EMA – Short report

Title:
Factors Predictive for Computed Tomography Use and Abnormality in Paediatric Head Injuries in Australia and New Zealand

Short Title
Factors Predictive for CT in Child Head Injuries

Catherine L Wilson, MPH, Ms Prog. Evaluation;
Emergency Research, Murdoch Children’s Research Institute, Melbourne,
Catherine.wilson@mcri.edu.au

Stephen JC Hearps, MBiostat,
Brain and Mind, Murdoch Children’s Research Institute, Melbourne Australia,
Stephen.hearps@mcri.edu.au

Emma J Tavender, BSc (hons), MSc, PhD
Emergency Research, Murdoch Children’s Research Institute, Melbourne Australia,
Department of Paediatrics, University of Melbourne, Australia
Emma.tavender@mcri.edu.au

Natalie T Phillips, MBBS, MPhil FRACP
Emergency Department, Queensland Children’s Hospital, Brisbane, Australia
Child Health Research Centre, University of Queensland, Queensland, Australia
Natalie.Phillips@health.qld.gov.au

Ben Lawton, FRACP (PEM), BSc(hons), MPH
Emergency Department, Logan Hospital, Logan, Australia
Emergency Department, Queensland Children’s Hospital, Brisbane, Australia
Ben.lawton@health.qld.gov.au

Frances Kinnear, FACEM, PhD, MB ChB, BSc
Adult and Children’s Emergency Department, The Prince Charles Hospital, Chermside, Australia
kinnearf@yahoo.com.

Amie Beattie, FACEM, MBBS,DCh, BSc
Emergency Department, Tamworth Hospital, North Tamworth, Australia
Tamworth Westpac Retrieval Service, Tamworth, Australia
Amie.Beattie@health.nsw.gov.au

Hugh Mitenko, MD, CCFP, CCFP-EM (Canada)
Emergency Department, Bunbury Hospital, Bunbury, Australia
Emergency Medicine Research, University of Western Australia Medical School, Bunbury, Australia
Hugh.Mitenko@health.wa.gov.au

Russell Young, MB ChB FACEM FACRRM MSc (Sports and Exercise Medicine)
Emergency Department, Albany Hospital, Albany, Australia,
Russell.young@health.wa.gov.au

This is the author manuscript accepted for publication and has undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1111/1742-6723.13694

This article is protected by copyright. All rights reserved.
Joanne Cole, MBChB FACEM PEM
Emergency Department, Tauranga Hospital, Tauranga, New Zealand,
Jo.Cole@bopdhb.govt.nz

Amit Kochar, MBBS MD MPH FRACP
Paediatric Emergency, Women’s and Children’s Hospital, Adelaide, Australia,
Amit.Kochar@sa.gov.au

Shane George, BSc MBBS MPH FACEM
Department of Emergency Medicine and Children’s Critical Care, Gold Coast University Hospital, Southport, Australia,
Paediatric Critical Care Research Group, Child Health Research Centre, The University of Queensland, Brisbane Australia
School of Medicine and Menzies Health Institute Queensland, Griffith University, Southport, Australia
Shane.George@uq.edu.au

Stephen S S Teo, MBBS FRACP Dip Paed PG Dip Epidemiology GDipClinEd
Emergency and Paediatric Departments, Blacktown and Mt Druitt Hospitals, Mt Druitt, Australia,
Paediatrics and Child Health, School of Medicine, Western Sydney University, Sydney, Australia
S.Teo@westernsydney.edu.au

Thomas Georgeson, MBBS BA MPH DCH FACEM PEM
Emergency Department, The Canberra Hospital, Garran, Australia,
Thomas.Georgeson@act.gov.au

Adam Michael BSc (Hons) MBBS (Hons) FACEM
Emergency Department, Bundaberg Hospital, Bundaberg, Queensland, Australia
School of Medicine, Rural Clinical School, University of Queensland
adampmichael@gmail.com

Ashes Mukerherjee, MBBS FRCS FRCEM FACEM
Emergency Department, Armadale Kelmscott District Memorial Hospital, Perth, Australia
Emergency Medicine, University of Western Australia, Perth, Australia
Ashes.Mukherjee@health.wa.gov.au

