Recurrent chronic histiocytic intervillositis with intrauterine growth retardation, osteopenia and fractures.

April Crawford,¹ Lynette Moore,¹,⁶ Gregory Bennett,² Ravi Savarirayan³,⁴ Nicholas Manton,¹,⁶ Christopher P. Barnett,⁵,⁶ and Eric Haan⁵,⁶*

¹ Department of Surgical Pathology, SA Pathology (at Women’s and Children’s Hospital), Adelaide, South Australia, Australia

² Australian Red Cross Blood Service, National Transplant Services, Adelaide, South Australia, Australia

³ Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Melbourne, Victoria, Australia

⁴ Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia

⁵ Paediatric & Reproductive Genetics, South Australian Clinical Genetics Service, SA Pathology (at Women’s and Children’s Hospital), Adelaide, South Australia, Australia

⁶ School of Medicine, The University of Adelaide, Adelaide, South Australia, Australia

*Correspondence to:

Dr. Eric Haan, Adult Genetics Unit, South Australian Clinical Genetics Service, SA Pathology (at Women’s and Children’s Hospital), 72 King William Road, North Adelaide, South Australia 5006, Australia

Phone: 61-8-81616995

Fax: 61-8-81617984
Chronic histiocytic intervillositis (CHI) is characterized by the presence of histiocytes within the intervillous space of the placenta. The pathogenesis is unclear but available evidence supports an alloimmune mechanism on the basis of the presence in maternal blood of HLA antibodies directed against paternal HLA antigens. CHI has a high risk of recurrence and of abnormal perinatal outcomes. Little is known about the effects of CHI on the developing fetus, in particular on the growth and development of the skeleton. We have studied a woman whose third pregnancy was terminated after ultrasonography showed severe intrauterine growth restriction, raising the possibility of a lethal skeletal dysplasia. Postmortem radiographs showed multiple fractures and other signs of osteogenesis imperfecta (OI). However, bone histology was not typical of OI and no abnormalities were identified by sequencing OI genes. The subsequent pregnancy was also severely growth restricted and was terminated. The placenta showed chronic histiocytic intervillositis, which, on retrospective review, had also been present in her second and third pregnancies. Her fifth pregnancy was again associated with intrauterine growth restriction and CHI but resulted in a premature birth. CHI can be associated with radiographic features that mimic OI and should be considered when fetal fractures occur in the context of recurrent miscarriage, fetal death in utero and intrauterine growth restriction. The correct diagnosis can be made by histopathology of the placenta, supported by bone histology and normal results of molecular studies for OI.
Key words: Chronic histiocytic intervillositis (CHI), placental pathology, bone dysplasia, osteogenesis imperfecta, fetal development, intrauterine growth restriction

INTRODUCTION

Chronic histiocytic intervillositis (CHI), also known as chronic intervillositis (CI), chronic histiocytic intervillositis (CHIV) or chronic intervillositis of unknown etiology (CIUE) is a placental disorder of intrauterine growth restriction (IUGR) and recurrent fetal loss [Boyd et al., 2000; Contro et al., 2013; Parant et al., 2009]. It is identified in around 9.6 per 1000 miscarriages and 0.6 per 1000 second and third trimester placentas [Boyd et al., 2000]. CHI can occur at any gestational age [Capuani et al., 2013]. The recurrence rate is high, ranging from 67 to 100% [Boyd et al., 2000; Parant et al., 2009]. The condition is characterized histologically by infiltration of maternal histiocytes within the intervillous space [Boyd et al., 2000]. CD68 immunostaining identifies the histiocytes and is valuable in establishing the diagnosis [Heller 2012]. Prominent intervillosous fibrin deposition is another finding in some cases of CHI [Boyd et al., 2000]. A higher intensity of fibrin deposition in CHI is associated with early spontaneous abortion and severe IUGR [Marchaudon et al., 2011]. Fibrin deposition is seen in response to damage and repair of the syncytiotrophoblast and it is postulated that fibrin deposition interferes with materno-fetal exchange of water, solutes, gases and other molecules between the syncytiotrophoblast and the fetal capillary endothelium [Marchaudon et al., 2011; Sibley et al., 1998]. The pathogenesis of CHI is unknown, however an alloimmune mechanism has been proposed [Boog, 2008]. There is currently no definitive test to diagnose CHI antenatally, although the possibility of using histology of a chorionic villus sample or placental biopsy, performed at the time of fetal karyotyping, has been suggested [Rota et al., 2006]. Elevated alkaline phosphatase (ALP) levels
above 600U/L have been noted in this condition; however, this is non-specific and in 40% of cases ALP levels are not elevated [Marchaudon et al., 2011].

