Forebrain projection neurons target functionally diverse respiratory control areas in the midbrain, pons and medulla oblongata

Running title: Forebrain inputs to the respiratory network

Pedro Trevizan-Baú¹, Rishi R. Dhingra¹, Werner I. Furuya¹, Davor Stanić¹, Stuart B. Mazzone², Mathias Dutschmann¹*

¹The Florey Institute of Neuroscience and Mental Health, Discovery Neuroscience theme, The University of Melbourne, Parkville, VIC, 3010, Australia
²Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, 3010, Australia

* Correspondence:
Mathias Dutschmann, Ph.D., Florey Institute of Neuroscience and Mental Health, Discovery Neuroscience, Respiratory Neurophysiology Laboratory, Howard Florey Laboratories, 30 Royal Parade, Parkville, Victoria, 3052, Australia.

Phone: +61 3 90356520;

E-mail: mathias.dutschmann@florey.edu.au

This is the author manuscript accepted for publication and has undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1002/cne.25091

This article is protected by copyright. All rights reserved.
Acknowledgements

We acknowledge that this work was conducted on the traditional land of the Wurundjeri people of the Kulin nation. We pay our respect to their elders' past, present and emerging. This work was supported by research grants from the National Health and Medical Research Council of Australia (APP1165529 to MD & DS, and APP1078943 to SM); and Australian Research Council (Discovery Project DP170104861); PT-B is funded by Melbourne Research Scholarship (University of Melbourne; 181858).

Conflict of interest

The authors have no conflicts of interest to declare.

Author contributions

PT-B, DS and MD conceived and designed the experiments, analyzed the data and prepared figures and tables. PT-B conducted all experiments. All authors reviewed drafts of the manuscript, approved the final draft. All authors contributed to the interpretation of the data.

Data availability statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.
Abstract

Eupnea is generated by neural circuits located in the ponto-medullary brainstem, but can be modulated by higher brain inputs which contribute to volitional control of breathing and the expression of orofacial behaviors, such as vocalization, sniffing, coughing and swallowing. Surprisingly, the anatomical organization of descending inputs that connect the forebrain with the brainstem respiratory network remains poorly defined. We hypothesized that descending forebrain projections target multiple distributed respiratory control nuclei across the neuroaxis. To test our hypothesis, we made discrete unilateral microinjections of the retrograde tracer Cholera toxin subunit B (CT-B) in the midbrain periaqueductal gray (PAG), the pontine Kölliker-Fuse nucleus (KFn), the medullary Bötzinger complex (BötC), pre-Bötzinger complex (pre-BötC) or caudal midline raphé nuclei. We quantified the regional distribution of retrogradely-labeled neurons in the forebrain 12-14 days post-injection. Overall, our data reveals that descending inputs from cortical areas predominantly target the PAG and KFn. Differential forebrain regions innervating the PAG (prefrontal, cingulate cortices, and lateral septum) and KFn (rhinal, piriform, and somatosensory cortices) imply that volitional motor commands for vocalization are specifically relayed via the PAG, while the KFn may receive commands to coordinate breathing with other orofacial behaviors (e.g. sniffing, swallowing). Additionally, we observed that the limbic or autonomic (interoceptive) systems are connected to broadly distributed downstream bulbar respiratory networks. Collectively, these data provide a neural substrate to explain how volitional, state-dependent, and emotional modulation of breathing is regulated by the forebrain.

Keywords: Pyramidal neurons, forebrain projection neurons, respiratory pattern generation, orofacial motor behaviors, volitional control of breathing, post-inspiration, delta, theta.
1. Introduction

Studies on volitional control of breathing, which were mostly performed in humans, indicate that corticospinal pathways bypass the respiratory network of the brainstem and directly modulate respiratory motor pools in the spinal cord (Gandevia and Rothwell, 1987a, b; Corefiled et al., 1998; Butler, 2007; Pouget et al., 2018). In mammals, cortico-spinal pathways that specifically target spinal respiratory motor pools have been demonstrated (Rikard-Bell et al., 1985). However, descending anatomical pathways that target nuclei of the primary respiratory rhythm and pattern generating network remain poorly defined despite functional evidence that activity within the respiratory network is modulated by behavioral commands (Orem and Netick, 1986; Chang, 1992). Cognitive, emotional, and behavioral motor commands modulate respiratory activities during a variety of volitional orofacial behaviors including vocalization (speech), swallowing, chewing, coughing, sneezing, emotional sighing, and sniffing (Davis et al., 1996; Nanoka et al., 1999; Jean 2001; Ludlow, 2005; Sherwood et al., 2005; Deschênes et al., 2012; Moore et al., 2013; Moore et al., 2014; Laplagne, 2018; McElvain et al., 2018; Li et al., 2020). Many of these orofacial behaviors depend on the recruitment of upper airway muscles that regulate airway patency during inspiration and expiration (Dutschmann and Paton, 2002). Control of expiratory airflow during the post-inspiratory phase of respiration is essential for the mediation of vocalization, swallowing and expulsive expiratory behaviour (Dutschmann et al., 2014). Since the primary motor networks that control post-inspiration are distributed in the brainstem (Dhingra et al., 2019a, b; Dhingra et al., 2020), we hypothesized that crucial descending forebrain projections target respiratory control nuclei above the spinal cord. In addition, we assumed that orofacial behaviors that involve augmented inspiratory activity (e.g. sighing, sniffing) may also recruit brainstem nuclei that generate and/or modulate the inspiratory rhythm, instead of overwriting ongoing respiratory activity with cortico-spinal motor commands. This
idea is supported by a recent study showing supra-pontine inputs to the pre-Bötzinger complex (pre-BötC), the brain area that generates the inspiratory rhythm (Yang et al., 2020).

To test our working hypothesis, we used the retrograde tracer cholera toxin subunit B (CT-B) to characterize the topography of descending monosynaptic projections from the forebrain to five anatomically distinct respiratory areas in the midbrain and ponto-medullary brainstem that have established function in the modulation or generation of respiratory activity. The descending forebrain connectivity of the periaqueductal gray (PAG) was analyzed because it has a profound role in the modulation of respiration during vocalization and defensive behaviors (Zhang et al., 1994; Subramanian et al., 2008a, b; Subramanian and Holstege, 2014; Dampney, 2015; Faul et al., 2019), but has no breath-by-breath role in respiratory rhythm and pattern generation (Farmer et al., 2014). Because the PAG has established connectivity with various forebrain nuclei (Dampney et al., 2013), it also serves as an important control for the analysis of the additional respiratory brain areas studied. The pontine Kölliker-Fuse nucleus (KFn) was investigated because it regulates the inspiratory-expiratory phase transition and is involved in the breath-by-breath formation of the respiratory motor pattern (Caille et al., 1981; Wang et al., 1993; Dutschmann and Herbert, 2006; Smith et al., 2007; Mörschel and Dutschmann, 2009). Moreover, the KFn has major implications in the control of laryngeal adductor function during breathing (Dutschmann and Herbert 2006) and orofacial behaviors (Dutschmann and Dick, 2012). The pre-Bötzinger complex (pre-BötC) was chosen for its essential role in inspiratory rhythm generation (Smith et al., 1991; Feldman and Del Negro, 2006; Del Negro et al., 2018) and the neighboring Bötzinger complex (BötC) was targeted because of its proposed function as an essential part of respiratory rhythm generating circuit (Burke et al., 2010; Smith et al., 2013; Marchenko et al., 2016). Finally, descending forebrain inputs to nuclei of the caudal raphé were analyzed since these serotonergic neurons have important neuromodulatory action on
the respiratory motor pattern (Holtmann et al., 1986; Lindsey et al., 1998; Richter et al., 2003; Besnard et al., 2009; Hodges and Richerson; 2010).
2. Materials and methods

2.1. Animals

Adult Sprague-Dawley rats of either sex (n=28, weight range: 280-350g) were used for this study. All animals were housed under a 12:12 h light/dark cycle, with free access to lab chow (Ridley Corporation Limited, Australia) and water. Experiments followed protocols approved by the Florey Institute of Neuroscience and Mental Health Animal Ethics Committee and performed in accordance with the National Health and Medical Research Council of Australia code of practice for the use of animals for scientific purposes.

