

procedures were also recorded but events with long durations (such as transfers outside of the ITU 

for theatre or CT scan) were more than twice as likely to have “end-times” missed.  These short-

comings in the acquired episodic data has implications for the design of future data 

collection/validation tools as well as project training procedures. 
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Data Accuracy 

In total, 19,461 comparisons were made between collected data elements and source documentation 

data by data validation research nurses.  The number of comparisons made per data category were 

in proportion to the size of the data received for that category with the largest number checked in 

laboratory data (5,667) and the least in the surgery data (567) (Figure 3).  Table 5 summarises error 

rates by data class.  Error rates were generally less than or equal to 6%, the exception being the 

surgery data class where an unacceptably high error rate of 34% was found. 

 

In the surgery data category, nursing staff had to choose surgical procedures from a fixed list of 

procedure types: i) ICP placement, ii) Evacuation of Mass Lesion, iii) Elevation of depressed skull 

fracture, iv) Removal of foreign body, v) Anterior Fossa repair for CSF Leak, vi) Placement of 

Extra Ventricular Drain, vii) Active external decompression (with bone removal and duroplastia), 

viii) Other.  This classification system was used in an attempt at simplification and reducing the 

burden of data entry.  However, through discussions with local nursing and data validation staff it 

was found that there was particular confusion over when to record ICP sensor placement and the 

presence of skull fractures as the primary surgical procedure.  Typically, these procedures occur 

during the same operative procedure as for example during “evacuation of a mass lesion”.  

Confusion over coding these two procedures between the original data entry nurse and the 

validation nurse accounted for the majority of errors in this data category.   

 

We also checked the detection rate of acute events (eg: nursing management, physiotherapy, blood 

samples etc).  It was found that short duration events were rarely missed but longer duration events 

such as transfer to CT or theatre were more likely to be not recorded.  Through discussions with 

local nursing and data validation staff it is believed that the intense nursing activity just prior to and 

following a transfer is more likely to lead to omissions in recording these events on research 

systems.   
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Finally, we tested the accuracy of the minute by minute monitoring data that was collected.  Table 6 

shows the monitoring data validation results for the 6 data types with the most recorded nursing 

chart values.  Data is expressed in terms of bias (+- 95% CL) between the nurses chart recorded 

values against the computer collected end hour averages.  It can be seen from this data that the 

computer collected end hour data is an accurate reflection of the nurse’s chart recorded data. 

As an example, Figure 4 shows a scatter plot of computer monitored minute by minute ICP data 

averaged over 60 minutes (ICPavg) plotted against nurses chart end hour values (ICPvalid) 

collected by the data validation nurses.  There is a good correlation between the two sets of data 

with a linear regression best fit R2 value of 0.9773. Figure 5 is an Altman and Bland plot showing 

the average bias (-0.15 mmHg) and 95% confidence limits (0.12, -0.45) for the computer monitored 

end hour averaged data Vs the nurses chart end hourly recorded values collected by the validation 

nurses.   

 

IT Tool Limitations 

The PDA data entry tool and the website-upload tools did not incorporate sufficient validation 

mechanisms.  Many fields with the PDA tool allowed export and upload of empty data fields.  

Although most IT technology nowadays can be configured to explicitly specify required fields and 

prevent upload of data with specific missing data, at the time this study was designed, such 

validation facilities were not available off the shelf.  Also, the PDA tool allowed acceptance of new 

items not part of the drop down selection menu, which could generate multiple terms for the same 

data element.  This caused  added burden on the cleaning process to consolidate multiple text terms 

for the same data element.  The most challenging limitation found with the IT technology used in 

this study was an inability to automatically track “continuous” (non-bolus) therapies which were 

started to ensure that a matching “end-time” was entered. This resulted in approximately 1/3rd of the 

therapies annotated to have missing end times.  
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Discussion 

This project has studied the feasibility for collection of the BrainIT core dataset using our first 

generation IT based tools.  Feasibility has been assessed in terms of amount of missing data, data 

accuracy for data that was collected and also in terms of identifying limitations in the IT technology 

used to collect the data.  

Good clinical practice dictates that as part of clinical trial design, acquired data must be checked for 

accuracy against gold standard data sources.  This is often implemented through either employing a 

contract research organisation or independent research nurse staff to perform this duty.  In large 

multi-centre clinical trials, costs to hire research nurse data validation staff can become 

prohibitively expensive and feasible only if significant industry or research council funding support 

is provided.  Now with the adoption of the new medical device standard ISO-14155, even small 

medical device studies are expected to provide some form of check on the accuracy of data 

collected even as part of a non-regulatory post-marketing study.  