In CHI there is IUGR [Contro et al., 2010] and IUGR due to various causes has been associated with reduced neonatal bone mass and increased risk of osteoporosis in adulthood [Briana et al., 2008]. However, little is known about the balance between bone formation and resorption in the fetus or the effects of CHI on fetal bone development.

We have studied a woman whose pregnancies were complicated by CHI. Two of the pregnancies had ultrasound features that raised the possibility of a lethal skeletal dysplasia and were terminated. In one pregnancy radiographic features were consistent with osteogenesis imperfecta (OI) at autopsy, but bone histology was not consistent with OI and results of genetic testing for OI were normal. We know of no previous reports linking CHI with multiple bone fractures resembling OI and, as far as we are aware, bone histology has not been studied in fetuses with CHI.

CLINICAL REPORT

A 28-year-old woman with a past obstetric history of one uneventful term pregnancy and a miscarriage at 12 weeks was seen following termination of her third pregnancy at 27 weeks gestation. First trimester screening had placed the pregnancy at increased risk of Down syndrome (beta HCG 2.13 MoM, PAPP-A 0.19 MoM, risk 1:107); amniocentesis at 17-18 weeks demonstrated a normal female karyotype. Ultrasonography at 20 weeks showed severe IUGR, with a 6 week lag in growth, marked shortness of long bones (femur length 1.6 cm, <5th centile) and anhydramnios. Umbilical artery Doppler studies showed reverse flow. Post termination radiographs showed under-ossification of the
skull, normal vertebral bodies and posterior elements, thin ribs with multiple fractures (“beaded” appearance), multiple long bone fractures, abnormal modeling of the long bones due to fractures and severe generalized osteopenia (Fig 1), suggesting a severe/lethal form of osteogenesis imperfecta. However, histopathology of the bone fractures was not typical of OI, showing only disorderly bone spicules, fibrosis and callus formation. The placenta was small (92 g, <10th centile), with histopathology showing extensive subchorionic and intervillous organized hemorrhage with increased perivillous fibrin and focal intervillous thrombus with secondary infarction. Sequencing of a panel of dominant and recessive OI genes provided no support for a diagnosis of OI. Hypophosphatasia was considered but excluded on the basis of atypical radiology (e.g. absence of metaphyseal cupping) and negative ALPL sequencing.

First trimester screening in the woman’s fourth pregnancy again indicated an increased risk of Down syndrome (beta HCG 0.83 MoM, PAPP-A 0.24 MoM, risk 1:106). Fetal growth was normal at 13 weeks but IUGR was apparent at 15 weeks. At 17 weeks there was severe shortness of the long bones, a femur length to abdominal circumference ratio (FL/AC) of 0.16 and a thoracic circumference < 2.5th centile. At 21 weeks the average ultrasound age by fetal biometry was 17 weeks; there were markedly short long bones (<5th centile) but with no evidence of long bone angulation or fractures. Frontal bossing and reduced amniotic fluid volume were also apparent. Maternal alkaline phosphatase (ALP) level was normal. It was concluded that the fetus had the same disorder as the previous fetuses and the pregnancy was terminated at 21 weeks gestation. At autopsy there was marked head to body discordance (brain weight normal for gestation but other internal organ weights reduced), a large head with widened fontanelles, frontal bossing, depressed nasal bridge, low-set posteriorly-angulated ears, severe micrognathia, narrow chest, reduced abdominal circumference and prominent heels. Fetal skeletal survey showed generalized osteopenia and short long bones with
metaphyseal irregularity, but no fractures or long bone angulation. Fetal karyotype was 46,XY, inv(11)(p11.2q13)pat – the inversion was considered unrelated to the fetal phenotype. Bone histology showed disorganized growth plates of rib and femur. The placenta was extremely small (trimmed weight 51 g; <10th centile) and histopathology showed diffuse CHI with increased perivillous fibrin deposition. In light of this new finding, the histopathology from the previously terminated pregnancy was reviewed and showed CHI, with massive fibrin deposition that had not been recognized (Fig 2). Review of the histopathology from the 12 week miscarriage also showed CHI. The woman and her husband were counseled about CHI, including the high recurrence risk and likely poor outcome for a future pregnancy.