2.2. Surgery

For tracer microinjections, rats were initially anaesthetized with isoflurane (5% v/v in oxygen). After mounting in a stereotaxic apparatus (TSE systems, Bad Homburg, Germany), anesthesia was maintained with isoflurane (~2% in oxygen) via a nose cone. After the rats were placed with the skull in a flat position in the stereotaxic frame, a craniotomy was performed. Surgeries were performed under an aseptic technique (iodine antiseptic solution). A midline incision exposed the skull between bregma and the interaural line, and a small burr hole was drilled according to coordinates defined relative to bregma (Table 1). Using a 1 µl Hamilton syringe (25s-gauge needle), 150nL of 1% CT-B (1 mg/mL; Invitrogen, OR, USA) was pressure injected unilaterally in the following brain nuclei: PAG (dorsolateral and ventrolateral columns; n=5, plus 3 near-miss injections), KFn (n=5, plus 2 near-miss injections), BötC (n=3, plus 1 near-miss injection), pre-BötC (n=3, plus 1 near-miss injection) and caudal raphe nuclei (raphé pallidus [RPa], raphé magnus [RMg], and raphé obscurus [ROb]; n=3, plus 2 near-miss injections). The total volume was injected at a rate of 20 nL/min, and CT-B injections were made on the left side of the brain. To avoid bleeding after injection through the transverse sinus for medullary targets (for BötC, pre-BötC, and caudal raphe injections), the syringe was angled and inserted from a more rostral location to reach
the specific coordinates (for details, see Table 1). After the injection, the syringe remained in the brain tissue for at least 10 min and was withdrawn at 1mm/min to minimize non-specific spread of the tracer in brain tissue along the injection tract (Finkelstein et al, 2000). Immediately after surgery, animals received 3mg/kg of the anti-inflammatory drug Meloxicam (Tory-IIlum, NSW, Australia; 5mg/mL, delivered subcutaneously). The animals were allowed to recover for 12-14 days before transcardial perfusion.

Table 1. Stereotaxic coordinates for CT-B microinjections.

<table>
<thead>
<tr>
<th>Brain regions</th>
<th>Stereotaxic coordinates (mm)</th>
<th>Micropipette angle</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rostrocaudal</td>
<td>Mediolateral</td>
</tr>
<tr>
<td>Kölliker-Fuse</td>
<td>-9.0±0.1</td>
<td>+2.6</td>
</tr>
<tr>
<td>Pre-Bötzingher</td>
<td>-9.5</td>
<td>+2.0</td>
</tr>
<tr>
<td>Bötzingher</td>
<td>-9.0</td>
<td>+2.0</td>
</tr>
<tr>
<td>Caudal raphé</td>
<td>-8.7</td>
<td>0.0</td>
</tr>
<tr>
<td>Periaqueductal gray</td>
<td>-8.0±0.5</td>
<td>+0.8</td>
</tr>
</tbody>
</table>

1relative to Bregma; 2relative from midline; 3from dorsal surface of the brain; 4relative to vertical.

2.3. Tissue preparation and immunohistochemistry

Twelve to fourteen days after injection, the rats were deeply anaesthetized with sodium pentobarbitone (Ilium Pentobarbitone, Troy Laboratories, Smithfield, NSW, Australia, 100 mg/kg i.p.) and transcardially perfused with 60 mL Ca²⁺-free Tyrode’s buffer (37 ºC), followed by 60 mL 4% paraformaldehyde (PFA, Sigma-Aldrich) containing 0.2% picric acid (Sigma) diluted in 0.16 M phosphate buffer (Merck KGaA, Darmstadt, Germany; pH 7.2, 37 ºC) and finally, an additional 300 mL PFA/picric acid solution at 4ºC. Brains were removed from the
skull and post-fixed in PFA/picric acid solution for 90 min at 4°C. Next, the brains were
immersed for 72 h in 0.1 M phosphate buffer (pH 7.4) containing 15% sucrose, 0.01%
sodium azide (Sigma) and 0.02% bacitracin (Sigma) for cryoprotection. A small incision from
the olfactory bulbs to the brainstem was made in the hemisphere contralateral to the CT-B
injection site to allow for subsequent measurements of the ipsilateral and contralateral
distribution of projection neurons (Figure 2). After post fixation and cryoprotection, brains
were rapidly frozen using liquid carbon dioxide. Finally, brains we stored at -80 °C until cryo-
sectioning.

Serial coronal sections (40 µm thickness) of the entire brain (from the olfactory bulb
to the spino-medullary junction) were cut using a cryostat (Leica CM1850, Leica
Microsystems), and stored in a cryo-protectant solution [30% v/v ethylene glycol (Merck);
15% w/v sucrose; 35% v/v 0.1M phosphate buffer; 35% v/v distilled H2O] at −20°C. Brain
sections were cut serially, and sections processed for immunohistochemistry were
separated by 120 µm. Freely floating sections were washed in 0.01 M PBS, followed by
incubation in hydrogen peroxide for 20 min to block endogenous peroxidase activity. Next,
sections were incubated for 24 h at room temperature (RT) with a goat anti-CT-B antibody
(List Biological Laboratories, CA, USA; catalogue no #112; 1:10,000) diluted in PBS
containing 0.3% Triton X-100 and 0.5% BSA (Sigma). The goat anti-CT-B primary antibody
recognizes the B-subunit of cholera toxin. Sections were then washed in 0.01 M PBS and
blocked with 5% normal donkey serum (NDS) in 0.01M PBS for 1 hr. at RT. Sections were
immediately incubated in the corresponding secondary antibody (anti-sheep biotin, Jackson
ImmunoResearch Laboratories, West Grove, PA; 1:500 in 0.01 M PBS) for 1h at RT. Next,
sections were washed in 0.01 M PBS and incubated in an ABC kit (Vectastain® Elite ABC-
HRP Kit) for 1h at RT. Finally, sections were washed in 0.01 M PBS and subsequently
incubated in diaminobenzidine (DAB) substrate (1:10, Roche Diagnostics Mannheim,
Germany) for 4 min, followed by an incubation in 1% H2O2 for 4 min (Stanic et al, 2003).
Sections were then washed 3x in 0.01 M PBS and mounted on slides coated with 0.5% gelatin (Sigma) and 0.05% chromium (III) potassium sulphate dodecahydrate (Merck), and left to dry overnight. Slides were coverslipped using DPX (Sigma-Aldrich).

2.4. Data analysis and image processing

We used a brightfield microscope (Leica Biosystems) to identify and document the location of the midbrain and brainstem injection sites. Injection sites were photographed and plotted on semi-schematic drawings of the respective sections containing the PAG, KFn, BötC, pre-BötC and caudal raphé nuclei (Figure 1). We used the following criteria to classify injections of the adjacent BötC and pre-BötC nuclei in the medulla. The center of the BötC injection was located 0.0-0.5mm to caudal edge of the facial motor nucleus (VII) where the medial longitudinal fasciculus (mlf) in the midline is ventral-dorsally prolonged till the fourth ventricle (4V); whereas the center of the pre-BötC injection sites was located 0.5-0.8mm to caudal edge of the facial motor nucleus where the mlf is less ventral-dorsally prolonged in the midline. Another landmark for the pre-BötC location was the presence of the hypoglossal nucleus (XII) in the dorsomedial region of the section, which is not present in the BötC sections (Figure 1c).