Alex King, FACEM
Emergency Department, Toowoomba Hospital, South Toowoomba, Queensland, Australia
Rural Clinical School, School of Medicine, University of Queensland, Queensland, Australia
alex.king@health.qld.gov.au

Lalith Gamage, MBBS,DCH, MD, FRACP
Paediatric Department, Port Augusta Hospital & Regional Health Services, Port Augusta, Australia
Emergency Department, Women’s and Children’s Hospital, North Adelaide, Australia
Lalith.Gamage@sa.gov.au

Peter Archer, MBBS FACEM
Emergency Department, Eastern Health (Angliss, Box Hill, Maroondah), Melbourne, Australia
Emergency Department, Royal Children’s Hospital, Melbourne, Australia
Peter.Archer@rch.org.au
Dr Corey Cassidy, BSc (Hons) MBBS (Hons) FACEM
Department of Emergency Medicine, Ipswich Hospital, QLD, Australia
Corey.Cassidy@health.qld.gov.au

Dr Arjun Rao, MBBS MAppSci FRACP
Emergency Department, Sydney Children’s Hospital, Randwick, Australia
Department of Medicine, School of Women’s and Children’s Health, University of New South Wales, Australia
Arjun.rao@unsw.edu.au

Dr Deepali Thosar, MBBS M Clin Epi
Emergency Department, The Children’s Hospital at Westmead, Sydney, Australia
deepali.thosar@health.nsw.gov.au

Meredith L Borland, MBBS FACEM
Emergency Department, Perth Children’s Hospital, Perth, Australia
Divisions of Paediatrics and Emergency Medicine, School of Medicine, The University of Western Australia, Perth, Western Australia, Australia
meredith.borland@health.wa.gov.au

Franz E Babl, MD MPH DMedSc FRACP FAAP FACEP
Emergency Research, Murdoch Children’s Research Institute, Melbourne Australia,
Department of Paediatrics, University of Melbourne, Australia
Emergency Department, Royal Children’s Hospital, Australia
Franz.Babl@rch.org.au

Corresponding Author:
Professor Franz Babl.
Emergency Research, Murdoch Children’s Research Institute
Royal Children’s Hospital
Flemington Rd
Parkville, 3052; Australia
Ph: +613-9345 6592
Fax: +613-9345 5938
Email: franz.babl@rch.org.au

Acknowledgements:
We wish to thank research teams at the following sites: Thomas Georgeson, Shakira Spiller, Kam Sinn, Jamie Lew (Canberra Hospital); Gina Watkins, Elizabeth Walter (Sutherland Hospital); Stephen Teo (Mt Druitt Hospital); Aime Beattie, Blair Burke, Adrian Cheung, Kathryn Charlier, Emma Simmons (Tamworth Hospital); Mary McCaskill, Deepali Thosar (The Children’s Hospital at Westmead); Arjun Rao, Inas Hanna, Sophie Watkins (Sydney Children’s Hospital); Lorna McLeod, Michelle Fenton (Coffs Harbour Base Hospital); Christine Brabyn, Kirsty Greaves (Waikato Hospital); Jo Cole, Karyne Coker (Tauranga Hospital); Stuart Dalziel, Megan Bonisch (Starship Children’s Health); Adam Michael, Nicholas Edwards, Matthew Vanderberg (Bundaberg Hospital); Natalie Phillips, Sally McGuire, Kelly Foster (Queensland Children’s Hospital); Shane George, Richele Tucker (Gold Coast University Hospital and Robina Hospital); Alex King, Helena King (Toowoomba Hospital); Corey Cassidy, Amy Richter, Bo Bi, Justin Jin (Ipswich Hospital); Ben Lawton, Brooke Charters (Logan Hospital); Frances Kinnear, Ashlee Percival, Louise Spooner-Jackson (Prince Charles Hospital); Amit Kochar, Gaby Nieva (Women’s and Children’s Hospital); Lalith Gamage, Joshua Anderson (Port Augusta Hospital); Peter Archer, Lisa Vermeulen (Box Hill Hospital, Angliss Hospital and Maroondah Hospital);
Simon Craig, Emma Ramage (Monash Medical Centre); Franz Babl, Ali Crichton, Cate Wilson (Royal Children’s Hospital); Mark Putland, Daniel Bourne (Bendigo Hospital); Ashes Mukherjee, Jonathon Burcham, Samantha Berkelaar (Armadale Kelmscott District Memorial Hospital); Stephen Priestley, Jessica Riordan (Sunshine Coast University Hospital and Nambour Hospital); Meredith Borland, Sharon O’Brien, Weikuei Ho, Madhuri Dama, Deirdre Speldewinde (Princess Margaret Hospital for Children/Perth Children’s Hospital); Russell Young, Tom Fox, Natalie Rudling (Albany Regional Hospital); Hugh Mitenko, Marie Draper (Bunbury Regional Hospital).