First trimester screening in the woman’s fifth pregnancy again showed a low PAPP-A (0.18 MoM) but the pregnancy was not at increased risk of Down syndrome. Amniotic fluid karyotype was 46,XX,inv(11)(p15.3q13.3)pat. Antenatal ultrasound scans showed IUGR from 15 weeks, with long bones that were short but with normal mineralization until 20 weeks at least. At 23 weeks gestation, HLA Class I and II donor specific IgG antibody (versus spouse) [anti-DR4 mean fluorescence intensity (MFI) 19,900; Genprobe Luminex] were demonstrated. At 26 weeks, fetal biometry was consistent with that of 20 weeks; there appeared to be hypomineralization of the skull and the right femur was bowed. Maternal ALP was normal. The baby was delivered by emergency caesarean section at 32+5 weeks gestation with weight 850 g (-3.8 SD), length 32 cm (-4.8 SD), head circumference 27 cm (-1.8 SD) and Apgar scores 7 at 1 minute and 10 at 5 minutes. Respiratory distress was treated with brief ventilation and surfactant and a patent ductus arteriosus with ibuprofen. The neonatal period was uncomplicated apart from apnea of prematurity and jaundice, and the baby was discharged home after 7 weeks. The placenta weighed 210 g (<10th centile) and histopathology showed massive perivillous fibrin deposition with mild CHI and multifocal low grade chronic villitis. Skeletal radiographs at 6
weeks of age showed frontal bossing, poorly mineralized sutures, a number of wormian bones along the lambdoid suture (not excessive for a premature infant) and mild lateral bowing of the mid-diaphysis of both femora; bone mineralization was normal overall and there was no evidence of previous fractures.

DISCUSSION

CHI is a rare placental condition with high risk of recurrence and poor perinatal outcome [Contro et al., 2013]. Clinical presentations may include miscarriage, severe early-onset IUGR with fetal death in utero, and preterm/term delivery associated with IUGR. The disorder has been associated with low maternal PAPP-A and increased ALP. An immune mechanism is suspected. Our patient had five pregnancies resulting in the outcomes summarized in Table I. An ultrasound diagnosis of IUGR in the second trimester is made when the estimated fetal weight falls below the 10th centile for gestational age and is typically associated with abdominal and head circumferences also below the 10th centile [Zalel et al., 2002]. Other findings include shortened long bones (e.g. femur length <5th centile) and abnormal umbilical artery Doppler dynamics [Vermeer et al., 2013]. Our patient’s pregnancies had IUGR associated with both severe long bone shortening and reverse flow on umbilical artery Doppler studies. In contrast, lethal OI is characterised by severe micromelic long bone shortness, fractures with demineralization, small thorax and FL/AC ratio < 0.16 [Parilla et al., 2003]. This patient’s third and fourth pregnancies showed severe long bone shortness and generalized osteopenia, with almost
no skull ossification seen in the third pregnancy. The fourth pregnancy had a FL/AC ratio of 0.16 in association with severe limb shortness and reduced thoracic circumference, consistent with recurrent lethal skeletal dysplasia.