Representative images were taken using a digital camera (Leica DFC7000T) mounted to the microscope (Leica DM6B LED). Adobe Photoshop CC19 software (Adobe Systems Inc., San Jose, CA) was used to assemble representative images, and to optimize brightness and contrast of the digital images to best represent sections viewed under the microscope.

We examined sections separated by 120 µm across the neuroaxis of the entire forebrain. We quantified in forebrain areas with significant and consistent numbers of retrogradely CT-B-labeled neurons (>n=3) for all experimental cases. Near-miss injections served as controls. CT-B labeled cell bodies were recognized by the presence of black punctate granules in the neuronal cell bodies (somata) and processes, and the absence of
immunoreactive cell nuclei. The background staining of neurons was characterized by light and diffuse DAB staining of somata including the cell nuclei. The specific location and distribution of retrogradely labeled forebrain projection neurons in cortical and sub-cortical areas are classified according to the rat brain atlas of Paxinos and Watson (2007).

We used a one-way analysis of variance (GraphPad Prism, version 7.02; GraphPad Software; San Diego, CA) followed by Tukey’s multiple comparison test to determine the statistical significance of the total, ipsilateral and contralateral numbers of CT-B-labeled neurons between the brainstem target areas (i.e. PAG, KFn, pre-BötC, BötC and caudal raphé nuclei; Figure 2). Values are given as mean ± standard error of the mean (SEM) and p-values less than 0.05 were considered statistically significant.
3. Results

3.1. Injection sites

Microinjections of the retrograde tracer CT-B were anatomically confined to discrete injection sites in all target areas (see representative photographs, Figure 1) or around the target areas (‘near-miss injections’). The latter are illustrated as black crosses in the semi-schematic drawings (Figure 1, left panel).

CT-B injection sites in columns of the midbrain PAG were confined to the vlPAG (n=4) and the dlPAG (n=1; Figure 1a). The rostrocaudal levels of the injections were identified by the size and location of the aqueduct (Bandler et al., 1991; Carrive, 1993). Three injection sites were centered in the rostral PAG (cases #1-3), whereas the other two cases (#4, 5) were located more caudally. We also report three near-miss injections, which were localized ventrolaterally to the PAG (Figure 1a, black x’s).

CT-B injections in the pontine KF n, located ventral to the lateral tip of the superior cerebellar peduncle (scp), were restricted to the rostral and intermediate regions of the KFn (cases #6-10, Figure 1b), and strongly overlap with the core circuitry of pontine respiratory group in rodents (Dutschmann and Herbert 2006). Two near-miss injections were found slightly ventrocaudally to the pontine KFn (Figure 1b, black x’s).

Anatomical locations of the medullary pre-BötC (cases #11-13) and BötC (cases #14-16, Figure 1c) were localized ventral to the nucleus ambiguus (NA) and caudal to the facial nucleus (VII) in the medulla oblongata. Two near-miss injections were located dorsolaterally to the NA (Figure 1c, black x’s).

Injection sites for cases #17-19 were confined to the caudal midline raphé (Figure 1d), which is sub-divided in three regions: raphé obscurus (ROb), pallidus (RPa) and magnus (RMg). Injections in the caudal raphé were located rostral to the BötC/pre-BötC brainstem sections. Case #17 was predominantly localized to the RPa. Case #18 was more rostral to
case #17 and localized to the RPa/RMg. Case #19 was localized to the RMg/ROb. Two near-miss injections were located lateral to the caudal midline raphé (Figure 1d, black x’s).

3.2. Cumulative distribution and laterality of descending forebrain projections

Quantitative analysis of the total numbers of CT-B-labeled neurons following injections in the midbrain PAG, pontine KFn, medullary pre-BötC, BötC, or the caudal raphé revealed that the highest number of CT-B-labeled cells in the forebrain projected monosynaptically to the PAG (p < 0.05; Figure 2). Injections in the pontine KFn resulted in the second highest number of CT-B labeled neurons in the forebrain, followed by the medullary pre-BötC, and the caudal raphé. The lowest numbers of CT-B-labeled neurons were observed after injections in the medullary BötC.

Analysis of the ipsilateral and contralateral distribution of the CT-B-labeled neurons demonstrates that the majority of the CT-B-labeled neurons after PAG and KFn injections were located in the ipsilateral hemisphere (PAG, 83.1 ± 3.1%; KFn, 82.5 ± 4.6%). For injections in the pre-BötC and BötC, we respectively observed 69.8 ± 6.5% and 60.7 ± 6.0% of CT-B-labeled neurons were located ipsilaterally.

CT-B-labeled cell bodies in cortical regions were almost exclusively found in the layer V/VI, and displayed the characteristic morphology of cortical pyramidal neurons (Figure 3). It is also important to note that CT-B-labeled neurons in the hippocampus, olfactory bulb, basal ganglia and cerebellum were not detected in any experiments reported in this study.

3.3. Specific distribution of retrogradely CT-B-labeled neurons in cortical and sub-cortical brain regions following injections in the midbrain periaqueductal gray (PAG)

Figure 4 shows representative images of retrogradely labeled neurons in the cortical and sub-cortical brain regions following PAG injections. Figure 5 illustrates the rostro-caudal gradients of all CT-B-labeled neurons in relation to bregma.
We observed the largest number of CT-B-labeled neurons in the prefrontal cortex (PFC), including the dorsal (Figure 5a1; prelimbic, 412 ± 51 neurons/case [n/c]) and ventral PFC (Figure 5a2 infralimbic, 198 ± 40 n/c). In prelimbic cortex, CT-B-labeled neurons occupied the rostral and intermediate levels (bregma: from +4.0 to +1.5 mm). In infralimbic cortex, CT-B-labeled neurons were predominantly located at rostral levels (bregma: from +4.0 to +2.5 mm). We also observed a large number of CT-B-labeled neurons in motor cortex (Figure 5a3; 192 ± 99 n/c; bregma: from +4.0 to 0 mm). Substantial numbers of CT-B-labeled neurons in cingulate cortex were observed after injections in the rostral PAG (case #1, 336 neurons; case #2, 648 neurons), whereas injections in the caudal region of the midbrain PAG revealed smaller numbers of CT-B labeled-neurons in the cingulate cortex (case #3, 41 neurons; case #4, 33 neurons; case #5, 0 neurons) (Figure 5). In addition, we also observed a considerable number of CT-B-labeled neurons in the insular cortex (Figure 5a5; 172 ± 88 n/c, bregma: from +4.5 to +1.5 mm), particularly after injections in the rostral vlPAG (case #2, 272 neurons; case #3, 469 neurons). Caudal injections in the vlPAG (cases #4-5) revealed fewer numbers of CT-B-labeled neurons in the insular cortex (case #4, 14 neurons; case #5, 106 neurons), whereas no CT-B-labeled neurons were observed after injections in the rostral dlPAG (case #1). A small number of CT-B-labeled neurons were found in the rhinal (50 ± 20 n/c; bregma: from -3.18 to -7.3 mm) and endopiriform cortices (cases #1-5, 37 ± 4 n/c; Figure 5a6;). CT-B-labeled neurons in the endopiriform were restricted to the rostral level of this nuclei (bregma: from -0.7 to +2.4 mm). Finally, smaller numbers of monosynaptic projections to the PAG were observed from the somatosensory cortex (2 ± 1 n/c; bregma: from +1.8 to +1.3 mm).