To our knowledge, this study conducted by the BrainIT group is one of only a few multi-centre 

projects to attempt to prospectively assess the data capture error rate within an academic 

environment [12].   

Giuseppe – can you add some text here about your experiences with the NeuroLink Project? 

 

Monitoring Data Validation 

We have shown that computer collected minute by minute vital signs data, summarised as end hour 

averages, correlated well with nursing chart end hour recordings.  This allows for the end hour 

averaged computer records to be used in database analyses that aim to assess nurses chart recorded 

detection of events with computer based sampling.  Although, end-hour average data correlates well 

with the nurses hourly recorded value, this does not indicate that important features of the data are 

not being missed by employing only hourly recording.  For example, Zanier and colleagues [13] 

conducted a study showing that although computer-monitored end-hour data is accurately reflected 
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by the nurses’ chart value, more complex summary measures (such as the detection of an 

intracranial pressure (ICP) of more than 20 mmHg) are less accurate. Their finding that at least one-

third of secondary insults for raised ICP are not identified from the nursing chart is similar to that 

reported by Corrie and colleagues [14], who also found a similar detection error rate for other 

signals such as blood pressure, particularly the events of shorter duration. Importantly, Zanier’s 

paper has further shown that when data are categorised in terms of percentage of time spent with 

raised ICP, the patients exhibiting instability in ICP were most prone to under estimation of ICP 

insults. The data sampling rate may be pertinent here: Zanier’s study sampled at 600 samples per 

minute, whereas other studies used 1 sample per minute [14] or as few as 4 samples per hour [15].  

Our results here confirm those of other investigations showing that the end hour averaged computer 

values can be used as estimates of nurse’s paper based end hour recordings and opens up the 

possibility for further studies assessing the clinical influence of missed short term adverse 

physiological events without requiring tedious recording of nursing chart values.   

However, the key question remains unanswered as to whether missed adverse events using higher 

resolution sampling significantly influences clinical outcome.  Work conducted by Chambers and 

colleagues may be relevant in this regard [16].  They found that in studies of children with TBI, the 

choice of summary measure is also important. They used an index termed the “Pressure Time Index 

(PTI)”, which is a composite index taking into account both the duration of the adverse event and 

the degree of physiological impairment below a given threshold.  They found, using ROC analysis 

of the influence of cerebral perfusion pressure adverse events (calculated using the PTI index) upon 

outcome, that models that included the PTI measure of CPP burden significantly improved the fit to 

clinical outcome compared with models that did not include measures of physiological instability.  

These results are in contrast to those published by Signorini et al who they found very little 

improvement in outcome prediction when “Insults” are added to the usual clinical features in 

prognostic models of patient outcome [17].  This approach, developed by Chambers and colleagues 

needs to be repeated in the adult TBI population and is one of the planned analyses on the BrainIT 
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dataset.  If the result found in children can be replicated in adults, this will provide new evidence 

that using only the mean or median values are not optimal summary measures of the burden of 

physiological adverse events.  (Iain – do you want to expand on this section?) 

Validation Costs 

These validation results calculated on a subset of patients provides an estimate of the data quality on 

a larger patient cohort of 350 patients collected using the same methodology but collected outside 

of the validation study. However future data collection projects will generate datasets under 

differing data collection conditions and will require a separate validation stage if we wish to 

maintain our confidence in the level of data collection accuracy.  The approach used by the BrainIT 

group to validate data (using 20% sampling of uploaded data with some automation of generating 

data lists for validation) still requires significant research nurse time to track down and enter data 

for validation purposes.  To maintain a full time data validation nurse across all participating 

countries costs in excess of 1 Million Euro’s per year.  Such large running costs for an academic 

network is prohibitively expensive and not sustainable in the long term and a more cost-effective 

solution for data validation must be found. One promising approach being assessed by the BrainIT 

group is developing collaborative research with experts in Grid based secure access technology.  