The patient’s third and fourth pregnancies showed markedly shortened long bones that raised the suspicion of a lethal skeletal dysplasia. The post mortem radiographs of the fetus from the third pregnancy showed multiple fractures and deformity of the ribs and long bones with callus formation, poor bone mineralization overall and absence of skull vault ossification, raising the possibility of a lethal skeletal dysplasia, most likely OI. The definitive diagnosis of CHI was made after histopathological examination of the placenta from the patient’s fourth pregnancy. As far as we are aware, there are no reports of CHI presenting as severe IUGR with bony abnormalities mimicking a lethal skeletal dysplasia.

Perinatally lethal OI comprises a heterogeneous group of disorders that most often results from new dominant mutations in either the \textit{COL1A1} or \textit{COL1A2} genes, but can also be caused by recessive mutations in a number of other genes [Baldridge et al., 2008]. Bone histology is characterized by a normal growth plate but severe deficiency of ossification in the metaphysis, diaphysis and cortex with the abnormal bony trabeculae composed primarily of woven bone [Gilbert-Barness, 2007]. In contrast, in IUGR the growth plate may be irregular and show bridging and banding [Emery et al., 1967]. Histopathology of femur and rib from our patient’s third pregnancy showed multiple fractures, which obscured much of the histological detail. In addition, there was a marked delay in ossification at the growth plate with irregular cartilage columns extending into the shaft of the bone but with bony trabeculae in the diaphysis away from the areas of fracture well-formed and thus not typical of OI.
As many as 33% of multiparous women have HLA antibodies in their serum [Middelburg et al. 2011]. However, in this case, the presence of multispecific HLA Class I and II antibodies directed against the HLA type of the spouse with very high mean fluorescence intensity support a possible immunologic mechanism as suggested by Reus et al. [2013].

Acknowledgements: Dr J Kaye, Medical Imaging, Women’s and Children’s Hospital, Adelaide, Australia.

References

FIGURE LEGENDS
Fig. 1. Antero-posterior and lateral views of the skeletal survey from the third pregnancy. The radiological features include multiple long bone and rib fractures, generalized osteopenia and reduced ossification of the cranium.

Fig. 2. CD68 immunohistochemical stain highlighting histiocytes within the intervillous spaces in placental tissue from the third pregnancy (Magnification x 20). [Color figure can be viewed in the online issue, which is available at http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1552-4833.]

Fig. 3. Bone histology from third pregnancy showing: normal femoral growth plate (left); and femoral shaft with fracture (upper left quadrant of image) and trabeculae not typical of osteogenesis imperfecta (right). (H&E, magnification x4). [Color figure can be viewed in the online issue, which is available at http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1552-4833.]

Table I. Pregnancy summaries

<table>
<thead>
<tr>
<th>Preg No.</th>
<th>Outcome</th>
<th>Antenatal ultrasound</th>
<th>Radiographic features</th>
<th>Bone histology</th>
<th>Placental features</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Term live birth</td>
<td>Normal</td>
<td>NA</td>
<td>NA</td>
<td>NK</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>Miscarriage at 12w</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>CHI</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>Termination at 27w</td>
<td>Severe IUGR at 20w with anhydramnios and reverse flow on umbilical artery Doppler</td>
<td>Generalized osteopenia, multiple long bone fractures, rib fractures with “beaded appearance”</td>
<td>Bone fractures showing disordered bony spicules associated with fibrosis and callus</td>
<td>Extremely small (92g, <10th centile), CHI with massive fibrin deposition</td>
<td>PAPP-A 0.19 MoM</td>
</tr>
<tr>
<td>Preg No.</td>
<td>Outcome</td>
<td>Antenatal ultrasound</td>
<td>Radiographic features</td>
<td>Bone histology</td>
<td>Placental features</td>
<td>Other</td>
</tr>
<tr>
<td>---------</td>
<td>--------------------------</td>
<td>----------------------</td>
<td>-----------------------</td>
<td>----------------</td>
<td>--------------------</td>
<td>--</td>
</tr>
<tr>
<td>1</td>
<td>Term live birth</td>
<td>Normal</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NK</td>
</tr>
<tr>
<td>2</td>
<td>Miscarriage at 12w</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>CHI</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>Termination</td>
<td>Severe IUGR at 20w</td>
<td>Generalized</td>
<td>Bone fractures</td>
<td>Extremely small</td>
<td>PAPP-A 0.19 MoM, normal ALP, HLA Class I and II donor specific IgG antibody against paternal antigens</td>
</tr>
</tbody>
</table>