Substantial numbers of monosynaptic projections to the PAG were also observed from sub-cortical regions, such as the claustrum, amygdala, lateral septum and hypothalamus (Figure 4,5). Injections in the PAG revealed high numbers of retrogradely labeled neurons in the amygdala (146 ± 72 n/c; bregma: from -1.0 to -2.6 mm), whereas a smaller number of
labeled neurons were observed after injections in the dlPAG (case #1, 5 neurons). Injections in the rostral PAG revealed a large number of CT-B-labeled neurons in the lateral septum (case #1, 123 neurons; case #2, 140 neurons; bregma: from +0.6 to +1.8 mm), whereas injections in caudal PAG (case #4, 17 neurons; case #5, 2 neurons) yielded smaller numbers of descending projection neurons from the lateral septum. Hypothalamic nuclei showed high numbers of CT-B-labeled neurons in all cases (Figure 5b1,5b2,5b3,5b5,5b8). Overall, the highest numbers of retrogradely CT-B-labeled neurons were observed in the ventromedial hypothalamus (VMH, 486 ± 159 n/c; bregma: from -1.7 to -4.6 mm), followed by the preoptic area (PO, 288 ± 83 n/c; bregma: from -1.2 to +0.5 mm), lateral hypothalamus (LH, 280 ± 88 n/c; bregma: from -1.2 to -3.84 mm), dorsomedial hypothalamus (DMH, 72 ± 36 n/c; bregma: from -2.5 to -3.9 mm) and paraventricular hypothalamic nucleus (PVN, 14 ± 8 n/c; bregma: from -1.0 to -2.0 mm). Finally, a small number of CT-B-labeled neurons were observed in the claustrum after injections in the rostral or caudal PAG (40 ±2 0 n/c; bregma: from +2.2 to +1.6 mm). Overall, the distribution of forebrain projections to the midbrain PAG is consistent with the literature (Dampney et al., 2013; see discussion).

3.4. Specific distribution of retrogradely CT-B-labeled neurons in cortical and sub-cortical brain regions following injections in the pontine Kölliker-Fuse nucleus (KFn)

Figure 6 shows representative images of retrogradely CT-B-labeled neurons in the cortical and sub-cortical regions that project to the KFn. Figure 7 depicts the rostro-caudal gradients of CT-B-labeled neurons.

Quantitative analysis of monosynaptic projections to the KFn revealed considerable numbers of CT-B-labeled neurons in infralimbic (60 ± 21 n/c; bregma: from +3.7 to +2.3 mm), rhinal (146 ± 63 n/c; bregma: from -2.3 to -7.5 mm), endopiriform (60 ± 22 n/c; bregma: from +3 to +0.1 mm), somatosensory (63 ± 25 n/c; bregma: from +2.5 to +0.1 mm), insular (64 ± 15 n/c; bregma: from +1.4 to -2.5 mm), prelimbic (29 ± 5 n/c; bregma: from +4.0 to
Monosynaptic projections to the KFn were also found from sub-cortical areas such as the claustrum, amygdala and various hypothalamic nuclei. In contrast to PAG injections, no neurons were found in the lateral septum after CT-B injection in the KFn. The highest numbers of retrogradely labeled neurons were found in the LH (225 ± 88 n/c; bregma: from -1.44 to -3.6 mm), followed by the VMH (112 ± 33 n/c; bregma: from -2.7 to -3.6 mm), DMH (47 ± 8 n/c; bregma: from -2.5 to -3.9 mm), PO (34 ± 12 n/c; bregma: from +0.5 to -1.2 mm), and PVN (29 ± 4 n/c; bregma: from -1.3 to -2 mm). We also observed CT-B-labeled neurons in the claustrum (Figure 7b7; 56 ± 1 n/c; bregma: from +2.2 to -2.4 mm) and amygdala (23 ± 7 n/c; bregma: from -1.2 to -2.6 mm).

3.5. Specific distribution of retrogradely CT-B-labeled neurons in cortical and sub-cortical brain regions following injections in the medullary pre-Bötzinger complex (pre-BötC) and Bötzinger complex (BötC)

Figure 8 shows representative images of retrogradely CT-B-labeled neurons in the cortical and sub-cortical regions following CT-B injections in the pre-BötC. Figures 9 (pre-BötC injections) and 10 (BötC injections) illustrate the rostro-caudal gradients of CT-B-labeled neurons in relation to bregma.

The highest number of descending projection neurons to the pre-BötC was observed in the motor cortex (50 ± 21 n/c; bregma: from +5 to +1.2 mm), followed by the insular (36 ± 9 n/c; bregma: from +3.4 to +1.3 mm), somatosensory (14 ± 3 n/c; bregma: from +2 to +1.1 mm), infralimbic (5 ± 2 n/c; bregma: from -3.2 to -2.7 mm), rhinal (4 ± 2 n/c; bregma from -5.3 to -4.9 mm), prelimbic (2 ± 2 n/c; bregma: from +3.8 to +3.3 mm), and endopiriform
cortices (1 ± 1 n/c; bregma: from +1.7 to +1.4 mm). Similar to KFn CT-B injections, we did not detect labeled neurons in the cingulate cortex after injections in the medullary pre-BötC.

In sub-cortical regions (Figure 9), we observed monosynaptic projections to the pre-BötC from amygdala (59 ± 33 n/c; bregma: from -1.4 to -2.4 mm), claustrum (11 ± 5 n/c; bregma: from +0.5 to -0.7 mm) and hypothalamic nuclei, including the LH (89 ± 25 n/c; bregma: from -1.4 to -3.6 mm), PO (45 ± 34 n/c; bregma: from +0.3 to -1.4 mm), PVN (39 ± 10 n/c; bregma: from -2 to -1 mm), DMH (35 ± 19 n/c; bregma: from -2.7 to -3.9 mm), and VMH (7 ± 5 n/c; bregma: from -2.9 to -3.4 mm).

By contrast, CT-B injections in the BötC of the ventral respiratory column revealed substantially fewer numbers of descending projection neurons in cortical brain regions (p=0.0003). We observed CT-B-labeled neurons projecting to BötC in the insular (31 ± 28 n/c; bregma: from +3.7 to +1.3 mm), endopiriform (3 ± 2 n/c; bregma: from +1.9 to +1.2 mm), motor (1 ± 1 n/c; bregma: +3.3 mm), infralimbic (1 ± 1 n/c; bregma: +3.0 mm), somatosensory (1 ± 1 n/c; bregma: +1.6 mm), rhinal (1 ± 1 n/c; bregma: from -5.1 to -5.4 mm) and prelimbic cortices (1 ± 1 n/c; bregma: +3.6 mm). Similarly, only small numbers of CT-B-labeled neurons were detected in sub-cortical regions following BötC injections: amygdala (21 ± 21 n/c; bregma: from -1.7 to -2.2 mm), LH (3 ± 2 n/c; bregma: from -2.4 to -2.6 mm), PO (1 ± 1 n/c; bregma: -0.5 mm), PVN (1 ± 1 n/c; bregma: -1.5 mm), and claustrum (1 ± 1 n/c; bregma: -0.2 mm). Finally, CT-B-labeled neurons in lateral septum, DMH and VMH were never observed after injections in the medullary BötC.

3.6. Specific distribution of retrogradely CT-B-labeled neurons in cortical and sub-cortical brain regions following injections in the caudal raphé in the medulla oblongata

Figure 11 shows representative images of retrogradely CT-B-labeled neurons in cortical and sub-cortical regions following CT-B injections in the caudal raphé nuclei of the
medulla oblongata. Figure 12 illustrates the quantitative analysis of CT-B-labeled neurons along their rostrocaudal gradients in relation to bregma. In accordance with published literature (Hermann et al., 1997), CT-B injections in the caudal raphé showed variable numbers of labeled neurons in the forebrain, which is dependent whether the injections were centered in the RMg, ROB, or RPa. For example, case #17 (injection in the caudal RPa) revealed the highest number of CT-B-labeled neurons in the cortex (Figure 12).