Grid technology covers more than just access to networks of high end servers in order to solve 

computationally intensive problems.  There is a considerable amount of expertise and middleware 

software solutions now available that provide secure access to distributed medical datasets so that 

the right people see the correct data in the appropriate context [23].  Such an approach, once local 

and national IT policy staff are satisfied with the security, will enable remote data validation 

systems to directly query hospital based gold standard data sources for data checking.  Most 

research datasets contain large portions of data elements that are collected for routine patient 

management purposes and the difficulty of accessing hospital based data sources often means that 

research nurses are employed to re-enter data extracted from local hospital sources into research 

data entry systems.  This results in a high proportion of double data entry which is an inefficient use 
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of resources.  Using Grid technology to interface directly with local hospital data sources will 

reduce the burden of double data entry.  Clearly some data validation staff will still be required to 

support system queries but increased use of automatic data validation procedures and access to 

hospital based datasets should significantly reduce the cost burden to conduct multi-centre clinical 

trials.  Towards this end, the BrainIT group as part of an EEC funded framework VII project plan to 

assess such an approach in a group of neuro-intensive care centres equipped with the latest Grid 

technology.   This project – the AVERT-IT project [18] will install Grid services behind hospital 

firewalls in six BrainIT neuro-intensive care units.  Grid services will interface to local hospital 

systems, extract data which maps to the BrainIT core dataset and integrate data from both hospital 

sources and local AVERT-IT data collection tools (for those elements not collected as part of 

routine management) into a local database.  Once every six hours, data will be stripped of patient 

sensitive data, encrypted and “pushed” out of local hospital networks to an external secure server 

cluster hosted at the University of Glasgow National eScience Centre [19].  Local databases will be 

maintained which link local patient identifiers with an anonymous patient identifier.  Systems 

running at the BrainIT coordinating centre in Glasgow will allow remote monitoring of the data 

acquired from all six participating BrainIT centres.  Such a remote monitoring service in quasi real-

time will allow more efficient collection and validation of hospital based data collected for research 

purposes.  Requests to validate specific data elements can be generated by email and local staff re-

enter data using the local data entry systems while the patient and their notes are still within the 

ITU.  Also, such a network design supporting remote monitoring of data from multiple centres will 

allow monitoring of patient management for adverse events (such as treatments given for arterial 

hypotension) and will enable testing and tracking adherence to study protocols.   Ideally, all project 

data should be recoverable from local hospital information systems, in reality, a finite amount of 

time and IT resources forces compromise between the ideal and the achievable.  Nevertheless, this 

approach of enabling direct access to hospital based data for research purposes should in time 

significantly lower research nurse costs.   
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Lessons Learned 

A number of lessons have been learned during this feasibility study. 

Our surgery classification definition is ambiguous.  Specifically our definition document did not 

make it clear how to decide which surgery is the “Primary Reason for Surgery”.  For example if a 

patient undergoes surgery for removal of a mass lesion and repair of depressed skull fracture, some 

approach must be used to provide a consistent classification response.  We are proposing a modified 

surgery classification to include a “major surgery choice matrix” where individual surgery types are 

weighted and specific combinations that do occur can be resolved to a single surgical priority.  

 

Not all staff favoured use of a PDA type data tool.  By the end of the feasibility study,  

approximately half the centres collecting data preferred to use PC based systems rather than the 

hand-held PDA’s.  Increasingly, nursing and medical staff have good skills with using keyboards 

and mice and as a result now our new data collection tools are PC based. Also, our data tools 

(although state of the art at the time), did not provide sufficient local validation features in keeping 

with modern standards.  For example, many fields with the PDA tool allowed export and upload of 

empty data fields.  Most IT technology nowadays can be configured to explicitly specify required 

fields and prevent upload of missing data.  Our current generation of data tools now almost entirely 

allow only specific choices to be made from drop-down “combo boxes” where the default choice is 

set to a text value of “not set”.  This makes it explicitly clear that a given field has not been entered.  

Our data schema will not allow mandatory fields to be left “not-set” before a patient is discharged 

from the system.  For the entry of treatment information, every treatment must be assigned a 

specific target and again, the data schema will not accept treatments that have not been assigned a 

target.  Furthermore, our next generation data collection tools, as implemented in the AVERT-IT 

project, allows annotation of any treatment or procedure with only two mouse clicks providing 

more rapid and efficient data entry for the bed side nurse.  A single page display (see figure 6) 
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incorporates a data table where it can be readily seen if “continuous” treatments (eg: infusions) or 

events (eg: transfer to CT-scan) have missing “end times”.  The web-client software includes data 

validation routines which will prevent upload of missing data in any required fields.  Patients cannot 

be discharged from the system until all required data is entered.   

Future Direction 

The BrainIT group aims and their implementation is a staged process.  We have successfully 

defined a core dataset standard, developed standardised IT tools to collect the core dataset and 

tested the feasibility for collection of the dataset from 22 centres across Europe.  Limitations in our 

methods have been found and attempts made to address those issues prior to starting future studies.  