Abbreviations: IUGR, intrauterine growth restriction; CHI, chronic histiocytic intervillositis; OI, osteogenesis imperfecta; PAPP-A, pregnancy-associated plasma protein A; MoM, multiples of the median; HLA, human leukocyte antigen; ALP, alkaline phosphatase, NA, not applicable; NK, not known.
<table>
<thead>
<tr>
<th>Case</th>
<th>Event</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Termination at 21 w</td>
<td>IUGR at 15w; at 17w, severe shortening of long bones, osteopenia, FL/AC 0.16, no long bone angulation or fractures, reduced amniotic fluid</td>
</tr>
<tr>
<td>5</td>
<td>Emergency caesarian section with live birth at 32 w</td>
<td>IUGR from 15w and short long bones; at 26w, severe IUGR, hypomineralization of the skull and bowed right femur</td>
</tr>
</tbody>
</table>

Abbreviations: IUGR, intrauterine growth restriction; CHI, chronic histiocytic intervillositis; OI, osteogenesis imperfecta; PAPP-A, pregnancy-associated plasma protein A; MoM, multiples of the median; HLA, human leukocyte antigen; ALP, alkaline phosphatase, NA, not applicable; NK, not known.
Recurrent chronic histiocytic intervilloitis with intrauterine growth retardation, osteopenia and fractures.

April Crawford,¹ Lynette Moore,¹,⁶ Gregory Bennett,² Ravi Savarirayan³,⁴, Nicholas Manton,¹,⁶ Christopher P. Barnett,⁵,⁶ and Eric Haan ⁵,⁶*

¹ Department of Surgical Pathology, SA Pathology (at Women’s and Children’s Hospital), Adelaide, South Australia, Australia
² Australian Red Cross Blood Service, National Transplant Services, Adelaide, South Australia, Australia
³ Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Melbourne, Victoria, Australia
⁴ Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
⁵ Paediatric & Reproductive Genetics, South Australian Clinical Genetics Service, SA Pathology (at Women’s and Children’s Hospital), Adelaide, South Australia, Australia
⁶ School of Medicine, The University of Adelaide, Adelaide, South Australia, Australia

* Correspondence to:
Dr. Eric Haan, Adult Genetics Unit, South Australian Clinical Genetics Service, SA Pathology (at Women’s and Children’s Hospital), 72 King William Road, North Adelaide, South Australia 5006, Australia
Phone: 61-8-81616995
Fax: 61-8-81617984
Email eric.haan@sa.gov.au

Running title:
Chronic histiocytic intervillitis and OI
ABSTRACT

Chronic histiocytic intervillositis (CHI) is characterized by the presence of histiocytes within the intervillous space of the placenta. The pathogenesis is unclear but available evidence supports an alloimmune mechanism on the basis of the presence in maternal blood of HLA antibodies directed against paternal HLA antigens. CHI has a high risk of recurrence and of abnormal perinatal outcomes. Little is known about the effects of CHI on the developing fetus, in particular on the growth and development of the skeleton. We have studied a woman whose third pregnancy was terminated after ultrasonography showed severe intrauterine growth restriction, raising the possibility of a lethal skeletal dysplasia. Postmortem radiographs showed multiple fractures and other signs of osteogenesis imperfecta (OI). However, bone histology was not typical of OI and no abnormalities were identified by sequencing OI genes. The subsequent pregnancy was also severely growth restricted and was terminated. The placenta showed chronic histiocytic intervillositis, which, on retrospective review, had also been present in her second and third pregnancies. Her fifth pregnancy was again associated with intrauterine growth restriction and CHI but resulted in a premature birth. CHI can be associated with radiographic features that mimic OI and should be considered when fetal fractures occur in the context of recurrent miscarriage, fetal death in utero and intrauterine growth restriction. The correct diagnosis can be made by histopathology of the placenta, supported by bone histology and normal results of molecular studies for OI.
Key words: Chronic histiocytic intervillositis (CHI), placental pathology, bone dysplasia, osteogenesis imperfecta, fetal development, intrauterine growth restriction
INTRODUCTION