CT-B injections in the caudal raphé revealed a modest number of monosynaptic projections from cortex. The highest numbers of descending projection neurons were observed in the motor (66 ± 26 n/c; bregma: from +5 to +0.3 mm), followed by the insular (59 ± 13 n/c; bregma: +4.5 to +1.7 mm), prelimbic (20 ± 12 n/c; bregma: from +5 to +1.9 mm), endopiriform (14 ± 6 n/c; bregma: +2.6 to +1.2 mm), infralimbic (9 ± 9 n/c; bregma: from +3.2 to +2.2 mm), somatosensory (4 ± 3 n/c; bregma: from +3 to +1.6 mm), and cingulate cortices (4 ± 4 n/c; bregma: +2.3 to +1.8 mm). No CT-B-labeled neurons were detected in the rhinal cortex followed by injections in any caudal raphé nucleus.

In sub-cortical regions, descending connectivity outside the hypothalamus was absent or weak (e.g. claustrum, amygdala and lateral septum). However, high to moderate numbers of projection neurons were observed in various hypothalamic nuclei. The highest numbers of CT-B-labeled neurons were in the DMH (125 ± 60 n/c; bregma: from -2.5 to -3.7 mm), followed by the LH (91 ± 64 n/c; bregma: from -1.4 to -3.1 mm), and PO (84 ± 49 n/c; bregma from +0.2 to -1 mm). The number of CT-B-labeled neurons in the PVN (12 ± 8 n/c; bregma: from -1.8 to -1.3 mm) and VMH (3 ± 1 n/c; bregma: from -2.2 to -2.7 mm) were smaller compared to the aforementioned hypothalamic nuclei.

3.7 CT-B-labeled neurons associated with near-miss injections

Analysis of near-miss injection sites (n=9) presented far fewer labeled neurons compared to injections that were centered in the target areas. For instance, injections placed ventrolateral to the PAG presented far fewer labeled neurons in the forebrain. Only small numbers of CT-
B-labeled neurons were observed, predominantly in the insular, rhinal and motor cortices, but not in hypothalamic areas (data not shown). In contrast, near-miss injections ventrocaudally to the KFn revealed modest numbers of CT-B-labeled neurons in the cortex, but we still identified robust numbers of projection neurons in the hypothalamus (e.g. lateral hypothalamus) and midbrain PAG (data not shown). The later illustrates that the caudal extension of the KFn remains connected to key nuclei of the autonomic nervous system in the forebrain, but lacks major cortical inputs. Finally, near-miss injections placed in the reticular formation outside the pre-BötC, BötC and caudal raphe target areas resulted in almost complete absence of forebrain projection neurons, although labeled cells were still observed in the KFn and PAG (data not shown). Thus, the near miss injections underline the specificity of the descending projection patterns in the investigated respiratory nuclei (as well as the specificity of CT-B antibody used in this study).
4. Discussion

We identified widespread monosynaptic descending projections from the forebrain to all respiratory control areas investigated suggesting that forebrain-evoked modulations of respiration do not simply bypass brainstem circuits, but instead, are likely coordinated with spontaneous respiratory network activity. Descending projection neurons that target designated respiratory control areas in the midbrain and brainstem were restricted to a variety of cortical areas, the claustrum, lateral septum, various hypothalamic nuclei and the amygdala. Examination of the distribution of retrogradely labeled neurons across the entire axis of the forebrain failed to detect any descending projection neurons in some major neural systems of the forebrain, such as the thalamus, hippocampus, olfactory bulb or basal ganglia.

The topographical organization of detected mono-synaptic descending forebrain projections is summarized in a network connectivity graph (Figure 13). The graph shows the relative proportion of projections from a given cortical or sub-cortical area to each respiratory control nuclei investigated. The general distribution of descending projection neurons located in sub-cortical areas, such as the hypothalamus or amygdala, reveals a broad connectivity pattern with the downstream targets. These sub-cortical projections are discussed in the context of their putative role in homeostasis, state-dependent and emotional modulation of breathing (section 4.1). In terms of cortical projections to the brainstem respiratory control areas, we have detected some inputs targeting the medullary regions, such as the pre-BötC (similarly to Yang et al., 2020). However, the present study implies that retrogradely labeled neurons predominantly target the midbrain PAG and pontine KFn. The only exception is the insular cortex which also provides an equal proportion of descending inputs to all investigated respiratory control areas. The long-range forebrain-brainstem projection neurons detected in this study were exclusively located in the
deepest layers of cortex. The role of these cortex-brainstem projections is discussed in the context of volitional control of breathing (Section 4.2).

Finally, amongst all downstream brainstem targets investigated, the BötC shows the least amount of forebrain connectivity, despite its designated key function in respiratory pattern formation (Burke et al., 2010; Smith et al., 2013; Marchenko et al., 2016). Given that the neighboring pre-BötC in the medulla has a vital role on breathing rhythm generation (Smith et al., 1991; Feldman and Del Negro, 2006; Del Negro et al., 2018) and the generation of sighs (Li et al., 2016), it is not surprising that this brain area receives also receives considerable cortical inputs.

4.1. Homeostasis, state-dependent or emotional modulation of respiration

The dense descending connectivity of visceral sensory areas of the insular cortex with respiratory control areas confirm previous anatomical studies (Saper, 1982; Sato et al., 2013; Grady et al., 2020), and are in line with several functional studies that have associated the insular cortex with cardio-respiratory modulation (Rugiero et al., 1987; Yasui et al., 1991; Aleksandrov et al., 2000), which may be associated with adaptation of breathing to interoceptive states (Verdejo-Garcia et al., 2012). The present study also confirms well-documented descending projections of hypothalamic nuclei targeting the PAG, KFn, pre-BötC, BötC and caudal raphé (Peyron et al., 1998; Geerling et al., 2010; Yang et al., 2020). It can be speculated that the hypothalamic projections to the brainstem regions may control autonomic functions other than respiration. For example, there is strong evidence in the literature that the dorsomedial hypothalamus sends stress-related information to the caudal raphé to regulate autonomic functions such as body temperature and energy metabolism (Sarkar et al., 2007; Tupone et al., 2011; Kataoka et al., 2014). However, it is also well-documented that a range of respiratory patterns linked to homeostasis, state-dependency (sleep-wake), and stress, are mediated by hypothalamic sub-nuclei (for review, see Fukushima
et al., 2019), suggesting that respiration adapts to interoceptive states as well as emotional and stress-related information.

The insular cortex and hypothalamus are part of the widely-distributed limbic system that includes the amygdala, and the piriform, rhinal and prefrontal cortices. Because emotions have a profound influence on respiratory activity (Harper et al. 1984; Onimaru and Homma, 2007; Homma and Masaoka, 2008; Holstege, 2014; Subramanian and Holstege, 2014), it is not surprising that all aforementioned areas have direct descending projections to several respiratory control areas investigated in the present study (Figure 13). While it was previously postulated that the midbrain PAG, with its known function in respiratory modulation in relation to fear and defensive behavior (Carrive et al., 1988; Depaulis et al., 1989; Carrive, 1993; Carrive et al., 1997; Subramanian and Holstege, 2014), is the primary interface that links emotion with breathing, the present study illustrates that similar descending inputs also target nuclei of the primary respiratory rhythm and pattern generating network in the brainstem. Significant inputs from the amygdala, and the pre- and infra-limbic and rhinal cortices to the pontine KFn and medullary pre-BötC, with their specific function in controlling respiratory phase transitions (Dutschmann and Herbert, 2006) and rhythm generation (Smith et al., 1991; Feldman and Del Negro, 2006; Del Negro et al., 2018), suggests that the synaptic output of the widely-distributed limbic system also connects to a similarly distributed respiratory network spanning from the midbrain to medulla oblongata. Considering recent evidence suggesting that action/motor encoding involves cell assemblies whose members are distributed in many areas beyond the cortex, including the PAG (Steinmetz et al., 2019), the present study supports the working hypothesis that the precise encoding of homeostatic, state-dependent or emotional breathing patterns may be partially outsourced to the respiratory network.