Inevitably, with each new project, problems will arise and solutions will be found.  This being a 

cyclical process.  Our second aim “To develop and use a standardised database as a tool for 

hypothesis generation and the development, testing and validation of new data analysis 

methodologies.” has been achieved and a number of publications are now arising from access to 

this shared resource [20].  Currently on our 2nd database release with a third release planned for our 

BrainIT meeting being held in Vilnius 2009 [21], what is especially encouraging is that the 

existence of the database resource was directly responsible for generating the hypothesis about 

application of Bayesian neural network methods for prediction of hypotension adverse events – a 

project now funded under the VIIth EC information and communications technology framework 

[18].   

 

One of the papers arising from the work of the BrainIT group was a report on its own internal 

survey of patient management which indicated that, according to the survey, international 

management guidelines are for the most part adhered with [9].  However, there is a risk with 

surveys that there may be differences in results between what users “think” management is applied 

in their centre and studies which measure it directly.  In this regard, a recent paper published by one 

of our collaborators on analyses of the BrainIT dataset was to assess, subsequent to the BrainIT 
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survey, whether the use of hyperventilation therapy for the management of raised ICP was indeed 

conducted according to international guidelines.  Interestingly they found that despite what was 

suggested by the earlier survey results, and in conflict with current management guidelines, there 

was significant over use of early prophylactic hyperventilation [22].  This result highlights the 

importance of directly monitoring the applied management, and if it can be achieved in near real-

time, will enable future management trials to monitor protocol adherence and better select when 

patients data can be recruited to a study. 

 

The third and most challenging aim of the BrainIT group is to use its improved infrastructure to 

generate new evidence on the utility of monitoring and management methods for patients with TBI.  

The AVERT-IT project now underway, will put in place in six BrainIT centres, Grid middleware 

systems enabling direct access to hospital data and remote monitoring of patient management.   We 

believe that this type of remote monitoring facility is a pre-requisite for the conduct of a future 

multi-centre management trial by the BrainIT group.  Discussions of a management trial design are 

planned for the next BrainIT group meeting (Vilnius, September 2009) and the AVERT-IT project 

will pilot the feasibility of the remote monitoring infrastructure required for the conduct of such a 

trial.  

 

Conclusions 

In this study we have shown that it is feasible to collect the BrainIT dataset from multiple centres in 

an international setting with our IT based methods and the accuracy of the data collected is greater 

than or equal to 94%, with the exception of the surgery data definition which is being revised.   

Lessons learned have been met with advances in client/server tools providing improved validation 

support.  We anticipate that the second generation of BrainIT data collection tools (being used as 

part of the current AVERT-IT project  will improve missing data and validation accuracy rates.  A 

future BrainIT management trial will rely on a Grid based infrastructure capable of remotely 
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monitoring patient management and protocol conformance now being piloted in six BrainIT 

centres.  Academic led multi-centre data collection projects must decrease validation costs and 

likely will require more direct electronic access to hospital based clinical data sources for both 

validation purposes and for reducing the research nurse time needed for double data entry of data 

currently not accessible from hospital based systems for research purposes. 
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Table 1 

Demographic and Clinical Features of Feasibility Study Data set (n = 199) 

Sex  TCDB (Worst)  

Male 162 Diffuse1 9  

Female 37 Diffuse2 51 

Age  Diffuse3 34 

Mean 36.1 Diffuse4 12 

Range 4-83 Mass 60 

 

<14yo 7 

 

Missing 33 

Trauma Type  GOSe  

RTA 84 1 (Dead) 
31 

Pedestrian 16 2 
3 

Fall 55 3 
35 

Assault 18 4 
8 

Sport 6 5 
30 

Work 5 6 
17 

Missing 14 

 

7 
30 

 

 

 

8 
24 

 Missing 
21 
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Table 2 – Summary of Data Collected 
 
Data Type No. of Fields Avg No. of Rows per Patient
Demographic 
(eg: PNSH/NSH) 

109 1 

ICU_Monitoring 
(eg: Types of Device/Location…) 

12 15.0 

Neurological Status 
(eg: GCS/Pupils) 

10 42.3 

Other_Clinical_Events 
(eg: Blood Samples, Suction…) 

20 230.9 

Surgery 
 

11 1.4 

Target_Therapies 
 

59 69.6 

Daily_Observations 
(eg: Daily Summaries of Management) 

11 8.4 

Total 232  
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Table 3 – Monitoring Data Distribution 
 

