Acute Q-fever infection in a dairy products maker without direct animal contact: a case report.

Q-fever is a zoonotic infection with manifestations from asymptomatic to fatal endovascular infection. Transmission from raw milk exposure is controversial and current recommendations don’t include precautions or education for these individuals. We present the first reported case of confirmed Q-fever infection in a dairy products maker without animal contact.

Clinical Record

A 38-year-old male dairy products maker presented to an emergency department with 6-days of fever and myalgia. He lived within Melbourne’s inner suburbs and had no recent contact with abattoirs, farms or farm animals. At onset, he experienced chills, rigors, myalgia, lethargy and mild vomiting.

At presentation, he had tachycardia and fever (38.6°C). Examination was otherwise normal. Admission full blood examination showed mild lymphopenia (0.6 x 10^9 /L) and thrombocytopenia (143 x 10^9 /L). Liver function tests were mildly deranged in a mixed pattern showing (ALT, 118U/L); (GGT, 217U/L); ALP, 80 U/L); (Bilirubin, 23 µmol/L); He was started on empiric ceftriaxone for presumed sepsis.

Pre-antibiotic blood cultures were negative as was stool culture. On the 3rd day of admission the patient defervesced and his symptoms improved. Following suggestive Coxiella burnetii serological results this was changed to oral doxycycline 100mg BD for 14 days. Direct questioning revealed exposure to sprays of raw cow’s milk when unhooking pressurised pipes at a milk processing plant 3 weeks prior to presentation, in addition to general exposure to raw milk and milk trucks. Symptoms had fully resolved within 3 weeks and repeat testing of confluent serum definitively diagnosed acute Q-fever (Table 1).

Discussion

Q-Fever is a vaccine preventable zoonosis caused by the obligate intracellular gram-negative bacteria Coxiella burnetii. Infection occurs following inhalation of aerosolised organisms or direct inoculation through skin.
People with direct close contact with susceptible animals (abattoir workers, veterinarians, farmers) are at greatest risk. Infection is often asymptomatic or acute self-limiting febrile illness. Chronic infection (usually endocarditis or endovascular) can manifest months or years later\(^1\). While treatment of apparent self-limited infection is controversial a recent study in the Netherlands supports the treatment of acute Q-fever to reduce progression to chronic infection\(^2\).

Occupational exposure to Q-fever is well described and pre-employment vaccination is recommended in Australia for at-risk professions\(^3\). However, it is recognised that this does not account for all Q-fever cases\(^4\). The significance of unpasteurised milk exposure as a risk factor for Q-fever is controversial. Oral ingestion is a poorer route of infection and milk contains lower numbers of viable organisms than placental tissue\(^5\). Data is limited but a recent review suggests that unpasteurised milk consumption is a risk\(^5\). This case provides evidence that those in the milk processing industry may be at risk of infection. Current Australian vaccination recommendations do not include these people as a risk group\(^3\). These workers may be at greater risk than those consuming raw milk due to the risk of aerosolisation and inhalation of organisms which may be present in contaminated milk or soil, which is a more infectious route\(^5\). Our case demonstrates that the risk of Q-fever exposure to industrial milk workers needs further examination so that appropriate education and recommendations can be made to prevent unnecessary morbidity and perhaps mortality.
Acknowledgments

We thank the Australian Rickettsial Reference Laboratory Foundation Ltd and Australian Clinical Labs for conducting the Q fever serology reported.
References

Table 1. *Coxiella burnetii* serology results tested in parallel showing phase II seroconversion, plus confirmatory result for confluent sample from reference laboratory.

<table>
<thead>
<tr>
<th>Date specimen collected</th>
<th>Date specimen collected</th>
<th>IgA</th>
<th>IgM result</th>
<th>IgG result</th>
<th>IgM result</th>
<th>IgG result</th>
</tr>
</thead>
<tbody>
<tr>
<td>14/01/2017</td>
<td>N/A</td>
<td>Positive*</td>
<td>Not detected*</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>31/01/2017</td>
<td>N/A</td>
<td>Positive</td>
<td>Positive</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>31/01/2017</td>
<td>Not detected</td>
<td>1:1600</td>
<td>1:800</td>
<td>Not detected</td>
<td>1:100</td>
<td>Not detected</td>
</tr>
</tbody>
</table>

*Q fever serology (phase 2) IgM was performed using the Vircell *Coxiella burnetii* IgM ELISA (Vircell S.L., Granada, Spain) and performed by Australian Clinical Labs, Adelaide, Australia.

*Q fever serology (phase 2) IgG was performed using the Panbio *Coxiella burnetii* IgG ELISA (Standard Diagnostics Inc., Korea) and performed by Australian Clinical Labs, Adelaide, Australia.

*Q fever serology Phase 1 and 2 was performed using immunofluorescence phase I +II for individual IgA and IgG performed by Rickettsial Reference Laboratory, Geelong, Australia.
Acute Q-fever infection in a dairy products maker without direct animal contact: a case report.

Abstract

Q-fever is a zoonotic infection with manifestations from asymptomatic to fatal endovascular infection. Transmission from raw milk exposure is controversial and recommendations don’t include precautions or education for individuals with exposure. We present the first reported case of confirmed Q-fever infection in a milk processing worker without animal contact. This may have impacts on clinical care and public health recommendations.

Key words: Q-fever, Coxiella burnetii, raw milk,
Acute Q-fever infection in a dairy products maker without direct animal contact: a case report

Phongsakone Inthavong¹,², David Turner¹, Peter Stanley¹, Craig Alexander Aboltins¹,²

¹ Department of Infectious Diseases, Northern Health, Epping, Melbourne, Victoria, Australia
² Northwest Academic Centre, The University of Melbourne, Epping, Melbourne, Victoria, Australia.

Contributions:
Phongsakone Inthavong: Contributed to academic development, primary author of manuscript.
David Turner: Primary academic development, contributed to authorship and editing of manuscript.
Peter Stanley: Contributed to academic development and editing of manuscript.
Craig Aboltins: Contributed to academic development and editing of manuscript.

Corresponding Author
Phongsakone Inthavong,
Email: Iphongsakone@gmail.com
Address: 8/853 High St Reservoir 3073 Australia
Ph: 0434454903

Word Count Abstract: 58
Word Count Main text: 489

All authors have approved the manuscript and agree with its submission to The Internal Medicine Journal. This work is not under active consideration for publication, has not been accepted for publication, nor has it been published, in full or in part (except in abstract form). All authors declare an absence of any conflict of interest to disclose. I confirm that the subject of this report has given consent for publication of this material.
Minerva Access is the Institutional Repository of The University of Melbourne

Author/s:
Inthavong, P; Turner, D; Stanley, P; Aboltins, CA

Title:
Acute Q-fever infection in a dairy products maker without direct animal contact

Date:
2019-02-01

Citation:

Persistent Link:
http://hdl.handle.net/11343/285395