4.2 Volitional control of respiration
In contrast with previous suggestions that cortical motor commands for the respiratory system may be mediated via cortico-spinal pathways that connect the cortex with primary respiratory motor pools (Rikard-Bell et al., 1985; Gandevia and Rothwell, 1987a, b; Pouget et al., 2008), our study identifies distinct descending pathways that connect cortical output neurons with specific respiratory pre-motor nuclei (Figure 13a). For instance, descending inputs from cortical areas of the frontal lobe, including the PFC (pre- and infra-limbic cortices) and the cingulate cortex, have the strongest connectivity with the lateral and ventrolateral columns of the PAG. Indeed, our data show strong cortical projections to the vlPAG and confirm a previous study that reported significant inputs from the motor, prelimbic, infralimbic, cingulate, insular, endopiriform, and rhinal cortices (Floyd et al., 2000). However, our study detected significant numbers of CT-B positive neurons in the somatosensory cortex, which were not reported previously. Amongst all cortical and sub-cortical areas with descending projections to respiratory control areas, the cingulate and lateral septum almost exclusively target the PAG (Figure 13a). The neural networks composed of the cingulate and septal nuclei, including the prefrontal cortex (area of Brocca), harbor the primary synaptic network for the generation of speech in humans and vocalization in mammals (Jürgens, 2009; Hage and Nieder, 2016; Holstege and Subramanian, 2016). In line with the specific descending projection pattern that links the PAG to volitional motor commands for vocalization, stimulation of the midbrain PAG (particularly the IPAG and vlPAG) evokes vocalization in animals (Larson, 1985; Jürgen and Richter, 1986; Bandler and Carrive, 1988; Zhang et al., 1994). Thus, the present study supports the hypothesis that the midbrain PAG is the “final common pathway” for vocalization in mammals (Jürgens and Richter, 1986; Holstege, 1989; Jürgens 1994; Jürgens 2002; Düsterhöft et al., 2004; Subramanian and Holstege, 2009). However, given that recent studies using optogenetic approaches have defined forebrain inputs to the PAG that play critical roles in predator and prey behaviors (for review, see Franklin, 2019), we cannot assume that the descending inputs to the PAG
found in the present study necessarily control volitional respiration or vocalization. Nevertheless, it is well-known that the PAG is a crucial region in the midbrain that coordinates cardio-respiratory responses to behaviors that are initiated in forebrain circuits (Bandler et al., 2000; Benarroch, 2012; Dampney et al., 2013).

Studies in humans, however, have shown that the midbrain PAG is not activated during other voluntarily controlled orofacial behaviors such as coughing (Mazzone et al., 2011) and swallowing (Zald et al., 1999). Moreover, the PAG neither possesses direct synaptic connection to cranial and spinal motor respiratory pools (Holstege, 1989; Zhang et al., 1995; Subramanian and Holstege, 2009; Dampney, 2013; Holstege, 2014), nor is it part of the primary rhythm and pattern generating circuit (Farmer et al., 2014). Thus, the midbrain PAG, as a mediator for modulation or reconfiguration of respiratory activity during orofacial behaviors, arousal or emotion, requires additional downstream synaptic interactions with the ponto-medullary brainstem respiratory network.

The PAG shares the highest-level reciprocal connectivity with the KFn when compared to other medullary nuclei of the primary respiratory network (BötC, pre-BötC, or caudal raphé; data not shown, Trevizan-Baú et al., 2020). Since both nuclei receive dense innervation from the claustrum, a general cortico-thalamic integration and output nucleus (Dillingham et al., 2017), it is possible that the PAG and the KFn may mediate various volitional motor commands in concert.

However, respiratory functions of the KFn in the mediation of the inspiratory-expiratory phase transition (Caille et al., 1981; Wang et al., 1993; Smith et al., 2007; Mörschel and Dutschmann, 2009) and gating of the respiratory cranial nerve activities (Dutschmann and Herbert, 2006; Bautista and Dutschmann, 2014), including in the branch of the facial nerve that innervates the nostrils and whisker pads (Dutschmann et al., 2021), prime the KFn as a target for volitional motor commands for orofacial behavior. For instance, laryngeal adduction and the coordination of facial, vagal, and hypoglossal nerve activity are
prerequisites for the mediation of swallowing (Dick et al., 1993; Bautista and Dutschmann, 2014) and sniffing (Semba et al., 1986; Perez Lobes, 2016). The present study now identifies significant descending input from the piriform and rhinal cortices to the KFn, suggesting that the KFn nucleus might receive major primary olfactory information (Chapuis et al., 2013; Leitner et al., 2016; Blazing and Franks, 2020). Additional substantial descending inputs to the KFn originate from the somatosensory barrel cortex, implying that the KFn also receives tactile sensory information from the whisker pads (Woolsey and Van der Loos, 1970; Petersen, 2019). In summary, because the KFn gates facial and upper-airway respiratory motor activity (Dutschmann et al., 2020) and also receives cortical mono-synaptic tactile and olfactory sensory inputs, it is tempting to postulate that the KFn mediates volitional motor commands to coordinate breathing activity with sniffing and whisking. However, although significantly weaker, parallel descending projections from rhinal and somatosensory cortices to the pre-BötC may determine the frequencies of whisking and sniffing (Kleinfeld et al., 2014). Thus, the coordination of an integrated behaviour of breathing, sniffing and whisking may require the synaptic interactions between the tightly connected pre-BötC and KFn (Tan et al., 2010; Yang and Feldman 2018; Trevizan-Baú et al., 2020).

4.3 Conclusions

In conclusion, the descending projection pattern of neurons of the widely-distributed limbic network (i.e. amygdala, rhinal cortex, endopiriform and the prefrontal cortex) connects to a similarly distributed network of respiratory control neurons from the midbrain to ponto-medullary brainstem. However, it is likely that specific volitional motor commands for vocalization are mediated via the midbrain PAG, while the coordination of whisking, sniffing, and swallowing with breathing activity is mediated by inputs that target the KFn. Amongst the medullary respiratory nuclei, the pre-BötC and caudal raphé receive limited descending
input from the cortex (e.g. motor cortex), and therefore may have some additional function in the mediation or synaptic priming of volitional motor commands.
References

Sato, F., Akhter, F., Haque, T., Kato, T., Takeda, R., Nagase, Y., Sessle, B. J., & Yoshida, A. (2013). Projections from the insular cortex to pain-receptive trigeminal caudal subnucleus (medullary dorsal horn) and other lower brainstem areas in...

Figure legends

Figure 1. Schematic drawings (left) and photomicrographs (right) illustrate the anatomical location of CT-B microinjections in functionally diverse respiratory control areas: the periaqueductal gray (a), the Kölliker-Fuse nucleus (b), the pre-Bötzinger and Bötzinger complexes (c), and the caudal raphé nuclei (d). Left: schematic drawings depict the location and dimensions of all CT-B injections in the brainstem target areas relative to bregma. In this and in Figures 2, 5, 7, 9, 10, & 12, colors code specific on-target injections; and black x’s indicate near-miss, off-target injections (see results). Right: photomicrographs of representative injection sites. Abbreviations: 4V = fourth ventricle; BötC = Bötzinger complex; KFn = Kölliker-Fuse nucleus; mcp = middle cerebellar peduncle; io = inferior olive; mlf = medial longitudinal fasciculus; NA = nucleus ambiguus; NTS = solitary tract nucleus; PAG = periaqueductal gray; pre-BötC = pre-Bötzinger complex; py = pyramidal tract; RMg = raphé magnus; Rob = raphé obscurus; RPa = raphé pallidus; scp = superior cerebellar peduncle; XII = facial motor nucleus. Scale bars: 1 mm (schematic drawings on the left); 200 µm (representative photographs on the right).