Channel Number of Patients 

BP (blood pressure: mmHg;systolic, diastolic, mean) 199 

ICP (intracranial pressure: mmHg;mean) 195 

CPP (cerebral perfusion pressure: mmHg;mean) 195 

HRT (Heart Rate: bpm) 165 

SaO2 (arterial Oxygen saturation: %;pulse oximetry) 164 

Tc (core temperature: degrees C) 149 

CVP (central venous pressure: mmHg; mean) 105 

ETCO2 (end tidal CO2: mmHg) 79 

NIBP (blood pressure: mmHg;systolic, diastolic, mean) 50 

Tp (peripheral temperature: degrees C) 17 

PtiO2 (brain tissue oxygen partial pressure: mmHg)  11 

SjO2 (jugular venous oxygen saturation: %) 10 

CO (cardiac output: ml/hour) 7 

brTemp (brain temperature: degrees C) 3 

PrX (bp-icp reactivity:dimensionless) 1 
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Table 4 – Therapy Type Vs Missing “End Times” 

 Therapy Start Entries End Entries Missing End Entries 
Sedation 1108 499 55% 
Analgesia 1032 574 44% 
Paralysis 741 460 38% 
Volume Expansion 1674 1308 12% 
Inotropes 614 199 68% 
Anti-Hypertensives 63 22 65% 
Anti-Pyretics 788 505 36% 
Hypothermia 22 10 55% 
Steroids 51 6 88% 
Cerebral Vasoconstr. 0 0 --- 
Osmotics (Mannitol) 807 538 33% 
Barbiturates 90 45 50% 
Other 2576 2026 21% 
Totals 9566 6192 35% 
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Table 5 

Percentage Error Rate by Data Type Class with Description of Common Error Types. 

Data Class Error Rate (%) Common Fields with Errors 

Laboratory 2 pCO2, FiO2 value wrong 

Demographic 4 Monitoring time on arrival at 

neurosurgery, intubation 

present on arrival at 

neurosurgery wrong 

Neuro Observations 5 Pupil Size, GCSv (code 1 Vs 

Unknown code error) 

Monitoring Summary 5 ICP type, ICP Location wrong 

Daily Management Summary 5 Infusion type (bolus Vs 

infusion or both), drug number 

(1 or > 1) 

Targeted Therapy 6 Non-standard target, no Target 

specified 

Surgeries 34 ICP placement, Skull #, mass 

lesion wrong 
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Table 6 
 

Monitoring Data Validation Results – Bias (+- 95% CL) Between Nurses Chart Recorded Values 
Vs Computer Collected End Hour Averages 

 
Data Type 

Value ICP 
(mmHg) 

BP 
(mmHg) 

CPP 
(mmHg) 

SaO2  
(%) 

Tc  
(C) 

Bias -0.15 0.16 0.46 0.46 -0.29 
+95%  0.32 1.57 1.81 1.23 0.09 
-95%  -0.62 -1.25 -0.88 -0.31 -0.67 
n 749 558 457 499 223 
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Figures Legends 

Figure 1.  Graphical representation of the data validation process.  Centre staff enter data using 

client side tools such as the hand held PDA.  Data is uploaded via the BrainIT web-services and a 

server-side convertor converts data into the series of common data format files which are input into 

the BrainIT SQL database.  A validation request tool residing on the database server randomly 

samples 20% of the data uploaded for each data category and generates a validation request file 

listing the timestamps and data items to be checked by local data validators.  Data validators move 

between their designated centres and enter into a data validation tool the requested data items from 

source documentation held in each local centre.  The resulting validation data file is uploaded to the 

BrainIT data coordinating centre via the website and using data validation checking software tools, 

the validated data is checked against the data items originally sent from which percentage accuracy 

data is calculated. 

 

Figure 2.  Graph showing “One-Off” demographic and clinical data fields with greater than 15% of 

missing data.  

  

Figure 3.  Pie chart showing the distribution of the 19,461 data validation comparisons which were 

made in proportion to the size of the data received with the largest number checked in laboratory 

data (5,667) and the least in the surgery data (567). 

 

Figure 4) Scatter plot of computer monitored minute by minute ICP data from an example patient 

showing the data averaged over 60 minutes (ICPavg) plotted against nurses chart end hour values 

(ICPvalid).  Linear regression best fit R2 value = 0.9773. 
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Figure 5) Altman and Bland plot from an example patient showing the average bias (-0.15 mmHg) 

and 95% confidence limits (0.12, -0.45) for the computer monitored end hour averaged data Vs the 

nurses chart end hourly recorded values collected by the validation nurses. 

 

Figure 6) A screen shot of the AVERT-IT data collection tool which will support collection of 

hypotension treatment information during the clinical trial phase of this project.  Any treatment can 

be recorded by just 2 mouse clicks by the bedside nurse.  A single page display incorporating a 

treatment/event entry table makes it easier to identify missing “end-times”.  
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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