Chronic histiocytic intervillositis (CHI), also known as chronic intervillositis (CI), chronic histiocytic intervillositis (CHIV) or chronic intervillositis of unknown etiology (CIUE) is a placental disorder of intrauterine growth restriction (IUGR) and recurrent fetal loss [Boyd et al., 2000; Contro et al., 2013; Parant et al., 2009]. It is identified in around 9.6 per 1000 miscarriages and 0.6 per 1000 second and third trimester placentas [Boyd et al., 2000]. CHI can occur at any gestational age [Capuani et al., 2013]. The recurrence rate is high, ranging from 67 to 100% [Boyd et al., 2000; Parant et al., 2009]. The condition is characterized histologically by infiltration of maternal histiocytes within the intervillous space [Boyd et al., 2000]. CD68 immunostaining identifies the histiocytes and is valuable in establishing the diagnosis [Heller 2012]. Prominent intervillous fibrin deposition is another finding in some cases of CHI [Boyd et al., 2000]. A higher intensity of fibrin deposition in CHI is associated with early spontaneous abortion and severe IUGR [Marchaudon et al., 2011]. Fibrin deposition is seen in response to damage and repair of the syncytiotrophoblast and it is postulated that fibrin deposition interferes with materno-fetal exchange of water, solutes, gases and other molecules between the syncytiotrophoblast and the fetal capillary endothelium [Marchaudon et al., 2011; Sibley et al., 1998]. The pathogenesis of CHI is unknown, however an alloimmune mechanism has been proposed [Boog, 2008]. There is currently no definitive test to diagnose CHI antenatally, although the possibility of using histology of a chorionic villus sample or placental biopsy, performed at the time of fetal karyotyping, has been suggested [Rota et al., 2006]. Elevated alkaline phosphatase (ALP) levels above 600U/L have been noted in this condition; however, this is non-specific and in 40% of cases ALP levels are not elevated [Marchaudon et al., 2011].
In CHI there is IUGR [Contro et al., 2010] and IUGR due to various causes has been associated with reduced neonatal bone mass and increased risk of osteoporosis in adulthood [Briana et al., 2008]. However, little is known about the balance between bone formation and resorption in the fetus or the effects of CHI on fetal bone development.

We have studied a woman whose pregnancies were complicated by CHI. Two of the pregnancies had ultrasound features that raised the possibility of a lethal skeletal dysplasia and were terminated. In one pregnancy radiographic features were consistent with osteogenesis imperfecta (OI) at autopsy, but bone histology was not consistent with OI and results of genetic testing for OI were normal. We know of no previous reports linking CHI with multiple bone fractures resembling OI and, as far as we are aware, bone histology has not been studied in fetuses with CHI.

CLINICAL REPORT

A 28-year-old woman with a past obstetric history of one uneventful term pregnancy and a miscarriage at 12 weeks was seen following termination of her third pregnancy at 27 weeks gestation. First trimester screening had placed the pregnancy at increased risk of Down syndrome (beta HCG 2.13 MoM, PAPP-A 0.19 MoM, risk 1:107); amniocentesis at 17-18 weeks demonstrated a normal female karyotype. Ultrasonography at 20 weeks showed severe IUGR, with a 6 week lag in growth, marked shortness of long bones (femur length 1.6 cm, <5th centile) and anhydramnios. Umbilical artery Doppler studies showed reverse flow. Post termination radiographs showed under-ossification of the skull, normal vertebral bodies and posterior elements, thin ribs with multiple fractures (“beaded” appearance), multiple long bone fractures, abnormal modeling of the long bones due to fractures and severe generalized osteopenia (Fig 1), suggesting a severe/lethal form of osteogenesis imperfecta. However, histopathology of the bone fractures was not typical of OI, showing only disorderly bone spicules, fibrosis and callus formation. The placenta was small (92 g, <10th centile), with
histopathology showing extensive subchorionic and intervillous organized hemorrhage with increased perivillous fibrin and focal intervillous thrombus with secondary infarction. Sequencing of a panel of dominant and recessive OI genes provided no support for a diagnosis of OI. Hypophosphatasia was considered but excluded on the basis of atypical radiology (e.g. absence of metaphyseal cupping) and negative ALPL sequencing.