Figure 2. Bar graphs of the total (a), ipsilateral (b) and contralateral (c) numbers of retrogradely CT-B-labeled neurons in the forebrain after microinjections in PAG, KFn, pre-Bötzinger complex; BötC, and caudal raphé nuclei. In A, B, & C color-coded circles (experimental cases) align with those Figure 1; and zero laterality for caudal raphé nuclei. All values are expressed as mean ± standard error of the mean. The greatest number of CT-B retrogradely labeled forebrain neurons were detected from injections in the PAG compared to those in the KFn, pre-Bötzinger complex; BötC, and caudal raphé nuclei (One-way ANOVA followed by Tukey’s multiple comparison test, *p < 0.05). Abbreviations: BötC = Bötzinger complex; KFn = Kölliker-Fuse nucleus; PAG = periaqueductal gray; pre-BötC = pre-Bötzinger complex.
Figure 3. Representative CT-B-labeled pyramidal neurons in layer V/VI of the insular cortex (a). b&c: Photomicrographs show labeled neurons at progressively higher magnifications. a: the photomicrograph at the lowest magnification shows the specificity of retrograde labeling in the context of the neighboring cells and structures. b: at highest magnification, the morphology of labeled neurons (black arrowheads) is more apparent. c: at a slightly higher magnification than that in b, the dendrites (red arrowheads) of the pyramidal neurons are visible. *Abbreviations:* II, layer 2 of cortex; III, layer 3 of cortex; V, layer 5 of cortex; CPu, caudate putamen (striatum); ec, external capsule; rf, rhinal fissure. *Scale bars:* a = 200 µm; b = 100 µm; c = 50 µm.

Figure 4. CT-B microinjection in the PAG labeled neurons in various cortical and forebrain regions. In this and figures 6, 8, & 11, we present the paired photomicrographs of the labeled neurons. 1) The collage on the left is at low magnification to show the specificity of the retrolabeling in the context of the neighboring structures. Dashed-line boxes in 1 outline the area of collage in 2. 2) The collage on the right is at high magnification to show the morphology of the labeled cells. Red arrowheads point to representative labeled neurons. The following areas had CT-B-labeled neurons: a12, the cingulate cortex (ACA); b1-3, motor and prelimbic cortices (MI, PL); c1-2, infralimbic (IL); d1-2, lateral septum (LS); e1-2, amygdala (Amg); f1-2, paraventricular hypothalamus (PVN); g1-2, insular cortex (IC); h1-2, endopiriform nucleus (DEN); i1-2, claustrum (CI); j1-2, dorsomedial (DMH); k1-2, ventromedial (VMH); l1-2, lateral hypothalamus (LH); and m1-2, preoptic area (PO). *Abbreviations:* 3V = third ventricle; aca = anterior commissure; cc = corpus callosum; CPu = caudate putamen (striatum); E/OV = ependymal and sublayer EV; ec = external capsule; fmi = forceps minor of corpus callosum; ic = internal capsule; LV = lateral ventricle; mlf = medial longitudinal fasciculus; och = optic chiasm; opt, optic tract; rf = rhinal fissure. *Scale*
bars on this and Figures 6, 8, & 11: 200 µm (low-magnification images); 50 µm (high-magnification images).

Figure 5. The rostrocaudal distribution of the numbers of retrogradely labeled neurons relative to bregma (mm) in various cortical (a) and sub-cortical (b) brain regions following CT-B microinjections in the periaqueductal gray. The location of the specific injection sites are represented by color-codes, which are the same as Figure 1. Black lines represent the mean number of CT-B-labeled neurons detected throughout the rostrocaudal levels for each cortical and sub-cortical brain region. *Abbreviations:* DMH = dorsomedial hypothalamus; LH = lateral hypothalamus; PAG = periaqueductal gray; PVN = paraventricular hypothalamus; VMH = ventromedial hypothalamus.

Figure 6. CT-B microinjection in the Kölliker-Fuse nucleus labeled neurons in various cortical and forebrain regions (paired photomicrographs: 1 is low and 2 is high magnification). The following areas had CT-B-labeled neurons: a1-2, motor cortex (MI); b1-2, pelimibc cortex (PL); c1-2, infralimibic (IL); d1-2, somtasesory cortex (S1); e1-2, amygdala (Amg); f1-2, dorsomedial hypothalamus (DMH); g1-2, insular cortex (IC); h1-2, endopiriform nucleus (DEn); i1-2, rhinal cortex (Rh); j1-2, claustrum (Cl); k1-2, paraventricular hypothalamus (PVN); l1-2, ventromedial (VMH). *Abbreviations:* 3V = third ventricle; aca = anterior commissure; CPu = caudate putamen (striatum); E/OV = ependymal and sublayer EV; ec = external capsule; fmi = forceps minor of corpus callosum; ic = internal capsule; mlf = medial longitudinal fasciculus; och = optic chiasm; opt = optic tract; rf = rhinal fissure. *Scale bars:* 200 µm (low-magnification images); 50 µm (high-magnification images).

Figure 7. The rostrocaudal distribution of retrogradely labeled neurons relative to bregma (mm) in various cortical (a) and sub-cortical (b) brain regions following CT-B microinjections
in the Kölliker-Fuse nucleus. The location of the specific injection sites are represented by color-codes, which are the same as Figure 1. Black lines represent the mean number of CT-B-labeled neurons detected throughout the rostrocaudal levels for each cortical and sub-cortical brain region. Abbreviations: DMH = dorsomedial hypothalamus; KFn = Kölliker-Fuse; LH = lateral hypothalamus; PVN = paraventricular hypothalamus; VMH = ventromedial hypothalamus.

Figure 8. CT-B microinjection in the pre-Bötzinger complex labeled neurons in various cortical and forebrain regions (paired photomicrographs: 1 is low and 2 is high magnification). The following areas had CT-B-labeled neurons: a1-2, motor cortex (MI); b1-2, insular (IC); c1-2, amygdala (Amg); d1-2, paraventricular hypothalamus (PVN); e1-2, preoptic area (PO); and f1-2, lateral hypothalamus (LH). Abbreviations: 3V = third ventricle; och = optic chiasm; pre-BötC = pre-Bötzinger complex; rf = rhinal fissure. Scale bars: 200 µm (low-magnification images); 50 µm (high-magnification images).

Figure 9. The rostrocaudal distribution of retrogradely labeled neurons relative to bregma (mm) in various cortical (a) and sub-cortical (b) brain regions following CT-B microinjections in the pre-Bötzinger complex. The location of the specific injection sites are represented by color-codes, which are the same as Figure 1. Black lines represent the mean numbers of CT-B-labeled neurons detected throughout the rostrocaudal levels for each cortical and sub-cortical brain region. Abbreviations: DMH = dorsomedial hypothalamus; LH = lateral hypothalamus; pre-BötC = pre-Bötzinger complex; PVN = paraventricular hypothalamus; VMH = ventromedial hypothalamus.

Figure 10. The rostrocaudal distribution of the numbers of retrogradely labeled neurons relative to bregma (mm) in various cortical (a) and sub-cortical (b) brain regions following
CT-B microinjections in the Bötzinger complex. The location of the specific injection sites are represented by color-codes, which are the same as Figure 1. Black lines represent the mean number of CT-B-labeled neurons detected throughout the rostrocaudal levels for each cortical and sub-cortical brain region. **Abbreviations**: BötC = Bötzinger complex; DMH = dorsomedial hypothalamus; LH = lateral hypothalamus; PVN = paraventricular hypothalamus; VMH = ventromedial hypothalamus.

Figure 11. CT-B microinjection in the caudal raphé nuclei labeled neurons in various cortical and forebrain regions (paired photomicrographs: 1 is low and 2 is high magnification). The following areas had CT-B-labeled neurons: a1-2, motor cortex (MI); b1-2, dorsomedial hypothalamus (DMV); c1-2, lateral hypothalamus (LH); and d1-2, preoptic area (PO). **Abbreviations**: 3V = third ventricle; aca = anterior commissure; DMH, dorsomedial hypothalamus; LH, lateral hypothalamus; MI, motor cortex; och, optic chiasm; PO, preoptic nucleus; VMH, ventromedial hypothalamus. **Scale bars**: 200 µm (low-magnification images); 50 µm (high-magnification images).