Conflict of Interest
No authors report conflicts of interest.

Ethics Approval Statement
The study underwent central ethics review at the Royal Children’s Hospital (HREC/17/RCHM/91) and institutional review at participating sites.

Funding
This study was funded by the Angior Family Foundation; Emergency Medicine Foundation (EMPJ-375827-2017-PHILLIPS) Queensland; the National Health and Medical Research Council, Centre of Research Excellence grant for Paediatric Emergency Medicine (GNT 1058560) Australia and by the Victorian Government’s Operational Infrastructure Support Program.
Abstract:

Objectives:

To investigate patient-level factors predictive for CT brain (CTB) use and abnormality, in head injured children in Australia and New Zealand.

Methods:

Retrospective data from tertiary, urban/suburban and regional/rural EDs including factors predictive for CTB use and abnormality.

Results:

Of 3072 children at 31 EDs, 212 (6.9%) had a CTB scan, of which 66 (31%) were abnormal. Increasing age, serious mechanisms of injury and decreasing GCS were predictive for ordering CTB. Decreasing age was predictive for CTB abnormalities. Other factors weren’t.

Conclusions:

Patient-level drivers of CTB use in children in Australia and New Zealand are consistent with international data.

Key words

paediatric; head injury; brain injury; computed tomography; emergency medicine
Short Report:

Introduction

At mainly tertiary paediatric emergency departments (EDs) across Australia and New Zealand (1), the rate of computed tomography of the brain (CTB) of 10.5% is lower than previously reported in North America (2-4). However, most children with head injuries present to mixed, non-tertiary EDs, where a variation in CTB rates has been reported in North America (2-4). In a study including all types of EDs in Australia and New Zealand, hospital type was not associated with CTB use rates (5). Here we set out to determine patient level factors associated with ordering a CTB and having an abnormal CTB.

Methods

This was a planned secondary analysis of a multicentre retrospective study of paediatric head injury presentations to 31 EDs in 2016 (5). EDs were stratified to tertiary, urban/suburban and regional/rural hospital types.

We included children aged <16 years, with a primary ED diagnosis of head injury. Return visits and those with prior neuroimaging at a referring hospital were excluded. Data was extracted on 100 sequential eligible cases per site (or as many as occurred) in 2016 using a standardised report form. We recorded age, gender, CTBs performed, mechanisms of injury and relevant underlying complex diagnoses (bleeding disorders, ventriculo-peritoneal shunts, neuro-developmental disability).

Demographic data were descriptively analysed comparing proportions, means and standard deviations (SDs) or medians and IQRs (for skewed distributions) using Stata v15.1 (College Station, TX, USA). Predictors of CTB scan ordering, and abnormal CTB within those ordered, were explored. Odds of demographic (age, sex) and injury mechanisms, predicting use of CTB and abnormal CTB were calculated. Univariate logistic regression explored odds
ratios (OR) of ordering CTB and abnormal CTB for each predictor, presented with 95% confidence intervals (95%CI).

Results/Findings

Of 3,572 records reviewed, 3,072 were eligible from 9 tertiary (n=900), 11 urban/suburban (n=1,072) and 11 regional/rural EDs (n=1100). Patient characteristics are shown in Table 1. Nine hundred and eighty-six (32.1%) were children <2 years and 41 (1.3%) had a GCS ≤13. Overall, 85 (2.8%) had relevant underlying complex diagnoses and the most common mechanism of injury was from a low fall (46.6%).