First trimester screening in the woman’s fourth pregnancy again indicated an increased risk of Down syndrome (beta HCG 0.83 MoM, PAPP-A 0.24 MoM, risk 1:106). Fetal growth was normal at 13 weeks but IUGR was apparent at 15 weeks. At 17 weeks there was severe shortness of the long bones, a femur length to abdominal circumference ratio (FL/AC) of 0.16 and a thoracic circumference < 2.5\(^{\text{th}}\) centile. At 21 weeks the average ultrasound age by fetal biometry was 17 weeks; there were markedly short long bones (<5\(^{\text{th}}\) centile) but with no evidence of long bone angulation or fractures. Frontal bossing and reduced amniotic fluid volume were also apparent. Maternal alkaline phosphatase (ALP) level was normal. It was concluded that the fetus had the same disorder as the previous fetuses and the pregnancy was terminated at 21 weeks gestation. At autopsy there was marked head to body discordance (brain weight normal for gestation but other internal organ weights reduced), a large head with widened fontanelles, frontal bossing, depressed nasal bridge, low-set posteriorly-angulated ears, severe micrognathia, narrow chest, reduced abdominal circumference and prominent heels. Fetal skeletal survey showed generalized osteopenia and short long bones with metaphyseal irregularity, but no fractures or long bone angulation. Fetal karyotype was 46,XY, inv(11)(p11.2q13)pat – the inversion was considered unrelated to the fetal phenotype. Bone histology showed disorganized growth plates of rib and femur. The placenta was extremely small (trimmed weight 51 g; <10th centile) and histopathology showed diffuse CHI with increased perivillous fibrin deposition. In light of this new finding, the histopathology from the previously terminated pregnancy was
reviewed and showed CHI, with massive fibrin deposition that had not been recognized (Fig 2). Review of the histopathology from the 12 week miscarriage also showed CHI. The woman and her husband were counseled about CHI, including the high recurrence risk and likely poor outcome for a future pregnancy.

First trimester screening in the woman’s fifth pregnancy again showed a low PAPP-A (0.18 MoM) but the pregnancy was not at increased risk of Down syndrome. Amniotic fluid karyotype was 46,XX,inv(11)(p15.3q13.3)pat. Antenatal ultrasound scans showed IUGR from 15 weeks, with long bones that were short but with normal mineralization until 20 weeks at least. At 23 weeks gestation, HLA Class I and II donor specific IgG antibody (versus spouse) [anti-DR4 mean fluorescence intensity (MFI) 19,900; Genprobe Luminex] were demonstrated. At 26 weeks, fetal biometry was consistent with that of 20 weeks; there appeared to be hypomineralization of the skull and the right femur was bowed. Maternal ALP was normal. The baby was delivered by emergency caesarean section at 32+5 weeks gestation with weight 850 g (-3.8 SD), length 32 cm (-4.8 SD), head circumference 27 cm (-1.8 SD) and Apgar scores 7 at 1 minute and 10 at 5 minutes. Respiratory distress was treated with brief ventilation and surfactant and a patent ductus arteriosus with ibuprofen. The neonatal period was uncomplicated apart from apnea of prematurity and jaundice, and the baby was discharged home after 7 weeks. The placenta weighed 210 g (<10th centile) and histopathology showed massive perivillous fibrin deposition with mild CHI and multifocal low grade chronic villitis. Skeletal radiographs at 6 weeks of age showed frontal bossing, poorly mineralized sutures, a number of wormian bones along the lambdoid suture (not excessive for a premature infant) and mild lateral bowing of the mid-diaphysis of both femora; bone mineralization was normal overall and there was no evidence of previous fractures.
DISCUSSION

CHI is a rare placental condition with high risk of recurrence and poor perinatal outcome [Contro et al., 2013]. Clinical presentations may include miscarriage, severe early-onset IUGR with fetal death in utero, and preterm/term delivery associated with IUGR. The disorder has been associated with low maternal PAPP-A and increased ALP. An immune mechanism is suspected. Our patient had five pregnancies resulting in the outcomes summarized in Table I.