Figure 12. The rostrocaudal distribution of retrogradely labeled neurons relative to bregma (mm) in various cortical (a) and sub-cortical (b) brain regions following CT-B microinjections into the caudal raphé nuclei. The location of the specific injection sites are represented by color-codes, which are the same as Figure 1. Black lines represent the mean number of CT-B-labeled neurons detected throughout the rostrocaudal levels for each cortical and sub-cortical brain region. **Abbreviations**: DMH = dorsomedial hypothalamus; LH = lateral hypothalamus; PVN = paraventricular hypothalamus; VMH = ventromedial hypothalamus.

Figure 13. Summary of the relative strength of descending projections arising from cortical (a) and sub-cortical (b) areas in a connectivity map. The weight of connecting lines are
proportional to the normalized maximal number of CT-B-labeled neurons found in the specific source of descending projections.
Rostrocaudal gradients of CT-B-labeled neurons following PAG injections

(a) Cortical regions

(a1) Prelimbic

(a2) Infralimbic

(a3) Motor cortex

(a4) Cingulate

(a5) Insular cortex

(a6) Endopiriform

(a7) Rhinal cortex

(a8) Somatosensory (superficial somatosensory cortex)

(b) Sub-cortical regions

(b1) VMH

(b2) Preoptic

(b3) LH

(b4) Amygdala

(b5) DMH

(b6) Lateral septum

(b7) Claustrum

(b8) PVN
Rostrocaudal gradients of CT-B-labeled neurons following KFn injections

(a) Cortical regions

(a1) Infalimbic

(a2) Rhinal cortex

(a3) Endopiriform

(a4) Somatosensory

(a5) Insular cortex

(a6) Prelimbic

(a7) Motor cortex

(a8) Cingulate

(b) Sub-cortical regions

(b1) LH

(b2) VMH

(b3) Amygdala

(b4) Preoptic

(b5) PVN

(b6) DMH

(b7) Claustrum

(b8) Lateral septum

CNE_25091_Figure_7.tif
Representative images of retrogradely CT-B-labeled neurons in the forebrain following pre-BboC injection
Rostrocaudal gradients of CT-B-labeled neurons following pre-Bötz injections

(a) Cortical regions

(a1) Motor cortex (a2) Insular cortex (a3) Somatosensory (sensory somatosensory cortex) (a4) Infralimbic

(a5) Rhinal cortex (a6) Endopiriform (a7) Prelimbic (a8) Cingulate

(b) Sub-cortical regions

(b1) Amygdala (b2) LH (b3) PVN (b4) Preoptic

(b5) DMH (b6) VMH (b7) Claustrum (b8) Lateral septum

CNE_25091_Figure_9(2).tif
Rostrocaudal gradients of CT-B-labeled neurons following BötC injections

(a) Cortical regions
(a1) Insular cortex
(a2) Endopiriform
(a3) Motor cortex
(a4) Infralimbic
(a5) Somatosensory
(a6) Rhinal cortex
(a7) Prelimbic
(a8) Cingulate

(b) Sub-cortical regions
(b1) Amygdala
(b2) LH
(b3) Preoptic
(b4) PVN
(b5) Claustrum
(b6) Lateral septum
(b7) DMH
(b8) VMH

CNE_25091_Figure_10.tif
Representative images of retrogradely CT-B-labeled neurons in the forebrain following caudal raphé injection

CNE_25091_Figure_11.tif
Rostrocaudal gradients of CT-B-labeled neurons following caudal raphé injections

(a) Cortical regions

(a1) Motor cortex (a2) Prelimbic (a3) Insular cortex (a4) Infraimbic

(a5) Endopiriform (a6) Somatosensory (lateral entorhinal cortex) (a7) Cingulate (a8) Rhinal cortex

(b) Sub-cortical regions

(b1) DMH (b2) Preamygdala (b3) LH (b4) PVN

(b5) Claustrum (b6) VMH (b7) Amygdala (b8) Lateral septum

CNE_25091_Figure_12(1).tif
(a) Cortical inputs to the brainstem respiratory control areas

Motor
Prelimbic
Infalimbic
Cingulate
Insular
Somatosensory (upper lip/barrel cortex)
Endopiriform
Rhinal

(b) Sub-cortical inputs to the brainstem respiratory control areas

Lateral Septum
Amygdala
Preoptic area
Paraventricular Nucleus
Lateral Hypothalamus
Dorsomedial Hypothalamus
Ventromedial Hypothalamus
Claustrum

Periaqueductal gray
pre-Bötzingger complex
Bötzingger complex
caudal Raphé
Kölliker-Fuse nucleus
Descending inputs to respiratory control areas in the midbrain and brainstem

- Vocalization
 - Motor planning

- Orofacial behaviors
 - Sniffing
 - Whisking
 - Swallowing

- Emotional modulation of respiration

- Periaqueductal gray
- Kölliker-Fuse nucleus
- Bötzinger complex
- Caudal raphé
- pre-Bötzinger complex

CNE_25091_Graphical abstract-1.tif
Respiratory motor activity can be modulated by higher brain inputs. We hypothesized that forebrain regions send descending inputs to the respiratory control areas in the midbrain, pons, and medulla. Our data implies that i) volitional motor commands for vocalization are specifically relayed via the midbrain periaqueductal gray; ii) commands to coordinate breathing with other orofacial behaviors (e.g. sniffing, whisking, swallowing) target the pontine Kölliker-Fuse nucleus, predominantly; iii) limbic or autonomic (interoceptive) systems are connected to broadly distributed downstream brainstem respiratory networks, including the medullary Bötzing complex (BötC), pre-Bötzing complex (pre-BötC), and caudal raphé nuclei. We provide a neural substrate to explain how volitional, state-dependent, and emotional modulation of breathing is regulated by the forebrain.
Table 1. Stereotaxic coordinates for CT-B microinjections.

<table>
<thead>
<tr>
<th>Brain regions</th>
<th>Stereotaxic coordinates (mm)</th>
<th>Rostrocaudal(^1)</th>
<th>Mediolateral(^2)</th>
<th>Dorsoventral(^3)</th>
<th>micropipette angle(^4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kölliker-Fuse</td>
<td></td>
<td>-9.0±0.1</td>
<td>+2.6</td>
<td>-6.5</td>
<td>0°</td>
</tr>
<tr>
<td>Pre-Bötzinger</td>
<td></td>
<td>-9.5</td>
<td>+2.0</td>
<td>-9.5</td>
<td>22°</td>
</tr>
<tr>
<td>Bötzinger</td>
<td></td>
<td>-9.0</td>
<td>+2.0</td>
<td>-9.5</td>
<td>22°</td>
</tr>
<tr>
<td>Caudal raphé</td>
<td></td>
<td>-8.7</td>
<td>0.0</td>
<td>-9.4</td>
<td>22°</td>
</tr>
<tr>
<td>Periaqueductal</td>
<td></td>
<td>-8.0±0.5</td>
<td>+0.8</td>
<td>-4.8±0.5</td>
<td>0°</td>
</tr>
</tbody>
</table>

\(^1\)relative to Bregma; \(^2\)relative from midline; \(^3\)from dorsal surface of the brain; \(^4\)relative to vertical.
Minerva Access is the Institutional Repository of The University of Melbourne

Author/s:
Trevizan-Bau, P.; Dhingra, R. R.; Furuya, W. I.; Stanic, D.; Mazzone, S. B.; Dutschmann, M.

Title:
Forebrain projection neurons target functionally diverse respiratory control areas in the midbrain, pons, and medulla oblongata

Date:
2021-01-05

Citation:

Persistent Link:
http://hdl.handle.net/11343/298105