Two hundred and twelve children (6.9%) underwent CTB scan, of which 66 (31% or 2.1% overall) were abnormal. Odds of predictive factors for ordering a CTB scan or having an abnormal CTB result are presented using logistic regression analyses (Table 2). Factors associated with increased odds of ordering a CTB for head injury were: increasing child age (OR 1.11, 95%CI 1.08-1.14, p<0.001); mechanisms of injury including high falls (OR 2.28, 95%CI 1.57-3.32, p<0.001), sport (OR 1.98, 95% CI 1.14-3.45, p=0.016), cycling (OR 3.82, 95%CI 2.09-6.99, p<0.001), motor vehicle accidents (OR 4.99, 95%CI 2.53-9.82, p<0.001) horse related accidents (OR 9.26, 95%CI 3.13-27.41, p<0.001) GCS of 14 (OR 11.92, 95%CI 7.54-18.85, p<0.001) and GCS ≤ 13 (OR 37.86, 95%CI 19.43-73.79, p<0.001). Type of hospital, did not drive differences in CTB rates.

Increasing child age was associated with less likelihood of an abnormal CTB (OR 0.92, 95%CI 0.87-0.98, p=0.008); other factors predictive of CTB use showed no association with abnormal CTBs.

Discussion
This study investigated patient related factors associated with CTB use and CTB abnormality in paediatric head injuries across a large number of diverse EDs in Australia and New Zealand with an overall low rate of CTB of 7% and CTB abnormality of 2.1%. Our results indicate that increasing child age, certain mechanisms of injury (high falls, cycling, MVAs, sport and horse related accidents), and decreasing GCS, all increased the likelihood of clinicians ordering a CTB on a child with a head injury, consistent with tertiary centre data, both locally and internationally (1-4). Conversely, decreasing child age was a predictive factor for abnormal CTB. Clinicians may have a higher threshold to conduct a CTB in younger children driven by concerns about radiation and the need for sedation. As in our previous study (5), type of hospital did not drive differences in CTB rates.

While the overall patient numbers were large and the percentage of abnormal CTBs relatively high, the CTB scanning rate across centres was low and the number of abnormal scans was low which limits deeper analysis. A further limitation lies in the use of retrospective data, though we did attempt to collect high quality data (piloting, standardised data collection and education, quality audits).

Conclusion

Factors associated with CTB use in children across a diverse range of EDs have been described and will inform the implementation of a bi-national head injury guideline for children for Australia and New Zealand.

Table 1. Patient Cohort Characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Total N=3072</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td></td>
</tr>
<tr>
<td>Mean (SD)</td>
<td>5.3 (4.6)</td>
</tr>
<tr>
<td>Median (IQR)</td>
<td>3.6 (1.5-8.7)</td>
</tr>
<tr>
<td><2 years, n (%)</td>
<td>986 (32.1)</td>
</tr>
<tr>
<td>Gender (male), n (%)</td>
<td>1911 (62.2)</td>
</tr>
<tr>
<td>Glasgow Coma Score, n (%)</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>2909 (94.7)</td>
</tr>
<tr>
<td>14</td>
<td>90 (2.9)</td>
</tr>
<tr>
<td>13</td>
<td>16 (0.5)</td>
</tr>
<tr>
<td>9-12</td>
<td>19 (0.6)</td>
</tr>
<tr>
<td>3-8</td>
<td>6 (0.2)</td>
</tr>
<tr>
<td>Missing</td>
<td>32 (1.0)</td>
</tr>
<tr>
<td>Relevant underlying complex diagnoses, n (%)</td>
<td>85 (2.8)</td>
</tr>
<tr>
<td>Injury mechanism, n (%)</td>
<td></td>
</tr>
<tr>
<td>Fall – low (<1m or <5 stairs)</td>
<td>1432 (46.6)</td>
</tr>
<tr>
<td>Impact injury</td>
<td>619 (20.1)</td>
</tr>
<tr>
<td>Fall - high/unknown (>1m or >5 stairs)</td>
<td>526 (17.1)</td>
</tr>
<tr>
<td>Sport</td>
<td>192 (6.3)</td>
</tr>
<tr>
<td>Cycling</td>
<td>95 (3.1)</td>
</tr>
<tr>
<td>MVA</td>
<td>61 (2.0)</td>
</tr>
<tr>
<td>Horse-related</td>
<td>16 (0.5)</td>
</tr>
<tr>
<td>Other</td>
<td>129 (4.2)</td>
</tr>
<tr>
<td>Missing</td>
<td>2 (0.1)</td>
</tr>
<tr>
<td>CTB undertaken in ED, n (%)</td>
<td></td>
</tr>
<tr>
<td>CTB</td>
<td>212 (6.9)</td>
</tr>
<tr>
<td>CTB abnormal*</td>
<td>66 (31.1)</td>
</tr>
<tr>
<td>Hospital type, n (%)</td>
<td></td>
</tr>
<tr>
<td>Tertiary</td>
<td>900 (29.3)</td>
</tr>
<tr>
<td>Urban/Suburban</td>
<td>1072 (34.9)</td>
</tr>
<tr>
<td>Regional/Rural</td>
<td>1100 (35.8)</td>
</tr>
</tbody>
</table>