An ultrasound diagnosis of IUGR in the second trimester is made when the estimated fetal weight falls below the 10th centile for gestational age and is typically associated with abdominal and head circumferences also below the 10th centile [Zalel et al., 2002]. Other findings include shortened long bones (e.g. femur length <5th centile) and abnormal umbilical artery Doppler dynamics [Vermeer et al., 2013]. Our patient’s pregnancies had IUGR associated with both severe long bone shortening and reverse flow on umbilical artery Doppler studies. In contrast, lethal OI is characterised by severe micromelic long bone shortness, fractures with demineralization, small thorax and FL/AC ratio < 0.16 [Parilla et al., 2003]. This patient's third and fourth pregnancies showed severe long bone shortness and generalized osteopenia, with almost no skull ossification seen in the third pregnancy. The fourth pregnancy had a FL/AC ratio of 0.16 in association with severe limb shortness and reduced thoracic circumference, consistent with recurrent lethal skeletal dysplasia.

The patient’s third and fourth pregnancies showed markedly shortened long bones that raised the suspicion of a lethal skeletal dysplasia. The post mortem radiographs of the fetus from the third pregnancy showed multiple fractures and deformity of the ribs and long bones with callus formation, poor bone mineralization overall and absence of skull vault ossification, raising the possibility of a lethal skeletal dysplasia, most likely OI. The definitive diagnosis of CHI was made after histopathological examination of the placenta.
from the patient’s fourth pregnancy. As far as we are aware, there are no reports of CHI presenting as severe IUGR with bony abnormalities mimicking a lethal skeletal dysplasia.

Perinatally lethal OI comprises a heterogeneous group of disorders that most often results from new dominant mutations in either the $COL1A1$ or $COL1A2$ genes, but can also be caused by recessive mutations in a number of other genes [Baldridge et al., 2008]. Bone histology is characterized by a normal growth plate but severe deficiency of ossification in the metaphysis, diaphysis and cortex with the abnormal bony trabeculae composed primarily of woven bone [Gilbert-Barness, 2007]. In contrast, in IUGR the growth plate may be irregular and show bridging and banding [Emery et al., 1967]. Histopathology of femur and rib from our patient’s third pregnancy showed multiple fractures, which obscured much of the histological detail. In addition, there was a marked delay in ossification at the growth plate with irregular cartilage columns extending into the shaft of the bone but with bony trabeculae in the diaphysis away from the areas of fracture well-formed and thus not typical of OI.

As many as 33% of multiparous women have HLA antibodies in their serum [Middelburg et al. 2011]. However, in this case, the presence of multispecific HLA Class I and II antibodies directed against the HLA type of the spouse with very high mean fluorescence intensity support a possible immunologic mechanism as suggested by Reus at al. [2013].

Acknowledgements: Dr J Kaye, Medical Imaging, Women’s and Children’s Hospital, Adelaide, Australia.

References

FIGURE LEGENDS

Fig. 1. Antero-posterior and lateral views of the skeletal survey from the third pregnancy. The radiological features include multiple long bone and rib fractures, generalized osteopenia and reduced ossification of the cranium.

Fig. 2. CD68 immunohistochemical stain highlighting histiocytes within the intervillous spaces in placental tissue from the third pregnancy (Magnification x 20). [Color figure can be viewed in the online issue, which is available at http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1552-4833.]

Fig. 3. Bone histology from third pregnancy showing: normal femoral growth plate (left); and femoral shaft with fracture (upper left quadrant of image) and trabeculae not typical of osteogenesis imperfecta (right). (H&E, magnification x4). [Color figure can be viewed in the online issue, which is available at http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1552-4833.]
Figure 2.