Improving Specificity of CSF Liquid Biopsy for Genetic Testing

Zimeng Ye¹, Ingrid E. Scheffer¹-⁴, Samuel F. Berkovic¹, Michael S. Hildebrand¹-²

¹ Department of Medicine (Austin Health), University of Melbourne, Melbourne, Australia; ² Murdoch Children’s Research Institute, Melbourne, Australia; ³ Department of Paediatrics, University of Melbourne, Royal Children’s Hospital, Melbourne, Australia; ⁴ Department of Neurology, Royal Children’s Hospital, Melbourne, Australia

To the Editor:

We recently published the first study of CSF liquid biopsy for epilepsy.¹ We were delighted to see this approach replicated and independently validated with detection of brain somatic mutations in CSF cell-free DNA (cfDNA) from patients with drug-resistant focal epilepsy by Kim et al.² While the results were similar, there were some key differences in the protocols used which influence the specificity of this approach essential for clinical implementation of CSF liquid biopsy for etiological diagnosis.

Kim et al² collected 1-6 mL CSF from patients with epilepsy or controls. Samples were divided into 1mL aliquots and cfDNA extracted from each aliquot. Qubit assays were used to determine cfDNA concentration. Due to the limited cfDNA obtained from aliquots, pre-amplification was performed using 13 PCR cycles prior to detection of variants in 3/12 patients using droplet digital PCR (ddPCR).

In our study¹, 0.25-10.5 mL CSF was collected from patients with epilepsy or controls, and absolute cfDNA concentration was measured by ddPCR. We tested 10 μL of neat CSF cfDNA directly in our ddPCR assays without pre-amplification, detecting variants in 3/3 patients.

Despite the different quantitation methods, total CSF cfDNA concentration was comparable between the two studies. The main difference was that Kim et al² aliquoted CSF and extracted...
cfDNA from each aliquot, meaning pre-amplification was required. While pre-amplification increases the DNA input for ddPCR, it can also lead to allele bias and introduction of false-positives. Notably, Kim et al detected false-positives in almost all negative controls. Indeed, for the BRAF V600E assay, the negative controls had significantly higher variant allele frequency (VAF) due to artefact, than their patient KR-6. In contrast, our patient with a ganglioglioma had not had prior genetic testing; we detected the pathogenic BRAF V600E variant in CSF cfDNA, highlighting the clinical utility of testing CSF for somatic variants.

To verify that false-positive artefacts arise from pre-amplification, we tested our LIS1 K64X ddPCR assay on 10 control CSF cfDNA samples with and without pre-amplification (Table 1). We confirmed that pre-amplification introduced false-positive artefacts. A clean-up step after pre-amplification reduced, but did not eliminate, false-positives.

To reduce false-positive results and maximize specificity for diagnostic testing pre-amplification should be avoided. With low cfDNA sample input, results need to be interpreted with extreme caution. (372/400 words)

Potential Conflicts of Interest
The authors declare no conflicts of interest.

References
Please wait...

If this message is not eventually replaced by the proper contents of the document, your PDF viewer may not be able to display this type of document.

You can upgrade to the latest version of Adobe Reader for Windows®, Mac, or Linux® by visiting http://www.adobe.com/go/reader_download.

For more assistance with Adobe Reader visit http://www.adobe.com/go/acrreader.

Windows is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or other countries. Mac is a trademark of Apple Inc., registered in the United States and other countries. Linux is the registered trademark of Linus Torvalds in the U.S. and other countries.
Table 1. Comparison of Different ddPCR Protocols for Mosaic Variant Detection in CSF cfDNA

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Standard ddPCR(^\text{a})</th>
<th>Pre-Amplified ddPCR(^\text{b})</th>
<th>Modified Pre-Amplified ddPCR(^\text{c})</th>
</tr>
</thead>
<tbody>
<tr>
<td>VAF</td>
<td>MUT copies/WT copies</td>
<td>VAF</td>
<td>MUT copies/WT copies</td>
</tr>
<tr>
<td>Control-1</td>
<td>0</td>
<td>0/6.61</td>
<td>0.0961%</td>
</tr>
<tr>
<td>Control-2</td>
<td>0</td>
<td>0/43.7</td>
<td>0.00595%</td>
</tr>
<tr>
<td>Control-3</td>
<td>0</td>
<td>0/2.07</td>
<td>0</td>
</tr>
<tr>
<td>Control-4</td>
<td>0</td>
<td>0/12.9</td>
<td>0.00503%</td>
</tr>
<tr>
<td>Control-5</td>
<td>0</td>
<td>0/4.57</td>
<td>0</td>
</tr>
<tr>
<td>Control-6</td>
<td>0</td>
<td>0/5.61</td>
<td>0</td>
</tr>
<tr>
<td>Control-7</td>
<td>0</td>
<td>0/7.25</td>
<td>0.0112%</td>
</tr>
<tr>
<td>Control-8</td>
<td>0</td>
<td>0/4.49</td>
<td>0.0258%</td>
</tr>
<tr>
<td>Control-9</td>
<td>0</td>
<td>0/16.8</td>
<td>0</td>
</tr>
<tr>
<td>Control-10</td>
<td>0</td>
<td>0/2.67</td>
<td>0</td>
</tr>
<tr>
<td>Patient 1</td>
<td>9.95%</td>
<td>35.7/324</td>
<td></td>
</tr>
<tr>
<td>Patient 2</td>
<td>8.84%</td>
<td>36.4/375</td>
<td></td>
</tr>
</tbody>
</table>

\(^{\text{a}}\)Standard ddPCR: 10μl CSF cell-free DNA directly input for ddPCR, no pre-amplification

\(^{\text{b}}\)Pre-Amplified ddPCR: 15-cycle pre-amplification using ddPCR primers, then 10μl product input for ddPCR

\(^{\text{c}}\)Modified Pre-Amplified ddPCR: 15-cycle pre-amplification using ddPCR primers followed by a clean-up step using Zymo Research DNA Clean & Concentrator-5 (CA USA) with 25μl elution, then 10μl of the elution used as input for ddPCR

\(^{\text{d}}\)Patient 1 with LIS1 p.K64X variant from our previous study (Ye et al. Brain Commun. 2021), same sample tested in duplicate

VAF: variant allele frequency; MUT copies: mutant copies/20μl ddPCR reaction; WT copies: Wild-type copies/20μl ddPCR reaction
Minerva Access is the Institutional Repository of The University of Melbourne

Author/s:
Ye, Z; Scheffer, I E; Berkovic, S F; Hildebrand, M S

Title:
Improving Specificity of Cerebrospinal Fluid Liquid Biopsy for Genetic Testing

Date:
2021-08-18

Citation:

Persistent Link:
http://hdl.handle.net/11343/298850