SD=standard deviation, IQR=interquartile range
* CTB abnormal % is a subgroup of CTB
** Bleeding disorders, ventriculo-peritoneal shunts, neuro-developmental disability
Table 2: Predictive factors relating to CT use and outcomes

<table>
<thead>
<tr>
<th>OUTCOME:</th>
<th>Ordering CT Scan (N=3072)</th>
<th>Abnormal CT Scan (N=212)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OR (95%CI) p</td>
<td>OR (95%CI) p</td>
</tr>
<tr>
<td>Increase by 1 yr</td>
<td>(ref)</td>
<td>(ref)</td>
</tr>
<tr>
<td>Age (years)</td>
<td>1.11 (1.08-1.14) 0.001</td>
<td>0.92 (0.87-0.98) 0.008</td>
</tr>
<tr>
<td>Female</td>
<td>(ref)</td>
<td>(ref)</td>
</tr>
<tr>
<td>Male</td>
<td>1.22 (0.91-1.64) 0.181</td>
<td>0.57 (0.31-1.04) 0.065</td>
</tr>
</tbody>
</table>

Mechanism of Injury

Fall - low	(ref)	(ref)
Impact injury	0.89 (0.56-1.42) 0.633	1.04 (0.39-2.79) 0.931
Fall - high/unknown	2.28 (1.57-3.32) <0.001	1.42 (0.66-3.05) 0.364
Sport	1.98 (1.14-3.45) 0.016	0.31 (0.07-1.50) 0.146
Cycling	3.82 (2.09-6.99) <0.001	0.59 (0.15-2.31) 0.446
MVA	4.99 (2.53-9.82) <0.001	2.35 (0.68-8.18) 0.179
Horse-related	9.26 (3.13-27.41) <0.001	0.59 (0.06-5.59) 0.644
Other/Missing	3.04 (1.73-5.35) <0.001	1.28 (0.42-3.94) 0.665

Initial GCS

15	(ref)	(ref)
14	11.92 (7.54-18.85) <0.001	0.70 (0.29-1.67) 0.424
≤13	37.86 (19.43-73.79) <0.001	1.14 (0.47-2.74) 0.770
Unknown	8.92 (4.15-19.20) <0.001	3.42 (0.92-12.73) 0.067

Hospital Type

Tertiary	(ref)	(ref)
Suburban	0.79 (0.56-1.11) 0.176	0.53 (0.26-1.07) 0.077
Regional/rural	0.72 (0.51-1.02) 0.065	0.61 (0.30-1.25) 0.177

OR = odds ratio, CI = confidence interval, CT = computed tomography, GCS = Glasgow Coma Scale, MVA = motor vehicle accident
Minerva Access is the Institutional Repository of The University of Melbourne

Author/s:
Wilson, CL; Hearps, SJC; Tavender, EJ; Phillips, NT; Lawton, B; Kinnear, F; Beattie, A; Mitenko, H; Young, R; Cole, J; Kochar, A; George, S; Teo, SSS; Georgeson, T; Michael, A; Mukherjee, A; King, A; Gamage, L; Archer, P; Cassidy, C; Rao, A; Thosar, D; Borland, ML; Babl, FE

Title:
Factors predictive for computed tomography use and abnormality in paediatric head injuries in Australia and New Zealand

Date:
2020-12-22

Citation:

Persistent Link:
http://hdl.handle.net/11343/276769